All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math4.distribution.AbstractRealDistribution Maven / Gradle / Ivy

Go to download

Statistical sampling library for use in virtdata libraries, based on apache commons math 4

There is a newer version: 5.17.0
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math4.distribution;

import java.io.Serializable;

import org.apache.commons.math4.analysis.UnivariateFunction;
import org.apache.commons.math4.analysis.solvers.UnivariateSolverUtils;
import org.apache.commons.math4.exception.NumberIsTooLargeException;
import org.apache.commons.math4.exception.OutOfRangeException;
import org.apache.commons.math4.exception.util.LocalizedFormats;
import org.apache.commons.rng.UniformRandomProvider;
import org.apache.commons.rng.sampling.distribution.InverseTransformContinuousSampler;
import org.apache.commons.rng.sampling.distribution.ContinuousInverseCumulativeProbabilityFunction;
import org.apache.commons.rng.sampling.distribution.ContinuousSampler;
import org.apache.commons.math4.util.FastMath;

/**
 * Base class for probability distributions on the reals.
 * Default implementations are provided for some of the methods
 * that do not vary from distribution to distribution.
 *
 * 

* This base class provides a default factory method for creating * a {@link Sampler * sampler instance} that uses the * * inversion method for generating random samples that follow the * distribution. *

* * @since 3.0 */ public abstract class AbstractRealDistribution implements RealDistribution, Serializable { /** Default absolute accuracy for inverse cumulative computation. */ public static final double SOLVER_DEFAULT_ABSOLUTE_ACCURACY = 1e-6; /** Serializable version identifier */ private static final long serialVersionUID = 20160311L; /** * For a random variable {@code X} whose values are distributed according * to this distribution, this method returns {@code P(x0 < X <= x1)}. * * @param x0 Lower bound (excluded). * @param x1 Upper bound (included). * @return the probability that a random variable with this distribution * takes a value between {@code x0} and {@code x1}, excluding the lower * and including the upper endpoint. * @throws NumberIsTooLargeException if {@code x0 > x1}. * * The default implementation uses the identity * {@code P(x0 < X <= x1) = P(X <= x1) - P(X <= x0)} * * @since 3.1 */ @Override public double probability(double x0, double x1) { if (x0 > x1) { throw new NumberIsTooLargeException(LocalizedFormats.LOWER_ENDPOINT_ABOVE_UPPER_ENDPOINT, x0, x1, true); } return cumulativeProbability(x1) - cumulativeProbability(x0); } /** * {@inheritDoc} * * The default implementation returns *
    *
  • {@link #getSupportLowerBound()} for {@code p = 0},
  • *
  • {@link #getSupportUpperBound()} for {@code p = 1}.
  • *
*/ @Override public double inverseCumulativeProbability(final double p) throws OutOfRangeException { /* * IMPLEMENTATION NOTES * -------------------- * Where applicable, use is made of the one-sided Chebyshev inequality * to bracket the root. This inequality states that * P(X - mu >= k * sig) <= 1 / (1 + k^2), * mu: mean, sig: standard deviation. Equivalently * 1 - P(X < mu + k * sig) <= 1 / (1 + k^2), * F(mu + k * sig) >= k^2 / (1 + k^2). * * For k = sqrt(p / (1 - p)), we find * F(mu + k * sig) >= p, * and (mu + k * sig) is an upper-bound for the root. * * Then, introducing Y = -X, mean(Y) = -mu, sd(Y) = sig, and * P(Y >= -mu + k * sig) <= 1 / (1 + k^2), * P(-X >= -mu + k * sig) <= 1 / (1 + k^2), * P(X <= mu - k * sig) <= 1 / (1 + k^2), * F(mu - k * sig) <= 1 / (1 + k^2). * * For k = sqrt((1 - p) / p), we find * F(mu - k * sig) <= p, * and (mu - k * sig) is a lower-bound for the root. * * In cases where the Chebyshev inequality does not apply, geometric * progressions 1, 2, 4, ... and -1, -2, -4, ... are used to bracket * the root. */ if (p < 0.0 || p > 1.0) { throw new OutOfRangeException(p, 0, 1); } double lowerBound = getSupportLowerBound(); if (p == 0.0) { return lowerBound; } double upperBound = getSupportUpperBound(); if (p == 1.0) { return upperBound; } final double mu = getMean(); final double sig = FastMath.sqrt(getVariance()); final boolean chebyshevApplies; chebyshevApplies = !(Double.isInfinite(mu) || Double.isNaN(mu) || Double.isInfinite(sig) || Double.isNaN(sig)); if (lowerBound == Double.NEGATIVE_INFINITY) { if (chebyshevApplies) { lowerBound = mu - sig * FastMath.sqrt((1. - p) / p); } else { lowerBound = -1.0; while (cumulativeProbability(lowerBound) >= p) { lowerBound *= 2.0; } } } if (upperBound == Double.POSITIVE_INFINITY) { if (chebyshevApplies) { upperBound = mu + sig * FastMath.sqrt(p / (1. - p)); } else { upperBound = 1.0; while (cumulativeProbability(upperBound) < p) { upperBound *= 2.0; } } } final UnivariateFunction toSolve = new UnivariateFunction() { /** {@inheritDoc} */ @Override public double value(final double x) { return cumulativeProbability(x) - p; } }; double x = UnivariateSolverUtils.solve(toSolve, lowerBound, upperBound, getSolverAbsoluteAccuracy()); if (!isSupportConnected()) { /* Test for plateau. */ final double dx = getSolverAbsoluteAccuracy(); if (x - dx >= getSupportLowerBound()) { double px = cumulativeProbability(x); if (cumulativeProbability(x - dx) == px) { upperBound = x; while (upperBound - lowerBound > dx) { final double midPoint = 0.5 * (lowerBound + upperBound); if (cumulativeProbability(midPoint) < px) { lowerBound = midPoint; } else { upperBound = midPoint; } } return upperBound; } } } return x; } /** * Returns the solver absolute accuracy for inverse cumulative computation. * You can override this method in order to use a Brent solver with an * absolute accuracy different from the default. * * @return the maximum absolute error in inverse cumulative probability estimates */ protected double getSolverAbsoluteAccuracy() { return SOLVER_DEFAULT_ABSOLUTE_ACCURACY; } /** * {@inheritDoc} * * @return zero. * @since 3.1 */ @Override public double probability(double x) { return 0d; } /** * {@inheritDoc} *

* The default implementation simply computes the logarithm of {@code density(x)}. */ @Override public double logDensity(double x) { return FastMath.log(density(x)); } /** * Utility function for allocating an array and filling it with {@code n} * samples generated by the given {@code sampler}. * * @param n Number of samples. * @param sampler Sampler. * @return an array of size {@code n}. */ public static double[] sample(int n, Sampler sampler) { final double[] samples = new double[n]; for (int i = 0; i < n; i++) { samples[i] = sampler.sample(); } return samples; } /**{@inheritDoc} */ @Override public Sampler createSampler(final UniformRandomProvider rng) { return new Sampler() { /** * Inversion method distribution sampler. */ private final ContinuousSampler sampler = new InverseTransformContinuousSampler(rng, createICPF()); /** {@inheritDoc} */ @Override public double sample() { return sampler.sample(); } }; } /** * @return an instance for use by {@link #createSampler(UniformRandomProvider)} */ private ContinuousInverseCumulativeProbabilityFunction createICPF() { return new ContinuousInverseCumulativeProbabilityFunction() { /** {@inheritDoc} */ @Override public double inverseCumulativeProbability(double p) { return AbstractRealDistribution.this.inverseCumulativeProbability(p); } }; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy