io.nosqlbench.virtdata.library.curves4.discrete.common.InterpolatingIntIntSampler Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of virtdata-lib-curves4 Show documentation
Show all versions of virtdata-lib-curves4 Show documentation
Statistical sampling library for use in virtdata libraries, based
on apache commons math 4
/*
* Copyright (c) 2022 nosqlbench
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package io.nosqlbench.virtdata.library.curves4.discrete.common;
import io.nosqlbench.virtdata.library.basics.shared.unary_int.Hash;
import java.util.function.DoubleToIntFunction;
import java.util.function.IntUnaryOperator;
public class InterpolatingIntIntSampler implements IntUnaryOperator {
private final double[] lut;
private final DoubleToIntFunction f;
private Hash hash;
private final double scaleToIntRanged;
public InterpolatingIntIntSampler(DoubleToIntFunction icdSource, int resolution, boolean hash) {
this.f = icdSource;
if (hash) {
this.hash = new Hash();
}
double[] computed = precompute(resolution);
double[] padded = new double[computed.length+1];
System.arraycopy(computed,0,padded,0,computed.length);
padded[padded.length-1] = padded[padded.length-2];
scaleToIntRanged = (1.0d/Integer.MAX_VALUE)*(padded.length-2);
this.lut=padded;
}
private double[] precompute(int resolution) {
double[] precomputed = new double[resolution];
for (int s = 0; s < resolution; s++) { // not a ranging error
double rangedToUnit = (double) s / (double) resolution;
int sampleValue = f.applyAsInt(rangedToUnit);
precomputed[s] = sampleValue;
}
return precomputed;
}
@Override
public int applyAsInt(int input) {
if (hash!=null) {
input = hash.applyAsInt(input);
}
double samplePoint = scaleToIntRanged * input;
int leftidx = (int)samplePoint;
double fractional = samplePoint - leftidx;
double sample = (lut[leftidx]* (1.0d-fractional)) + (lut[leftidx+1] * fractional);
return (int) sample;
}
}