org.apache.commons.math4.analysis.interpolation.UnivariatePeriodicInterpolator Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of virtdata-lib-curves4 Show documentation
Show all versions of virtdata-lib-curves4 Show documentation
Statistical sampling library for use in virtdata libraries, based
on apache commons math 4
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math4.analysis.interpolation;
import org.apache.commons.math4.analysis.UnivariateFunction;
import org.apache.commons.math4.exception.MathIllegalArgumentException;
import org.apache.commons.math4.exception.NonMonotonicSequenceException;
import org.apache.commons.math4.exception.NumberIsTooSmallException;
import org.apache.commons.math4.util.MathArrays;
import org.apache.commons.math4.util.MathUtils;
/**
* Adapter for classes implementing the {@link UnivariateInterpolator}
* interface.
* The data to be interpolated is assumed to be periodic. Thus values that are
* outside of the range can be passed to the interpolation function: They will
* be wrapped into the initial range before being passed to the class that
* actually computes the interpolation.
*
*/
public class UnivariatePeriodicInterpolator
implements UnivariateInterpolator {
/** Default number of extension points of the samples array. */
public static final int DEFAULT_EXTEND = 5;
/** Interpolator. */
private final UnivariateInterpolator interpolator;
/** Period. */
private final double period;
/** Number of extension points. */
private final int extend;
/**
* Builds an interpolator.
*
* @param interpolator Interpolator.
* @param period Period.
* @param extend Number of points to be appended at the beginning and
* end of the sample arrays in order to avoid interpolation failure at
* the (periodic) boundaries of the orginal interval. The value is the
* number of sample points which the original {@code interpolator} needs
* on each side of the interpolated point.
*/
public UnivariatePeriodicInterpolator(UnivariateInterpolator interpolator,
double period,
int extend) {
this.interpolator = interpolator;
this.period = period;
this.extend = extend;
}
/**
* Builds an interpolator.
* Uses {@link #DEFAULT_EXTEND} as the number of extension points on each side
* of the original abscissae range.
*
* @param interpolator Interpolator.
* @param period Period.
*/
public UnivariatePeriodicInterpolator(UnivariateInterpolator interpolator,
double period) {
this(interpolator, period, DEFAULT_EXTEND);
}
/**
* {@inheritDoc}
*
* @throws NumberIsTooSmallException if the number of extension points
* is larger than the size of {@code xval}.
*/
@Override
public UnivariateFunction interpolate(double[] xval,
double[] yval)
throws NumberIsTooSmallException, NonMonotonicSequenceException {
if (xval.length < extend) {
throw new NumberIsTooSmallException(xval.length, extend, true);
}
MathArrays.checkOrder(xval);
final double offset = xval[0];
final int len = xval.length + extend * 2;
final double[] x = new double[len];
final double[] y = new double[len];
for (int i = 0; i < xval.length; i++) {
final int index = i + extend;
x[index] = MathUtils.reduce(xval[i], period, offset);
y[index] = yval[i];
}
// Wrap to enable interpolation at the boundaries.
for (int i = 0; i < extend; i++) {
int index = xval.length - extend + i;
x[i] = MathUtils.reduce(xval[index], period, offset) - period;
y[i] = yval[index];
index = len - extend + i;
x[index] = MathUtils.reduce(xval[i], period, offset) + period;
y[index] = yval[i];
}
MathArrays.sortInPlace(x, y);
final UnivariateFunction f = interpolator.interpolate(x, y);
return new UnivariateFunction() {
/** {@inheritDoc} */
@Override
public double value(final double x) throws MathIllegalArgumentException {
return f.value(MathUtils.reduce(x, period, offset));
}
};
}
}