All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math4.analysis.polynomials.PolynomialFunctionLagrangeForm Maven / Gradle / Ivy

Go to download

Statistical sampling library for use in virtdata libraries, based on apache commons math 4

There is a newer version: 5.17.0
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math4.analysis.polynomials;

import org.apache.commons.math4.analysis.UnivariateFunction;
import org.apache.commons.math4.exception.DimensionMismatchException;
import org.apache.commons.math4.exception.NonMonotonicSequenceException;
import org.apache.commons.math4.exception.NumberIsTooSmallException;
import org.apache.commons.math4.exception.util.LocalizedFormats;
import org.apache.commons.math4.util.FastMath;
import org.apache.commons.math4.util.MathArrays;

/**
 * Implements the representation of a real polynomial function in
 * 
 * Lagrange Form. For reference, see Introduction to Numerical
 * Analysis, ISBN 038795452X, chapter 2.
 * 

* The approximated function should be smooth enough for Lagrange polynomial * to work well. Otherwise, consider using splines instead.

* * @since 1.2 */ public class PolynomialFunctionLagrangeForm implements UnivariateFunction { /** * The coefficients of the polynomial, ordered by degree -- i.e. * coefficients[0] is the constant term and coefficients[n] is the * coefficient of x^n where n is the degree of the polynomial. */ private double coefficients[]; /** * Interpolating points (abscissas). */ private final double x[]; /** * Function values at interpolating points. */ private final double y[]; /** * Whether the polynomial coefficients are available. */ private boolean coefficientsComputed; /** * Construct a Lagrange polynomial with the given abscissas and function * values. The order of interpolating points are not important. *

* The constructor makes copy of the input arrays and assigns them.

* * @param x interpolating points * @param y function values at interpolating points * @throws DimensionMismatchException if the array lengths are different. * @throws NumberIsTooSmallException if the number of points is less than 2. * @throws NonMonotonicSequenceException * if two abscissae have the same value. */ public PolynomialFunctionLagrangeForm(double x[], double y[]) throws DimensionMismatchException, NumberIsTooSmallException, NonMonotonicSequenceException { this.x = new double[x.length]; this.y = new double[y.length]; System.arraycopy(x, 0, this.x, 0, x.length); System.arraycopy(y, 0, this.y, 0, y.length); coefficientsComputed = false; if (!verifyInterpolationArray(x, y, false)) { MathArrays.sortInPlace(this.x, this.y); // Second check in case some abscissa is duplicated. verifyInterpolationArray(this.x, this.y, true); } } /** * Calculate the function value at the given point. * * @param z Point at which the function value is to be computed. * @return the function value. * @throws DimensionMismatchException if {@code x} and {@code y} have * different lengths. * @throws NonMonotonicSequenceException * if {@code x} is not sorted in strictly increasing order. * @throws NumberIsTooSmallException if the size of {@code x} is less * than 2. */ @Override public double value(double z) { return evaluateInternal(x, y, z); } /** * Returns the degree of the polynomial. * * @return the degree of the polynomial */ public int degree() { return x.length - 1; } /** * Returns a copy of the interpolating points array. *

* Changes made to the returned copy will not affect the polynomial.

* * @return a fresh copy of the interpolating points array */ public double[] getInterpolatingPoints() { double[] out = new double[x.length]; System.arraycopy(x, 0, out, 0, x.length); return out; } /** * Returns a copy of the interpolating values array. *

* Changes made to the returned copy will not affect the polynomial.

* * @return a fresh copy of the interpolating values array */ public double[] getInterpolatingValues() { double[] out = new double[y.length]; System.arraycopy(y, 0, out, 0, y.length); return out; } /** * Returns a copy of the coefficients array. *

* Changes made to the returned copy will not affect the polynomial.

*

* Note that coefficients computation can be ill-conditioned. Use with caution * and only when it is necessary.

* * @return a fresh copy of the coefficients array */ public double[] getCoefficients() { if (!coefficientsComputed) { computeCoefficients(); } double[] out = new double[coefficients.length]; System.arraycopy(coefficients, 0, out, 0, coefficients.length); return out; } /** * Evaluate the Lagrange polynomial using * * Neville's Algorithm. It takes O(n^2) time. * * @param x Interpolating points array. * @param y Interpolating values array. * @param z Point at which the function value is to be computed. * @return the function value. * @throws DimensionMismatchException if {@code x} and {@code y} have * different lengths. * @throws NonMonotonicSequenceException * if {@code x} is not sorted in strictly increasing order. * @throws NumberIsTooSmallException if the size of {@code x} is less * than 2. */ public static double evaluate(double x[], double y[], double z) throws DimensionMismatchException, NumberIsTooSmallException, NonMonotonicSequenceException { if (verifyInterpolationArray(x, y, false)) { return evaluateInternal(x, y, z); } // Array is not sorted. final double[] xNew = new double[x.length]; final double[] yNew = new double[y.length]; System.arraycopy(x, 0, xNew, 0, x.length); System.arraycopy(y, 0, yNew, 0, y.length); MathArrays.sortInPlace(xNew, yNew); // Second check in case some abscissa is duplicated. verifyInterpolationArray(xNew, yNew, true); return evaluateInternal(xNew, yNew, z); } /** * Evaluate the Lagrange polynomial using * * Neville's Algorithm. It takes O(n^2) time. * * @param x Interpolating points array. * @param y Interpolating values array. * @param z Point at which the function value is to be computed. * @return the function value. * @throws DimensionMismatchException if {@code x} and {@code y} have * different lengths. * @throws NonMonotonicSequenceException * if {@code x} is not sorted in strictly increasing order. * @throws NumberIsTooSmallException if the size of {@code x} is less * than 2. */ private static double evaluateInternal(double x[], double y[], double z) { int nearest = 0; final int n = x.length; final double[] c = new double[n]; final double[] d = new double[n]; double min_dist = Double.POSITIVE_INFINITY; for (int i = 0; i < n; i++) { // initialize the difference arrays c[i] = y[i]; d[i] = y[i]; // find out the abscissa closest to z final double dist = FastMath.abs(z - x[i]); if (dist < min_dist) { nearest = i; min_dist = dist; } } // initial approximation to the function value at z double value = y[nearest]; for (int i = 1; i < n; i++) { for (int j = 0; j < n-i; j++) { final double tc = x[j] - z; final double td = x[i+j] - z; final double divider = x[j] - x[i+j]; // update the difference arrays final double w = (c[j+1] - d[j]) / divider; c[j] = tc * w; d[j] = td * w; } // sum up the difference terms to get the final value if (nearest < 0.5*(n-i+1)) { value += c[nearest]; // fork down } else { nearest--; value += d[nearest]; // fork up } } return value; } /** * Calculate the coefficients of Lagrange polynomial from the * interpolation data. It takes O(n^2) time. * Note that this computation can be ill-conditioned: Use with caution * and only when it is necessary. */ protected void computeCoefficients() { final int n = degree() + 1; coefficients = new double[n]; for (int i = 0; i < n; i++) { coefficients[i] = 0.0; } // c[] are the coefficients of P(x) = (x-x[0])(x-x[1])...(x-x[n-1]) final double[] c = new double[n+1]; c[0] = 1.0; for (int i = 0; i < n; i++) { for (int j = i; j > 0; j--) { c[j] = c[j-1] - c[j] * x[i]; } c[0] *= -x[i]; c[i+1] = 1; } final double[] tc = new double[n]; for (int i = 0; i < n; i++) { // d = (x[i]-x[0])...(x[i]-x[i-1])(x[i]-x[i+1])...(x[i]-x[n-1]) double d = 1; for (int j = 0; j < n; j++) { if (i != j) { d *= x[i] - x[j]; } } final double t = y[i] / d; // Lagrange polynomial is the sum of n terms, each of which is a // polynomial of degree n-1. tc[] are the coefficients of the i-th // numerator Pi(x) = (x-x[0])...(x-x[i-1])(x-x[i+1])...(x-x[n-1]). tc[n-1] = c[n]; // actually c[n] = 1 coefficients[n-1] += t * tc[n-1]; for (int j = n-2; j >= 0; j--) { tc[j] = c[j+1] + tc[j+1] * x[i]; coefficients[j] += t * tc[j]; } } coefficientsComputed = true; } /** * Check that the interpolation arrays are valid. * The arrays features checked by this method are that both arrays have the * same length and this length is at least 2. * * @param x Interpolating points array. * @param y Interpolating values array. * @param abort Whether to throw an exception if {@code x} is not sorted. * @throws DimensionMismatchException if the array lengths are different. * @throws NumberIsTooSmallException if the number of points is less than 2. * @throws NonMonotonicSequenceException * if {@code x} is not sorted in strictly increasing order and {@code abort} * is {@code true}. * @return {@code false} if the {@code x} is not sorted in increasing order, * {@code true} otherwise. * @see #evaluate(double[], double[], double) * @see #computeCoefficients() */ public static boolean verifyInterpolationArray(double x[], double y[], boolean abort) throws DimensionMismatchException, NumberIsTooSmallException, NonMonotonicSequenceException { if (x.length != y.length) { throw new DimensionMismatchException(x.length, y.length); } if (x.length < 2) { throw new NumberIsTooSmallException(LocalizedFormats.WRONG_NUMBER_OF_POINTS, 2, x.length, true); } return MathArrays.checkOrder(x, MathArrays.OrderDirection.INCREASING, true, abort); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy