All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math4.distribution.AbstractIntegerDistribution Maven / Gradle / Ivy

Go to download

Statistical sampling library for use in virtdata libraries, based on apache commons math 4

There is a newer version: 5.17.0
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math4.distribution;

import java.io.Serializable;

import org.apache.commons.math4.exception.MathInternalError;
import org.apache.commons.math4.exception.NumberIsTooLargeException;
import org.apache.commons.math4.exception.OutOfRangeException;
import org.apache.commons.math4.exception.util.LocalizedFormats;
import org.apache.commons.rng.UniformRandomProvider;
import org.apache.commons.rng.sampling.distribution.InverseTransformDiscreteSampler;
import org.apache.commons.rng.sampling.distribution.DiscreteInverseCumulativeProbabilityFunction;
import org.apache.commons.rng.sampling.distribution.DiscreteSampler;
import org.apache.commons.math4.util.FastMath;

/**
 * Base class for integer-valued discrete distributions.  Default
 * implementations are provided for some of the methods that do not vary
 * from distribution to distribution.
 *
 */
public abstract class AbstractIntegerDistribution implements IntegerDistribution, Serializable {
    /** Serializable version identifier */
    private static final long serialVersionUID = 20160318L;

    /**
     * {@inheritDoc}
     *
     * The default implementation uses the identity
     * 

{@code P(x0 < X <= x1) = P(X <= x1) - P(X <= x0)}

* * @since 4.0, was previously named cumulativeProbability */ @Override public double probability(int x0, int x1) throws NumberIsTooLargeException { if (x1 < x0) { throw new NumberIsTooLargeException(LocalizedFormats.LOWER_ENDPOINT_ABOVE_UPPER_ENDPOINT, x0, x1, true); } return cumulativeProbability(x1) - cumulativeProbability(x0); } /** * {@inheritDoc} * * The default implementation returns *
    *
  • {@link #getSupportLowerBound()} for {@code p = 0},
  • *
  • {@link #getSupportUpperBound()} for {@code p = 1}, and
  • *
  • {@link #solveInverseCumulativeProbability(double, int, int)} for * {@code 0 < p < 1}.
  • *
*/ @Override public int inverseCumulativeProbability(final double p) throws OutOfRangeException { if (p < 0.0 || p > 1.0) { throw new OutOfRangeException(p, 0, 1); } int lower = getSupportLowerBound(); if (p == 0.0) { return lower; } if (lower == Integer.MIN_VALUE) { if (checkedCumulativeProbability(lower) >= p) { return lower; } } else { lower -= 1; // this ensures cumulativeProbability(lower) < p, which // is important for the solving step } int upper = getSupportUpperBound(); if (p == 1.0) { return upper; } // use the one-sided Chebyshev inequality to narrow the bracket // cf. AbstractRealDistribution.inverseCumulativeProbability(double) final double mu = getMean(); final double sigma = FastMath.sqrt(getVariance()); final boolean chebyshevApplies = !(Double.isInfinite(mu) || Double.isNaN(mu) || Double.isInfinite(sigma) || Double.isNaN(sigma) || sigma == 0.0); if (chebyshevApplies) { double k = FastMath.sqrt((1.0 - p) / p); double tmp = mu - k * sigma; if (tmp > lower) { lower = ((int) FastMath.ceil(tmp)) - 1; } k = 1.0 / k; tmp = mu + k * sigma; if (tmp < upper) { upper = ((int) FastMath.ceil(tmp)) - 1; } } return solveInverseCumulativeProbability(p, lower, upper); } /** * This is a utility function used by {@link * #inverseCumulativeProbability(double)}. It assumes {@code 0 < p < 1} and * that the inverse cumulative probability lies in the bracket {@code * (lower, upper]}. The implementation does simple bisection to find the * smallest {@code p}-quantile {@code inf{x in Z | P(X<=x) >= p}}. * * @param p the cumulative probability * @param lower a value satisfying {@code cumulativeProbability(lower) < p} * @param upper a value satisfying {@code p <= cumulativeProbability(upper)} * @return the smallest {@code p}-quantile of this distribution */ protected int solveInverseCumulativeProbability(final double p, int lower, int upper) { while (lower + 1 < upper) { int xm = (lower + upper) / 2; if (xm < lower || xm > upper) { /* * Overflow. * There will never be an overflow in both calculation methods * for xm at the same time */ xm = lower + (upper - lower) / 2; } double pm = checkedCumulativeProbability(xm); if (pm >= p) { upper = xm; } else { lower = xm; } } return upper; } /** * Computes the cumulative probability function and checks for {@code NaN} * values returned. Throws {@code MathInternalError} if the value is * {@code NaN}. Rethrows any exception encountered evaluating the cumulative * probability function. Throws {@code MathInternalError} if the cumulative * probability function returns {@code NaN}. * * @param argument input value * @return the cumulative probability * @throws MathInternalError if the cumulative probability is {@code NaN} */ private double checkedCumulativeProbability(int argument) throws MathInternalError { final double result = cumulativeProbability(argument); if (Double.isNaN(result)) { throw new MathInternalError(LocalizedFormats .DISCRETE_CUMULATIVE_PROBABILITY_RETURNED_NAN, argument); } return result; } /** * {@inheritDoc} *

* The default implementation simply computes the logarithm of {@code probability(x)}. */ @Override public double logProbability(int x) { return FastMath.log(probability(x)); } /** * Utility function for allocating an array and filling it with {@code n} * samples generated by the given {@code sampler}. * * @param n Number of samples. * @param sampler Sampler. * @return an array of size {@code n}. */ public static int[] sample(int n, Sampler sampler) { final int[] samples = new int[n]; for (int i = 0; i < n; i++) { samples[i] = sampler.sample(); } return samples; } /**{@inheritDoc} */ @Override public Sampler createSampler(final UniformRandomProvider rng) { return new Sampler() { /** * Inversion method distribution sampler. */ private final DiscreteSampler sampler = new InverseTransformDiscreteSampler(rng, createICPF()); /** {@inheritDoc} */ @Override public int sample() { return sampler.sample(); } }; } /** * @return an instance for use by {@link #createSampler(UniformRandomProvider)} */ private DiscreteInverseCumulativeProbabilityFunction createICPF() { return new DiscreteInverseCumulativeProbabilityFunction() { /** {@inheritDoc} */ @Override public int inverseCumulativeProbability(double p) { return AbstractIntegerDistribution.this.inverseCumulativeProbability(p); } }; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy