All Downloads are FREE. Search and download functionalities are using the official Maven repository.

edu.emory.mathcs.backport.java.util.concurrent.LinkedBlockingQueue Maven / Gradle / Ivy

Go to download

Statistical sampling library for use in virtdata libraries, based on apache commons math 4

There is a newer version: 5.17.0
Show newest version
/*
 * Written by Doug Lea with assistance from members of JCP JSR-166
 * Expert Group and released to the public domain, as explained at
 * http://creativecommons.org/licenses/publicdomain
 */

package edu.emory.mathcs.backport.java.util.concurrent;

import java.util.Collection;
import java.util.Iterator;
import java.util.NoSuchElementException;
import edu.emory.mathcs.backport.java.util.*;
import edu.emory.mathcs.backport.java.util.concurrent.helpers.*;

/**
 * An optionally-bounded {@linkplain BlockingQueue blocking queue} based on
 * linked nodes.
 * This queue orders elements FIFO (first-in-first-out).
 * The head of the queue is that element that has been on the
 * queue the longest time.
 * The tail of the queue is that element that has been on the
 * queue the shortest time. New elements
 * are inserted at the tail of the queue, and the queue retrieval
 * operations obtain elements at the head of the queue.
 * Linked queues typically have higher throughput than array-based queues but
 * less predictable performance in most concurrent applications.
 *
 * 

The optional capacity bound constructor argument serves as a * way to prevent excessive queue expansion. The capacity, if unspecified, * is equal to {@link Integer#MAX_VALUE}. Linked nodes are * dynamically created upon each insertion unless this would bring the * queue above capacity. * *

This class and its iterator implement all of the * optional methods of the {@link Collection} and {@link * Iterator} interfaces. * *

This class is a member of the * * Java Collections Framework. * * @since 1.5 * @author Doug Lea * */ public class LinkedBlockingQueue extends AbstractQueue implements BlockingQueue, java.io.Serializable { private static final long serialVersionUID = -6903933977591709194L; /* * A variant of the "two lock queue" algorithm. The putLock gates * entry to put (and offer), and has an associated condition for * waiting puts. Similarly for the takeLock. The "count" field * that they both rely on is maintained as an atomic to avoid * needing to get both locks in most cases. Also, to minimize need * for puts to get takeLock and vice-versa, cascading notifies are * used. When a put notices that it has enabled at least one take, * it signals taker. That taker in turn signals others if more * items have been entered since the signal. And symmetrically for * takes signalling puts. Operations such as remove(Object) and * iterators acquire both locks. */ /** * Linked list node class */ static class Node { /** The item, volatile to ensure barrier separating write and read */ volatile Object item; Node next; Node(Object x) { item = x; } } /** The capacity bound, or Integer.MAX_VALUE if none */ private final int capacity; /** Current number of elements */ private volatile int count = 0; /** Head of linked list */ private transient Node head; /** Tail of linked list */ private transient Node last; /** Lock held by take, poll, etc */ private final Object takeLock = new SerializableLock(); /** Lock held by put, offer, etc */ private final Object putLock = new SerializableLock(); /** * Signals a waiting take. Called only from put/offer (which do not * otherwise ordinarily lock takeLock.) */ private void signalNotEmpty() { synchronized (takeLock) { takeLock.notify(); } } /** * Signals a waiting put. Called only from take/poll. */ private void signalNotFull() { synchronized (putLock) { putLock.notify(); } } /** * Creates a node and links it at end of queue. * @param x the item */ private void insert(Object x) { last = last.next = new Node(x); } /** * Removes a node from head of queue, * @return the node */ private Object extract() { Node first = head.next; head = first; Object x = first.item; first.item = null; return x; } /** * Creates a LinkedBlockingQueue with a capacity of * {@link Integer#MAX_VALUE}. */ public LinkedBlockingQueue() { this(Integer.MAX_VALUE); } /** * Creates a LinkedBlockingQueue with the given (fixed) capacity. * * @param capacity the capacity of this queue * @throws IllegalArgumentException if capacity is not greater * than zero */ public LinkedBlockingQueue(int capacity) { if (capacity <= 0) throw new IllegalArgumentException(); this.capacity = capacity; last = head = new Node(null); } /** * Creates a LinkedBlockingQueue with a capacity of * {@link Integer#MAX_VALUE}, initially containing the elements of the * given collection, * added in traversal order of the collection's iterator. * * @param c the collection of elements to initially contain * @throws NullPointerException if the specified collection or any * of its elements are null */ public LinkedBlockingQueue(Collection c) { this(Integer.MAX_VALUE); for (Iterator itr = c.iterator(); itr.hasNext();) { Object e = itr.next(); add(e); } } // this doc comment is overridden to remove the reference to collections // greater in size than Integer.MAX_VALUE /** * Returns the number of elements in this queue. * * @return the number of elements in this queue */ public int size() { return count; } // this doc comment is a modified copy of the inherited doc comment, // without the reference to unlimited queues. /** * Returns the number of additional elements that this queue can ideally * (in the absence of memory or resource constraints) accept without * blocking. This is always equal to the initial capacity of this queue * less the current size of this queue. * *

Note that you cannot always tell if an attempt to insert * an element will succeed by inspecting remainingCapacity * because it may be the case that another thread is about to * insert or remove an element. */ public int remainingCapacity() { return capacity - count; } /** * Inserts the specified element at the tail of this queue, waiting if * necessary for space to become available. * * @throws InterruptedException {@inheritDoc} * @throws NullPointerException {@inheritDoc} */ public void put(Object e) throws InterruptedException { if (e == null) throw new NullPointerException(); // Note: convention in all put/take/etc is to preset // local var holding count negative to indicate failure unless set. int c = -1; synchronized (putLock) { /* * Note that count is used in wait guard even though it is * not protected by lock. This works because count can * only decrease at this point (all other puts are shut * out by lock), and we (or some other waiting put) are * signalled if it ever changes from * capacity. Similarly for all other uses of count in * other wait guards. */ try { while (count == capacity) putLock.wait(); } catch (InterruptedException ie) { putLock.notify(); // propagate to a non-interrupted thread throw ie; } insert(e); synchronized (this) { c = count++; } if (c + 1 < capacity) putLock.notify(); } if (c == 0) signalNotEmpty(); } /** * Inserts the specified element at the tail of this queue, waiting if * necessary up to the specified wait time for space to become available. * * @return true if successful, or false if * the specified waiting time elapses before space is available. * @throws InterruptedException {@inheritDoc} * @throws NullPointerException {@inheritDoc} */ public boolean offer(Object e, long timeout, TimeUnit unit) throws InterruptedException { if (e == null) throw new NullPointerException(); long nanos = unit.toNanos(timeout); int c = -1; synchronized (putLock) { long deadline = Utils.nanoTime() + nanos; for (;;) { if (count < capacity) { insert(e); synchronized (this) { c = count++; } if (c + 1 < capacity) putLock.notify(); break; } if (nanos <= 0) return false; try { TimeUnit.NANOSECONDS.timedWait(putLock, nanos); nanos = deadline - Utils.nanoTime(); } catch (InterruptedException ie) { putLock.notify(); // propagate to a non-interrupted thread throw ie; } } } if (c == 0) signalNotEmpty(); return true; } /** * Inserts the specified element at the tail of this queue if it is * possible to do so immediately without exceeding the queue's capacity, * returning true upon success and false if this queue * is full. * When using a capacity-restricted queue, this method is generally * preferable to method {@link BlockingQueue#add add}, which can fail to * insert an element only by throwing an exception. * * @throws NullPointerException if the specified element is null */ public boolean offer(Object e) { if (e == null) throw new NullPointerException(); if (count == capacity) return false; int c = -1; synchronized (putLock) { if (count < capacity) { insert(e); synchronized (this) { c = count++; } if (c + 1 < capacity) putLock.notify(); } } if (c == 0) signalNotEmpty(); return c >= 0; } public Object take() throws InterruptedException { Object x; int c = -1; synchronized (takeLock) { try { while (count == 0) takeLock.wait(); } catch (InterruptedException ie) { takeLock.notify(); // propagate to a non-interrupted thread throw ie; } x = extract(); synchronized (this) { c = count--; } if (c > 1) takeLock.notify(); } if (c == capacity) signalNotFull(); return x; } public Object poll(long timeout, TimeUnit unit) throws InterruptedException { Object x = null; int c = -1; long nanos = unit.toNanos(timeout); synchronized (takeLock) { long deadline = Utils.nanoTime() + nanos; for (;;) { if (count > 0) { x = extract(); synchronized (this) { c = count--; } if (c > 1) takeLock.notify(); break; } if (nanos <= 0) return null; try { TimeUnit.NANOSECONDS.timedWait(takeLock, nanos); nanos = deadline - Utils.nanoTime(); } catch (InterruptedException ie) { takeLock.notify(); // propagate to a non-interrupted thread throw ie; } } } if (c == capacity) signalNotFull(); return x; } public Object poll() { if (count == 0) return null; Object x = null; int c = -1; synchronized (takeLock) { if (count > 0) { x = extract(); synchronized (this) { c = count--; } if (c > 1) takeLock.notify(); } } if (c == capacity) signalNotFull(); return x; } public Object peek() { if (count == 0) return null; synchronized (takeLock) { Node first = head.next; if (first == null) return null; else return first.item; } } /** * Removes a single instance of the specified element from this queue, * if it is present. More formally, removes an element e such * that o.equals(e), if this queue contains one or more such * elements. * Returns true if this queue contained the specified element * (or equivalently, if this queue changed as a result of the call). * * @param o element to be removed from this queue, if present * @return true if this queue changed as a result of the call */ public boolean remove(Object o) { if (o == null) return false; boolean removed = false; synchronized (putLock) { synchronized (takeLock) { Node trail = head; Node p = head.next; while (p != null) { if (o.equals(p.item)) { removed = true; break; } trail = p; p = p.next; } if (removed) { p.item = null; trail.next = p.next; if (last == p) last = trail; synchronized (this) { if (count-- == capacity) putLock.notifyAll(); } } } } return removed; } /** * Returns an array containing all of the elements in this queue, in * proper sequence. * *

The returned array will be "safe" in that no references to it are * maintained by this queue. (In other words, this method must allocate * a new array). The caller is thus free to modify the returned array. * *

This method acts as bridge between array-based and collection-based * APIs. * * @return an array containing all of the elements in this queue */ public Object[] toArray() { synchronized (putLock) { synchronized (takeLock) { int size = count; Object[] a = new Object[size]; int k = 0; for (Node p = head.next; p != null; p = p.next) a[k++] = p.item; return a; } } } /** * Returns an array containing all of the elements in this queue, in * proper sequence; the runtime type of the returned array is that of * the specified array. If the queue fits in the specified array, it * is returned therein. Otherwise, a new array is allocated with the * runtime type of the specified array and the size of this queue. * *

If this queue fits in the specified array with room to spare * (i.e., the array has more elements than this queue), the element in * the array immediately following the end of the queue is set to * null. * *

Like the {@link #toArray()} method, this method acts as bridge between * array-based and collection-based APIs. Further, this method allows * precise control over the runtime type of the output array, and may, * under certain circumstances, be used to save allocation costs. * *

Suppose x is a queue known to contain only strings. * The following code can be used to dump the queue into a newly * allocated array of String: * *

     *     String[] y = x.toArray(new String[0]);
* * Note that toArray(new Object[0]) is identical in function to * toArray(). * * @param a the array into which the elements of the queue are to * be stored, if it is big enough; otherwise, a new array of the * same runtime type is allocated for this purpose * @return an array containing all of the elements in this queue * @throws ArrayStoreException if the runtime type of the specified array * is not a supertype of the runtime type of every element in * this queue * @throws NullPointerException if the specified array is null */ public Object[] toArray(Object[] a) { synchronized (putLock) { synchronized (takeLock) { int size = count; if (a.length < size) a = (Object[])java.lang.reflect.Array.newInstance (a.getClass().getComponentType(), size); int k = 0; for (Node p = head.next; p != null; p = p.next) a[k++] = (Object)p.item; if (a.length > k) a[k] = null; return a; } } } public String toString() { synchronized (putLock) { synchronized (takeLock) { return super.toString(); } } } /** * Atomically removes all of the elements from this queue. * The queue will be empty after this call returns. */ public void clear() { synchronized (putLock) { synchronized (takeLock) { head.next = null; assert head.item == null; last = head; int c; synchronized (this) { c = count; count = 0; } if (c == capacity) putLock.notifyAll(); } } } /** * @throws UnsupportedOperationException {@inheritDoc} * @throws ClassCastException {@inheritDoc} * @throws NullPointerException {@inheritDoc} * @throws IllegalArgumentException {@inheritDoc} */ public int drainTo(Collection c) { if (c == null) throw new NullPointerException(); if (c == this) throw new IllegalArgumentException(); Node first; synchronized (putLock) { synchronized (takeLock) { first = head.next; head.next = null; assert head.item == null; last = head; int cold; synchronized (this) { cold = count; count = 0; } if (cold == capacity) putLock.notifyAll(); } } // Transfer the elements outside of locks int n = 0; for (Node p = first; p != null; p = p.next) { c.add(p.item); p.item = null; ++n; } return n; } /** * @throws UnsupportedOperationException {@inheritDoc} * @throws ClassCastException {@inheritDoc} * @throws NullPointerException {@inheritDoc} * @throws IllegalArgumentException {@inheritDoc} */ public int drainTo(Collection c, int maxElements) { if (c == null) throw new NullPointerException(); if (c == this) throw new IllegalArgumentException(); synchronized (putLock) { synchronized (takeLock) { int n = 0; Node p = head.next; while (p != null && n < maxElements) { c.add(p.item); p.item = null; p = p.next; ++n; } if (n != 0) { head.next = p; assert head.item == null; if (p == null) last = head; int cold; synchronized (this) { cold = count; count -= n; } if (cold == capacity) putLock.notifyAll(); } return n; } } } /** * Returns an iterator over the elements in this queue in proper sequence. * The returned Iterator is a "weakly consistent" iterator that * will never throw {@link java.util.ConcurrentModificationException}, * and guarantees to traverse elements as they existed upon * construction of the iterator, and may (but is not guaranteed to) * reflect any modifications subsequent to construction. * * @return an iterator over the elements in this queue in proper sequence */ public Iterator iterator() { return new Itr(); } private class Itr implements Iterator { /* * Basic weak-consistent iterator. At all times hold the next * item to hand out so that if hasNext() reports true, we will * still have it to return even if lost race with a take etc. */ private Node current; private Node lastRet; private Object currentElement; Itr() { synchronized (putLock) { synchronized (takeLock) { current = head.next; if (current != null) currentElement = current.item; } } } public boolean hasNext() { return current != null; } public Object next() { synchronized (putLock) { synchronized (takeLock) { if (current == null) throw new NoSuchElementException(); Object x = currentElement; lastRet = current; current = current.next; if (current != null) currentElement = current.item; return x; } } } public void remove() { if (lastRet == null) throw new IllegalStateException(); synchronized (putLock) { synchronized (takeLock) { Node node = lastRet; lastRet = null; Node trail = head; Node p = head.next; while (p != null && p != node) { trail = p; p = p.next; } if (p == node) { p.item = null; trail.next = p.next; if (last == p) last = trail; int c; synchronized (this) { c = count--; } if (c == capacity) putLock.notifyAll(); } } } } } /** * Save the state to a stream (that is, serialize it). * * @serialData The capacity is emitted (int), followed by all of * its elements (each an Object) in the proper order, * followed by a null * @param s the stream */ private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException { synchronized (putLock) { synchronized (takeLock) { // Write out any hidden stuff, plus capacity s.defaultWriteObject(); // Write out all elements in the proper order. for (Node p = head.next; p != null; p = p.next) s.writeObject(p.item); // Use trailing null as sentinel s.writeObject(null); } } } /** * Reconstitute this queue instance from a stream (that is, * deserialize it). * @param s the stream */ private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException { // Read in capacity, and any hidden stuff s.defaultReadObject(); synchronized (this) { count = 0; } last = head = new Node(null); // Read in all elements and place in queue for (;;) { Object item = (Object)s.readObject(); if (item == null) break; add(item); } } private static class SerializableLock implements java.io.Serializable { private final static long serialVersionUID = -8856990691138858668L; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy