All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math4.stat.regression.AbstractMultipleLinearRegression Maven / Gradle / Ivy

Go to download

Statistical sampling library for use in virtdata libraries, based on apache commons math 4

There is a newer version: 5.17.0
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math4.stat.regression;

import org.apache.commons.math4.exception.DimensionMismatchException;
import org.apache.commons.math4.exception.InsufficientDataException;
import org.apache.commons.math4.exception.MathIllegalArgumentException;
import org.apache.commons.math4.exception.NoDataException;
import org.apache.commons.math4.exception.NullArgumentException;
import org.apache.commons.math4.exception.util.LocalizedFormats;
import org.apache.commons.math4.linear.Array2DRowRealMatrix;
import org.apache.commons.math4.linear.ArrayRealVector;
import org.apache.commons.math4.linear.NonSquareMatrixException;
import org.apache.commons.math4.linear.RealMatrix;
import org.apache.commons.math4.linear.RealVector;
import org.apache.commons.math4.stat.descriptive.moment.Variance;
import org.apache.commons.math4.util.FastMath;

/**
 * Abstract base class for implementations of MultipleLinearRegression.
 * @since 2.0
 */
public abstract class AbstractMultipleLinearRegression implements
        MultipleLinearRegression {

    /** X sample data. */
    private RealMatrix xMatrix;

    /** Y sample data. */
    private RealVector yVector;

    /** Whether or not the regression model includes an intercept.  True means no intercept. */
    private boolean noIntercept = false;

    /**
     * @return the X sample data.
     */
    protected RealMatrix getX() {
        return xMatrix;
    }

    /**
     * @return the Y sample data.
     */
    protected RealVector getY() {
        return yVector;
    }

    /**
     * @return true if the model has no intercept term; false otherwise
     * @since 2.2
     */
    public boolean isNoIntercept() {
        return noIntercept;
    }

    /**
     * @param noIntercept true means the model is to be estimated without an intercept term
     * @since 2.2
     */
    public void setNoIntercept(boolean noIntercept) {
        this.noIntercept = noIntercept;
    }

    /**
     * 

Loads model x and y sample data from a flat input array, overriding any previous sample. *

*

Assumes that rows are concatenated with y values first in each row. For example, an input * data array containing the sequence of values (1, 2, 3, 4, 5, 6, 7, 8, 9) with * nobs = 3 and nvars = 2 creates a regression dataset with two * independent variables, as below: *

     *   y   x[0]  x[1]
     *   --------------
     *   1     2     3
     *   4     5     6
     *   7     8     9
     * 
* *

Note that there is no need to add an initial unitary column (column of 1's) when * specifying a model including an intercept term. If {@link #isNoIntercept()} is true, * the X matrix will be created without an initial column of "1"s; otherwise this column will * be added. *

*

Throws IllegalArgumentException if any of the following preconditions fail: *

  • data cannot be null
  • *
  • data.length = nobs * (nvars + 1)
  • *
  • {@code nobs > nvars}
* * @param data input data array * @param nobs number of observations (rows) * @param nvars number of independent variables (columns, not counting y) * @throws NullArgumentException if the data array is null * @throws DimensionMismatchException if the length of the data array is not equal * to nobs * (nvars + 1) * @throws InsufficientDataException if nobs is less than * nvars + 1 */ public void newSampleData(double[] data, int nobs, int nvars) { if (data == null) { throw new NullArgumentException(); } if (data.length != nobs * (nvars + 1)) { throw new DimensionMismatchException(data.length, nobs * (nvars + 1)); } if (nobs <= nvars) { throw new InsufficientDataException(LocalizedFormats.INSUFFICIENT_OBSERVED_POINTS_IN_SAMPLE, nobs, nvars + 1); } double[] y = new double[nobs]; final int cols = noIntercept ? nvars: nvars + 1; double[][] x = new double[nobs][cols]; int pointer = 0; for (int i = 0; i < nobs; i++) { y[i] = data[pointer++]; if (!noIntercept) { x[i][0] = 1.0d; } for (int j = noIntercept ? 0 : 1; j < cols; j++) { x[i][j] = data[pointer++]; } } this.xMatrix = new Array2DRowRealMatrix(x); this.yVector = new ArrayRealVector(y); } /** * Loads new y sample data, overriding any previous data. * * @param y the array representing the y sample * @throws NullArgumentException if y is null * @throws NoDataException if y is empty */ protected void newYSampleData(double[] y) { if (y == null) { throw new NullArgumentException(); } if (y.length == 0) { throw new NoDataException(); } this.yVector = new ArrayRealVector(y); } /** *

Loads new x sample data, overriding any previous data. *

* The input x array should have one row for each sample * observation, with columns corresponding to independent variables. * For example, if
     *  x = new double[][] {{1, 2}, {3, 4}, {5, 6}} 
* then setXSampleData(x) results in a model with two independent * variables and 3 observations: *
     *   x[0]  x[1]
     *   ----------
     *     1    2
     *     3    4
     *     5    6
     * 
*

Note that there is no need to add an initial unitary column (column of 1's) when * specifying a model including an intercept term. *

* @param x the rectangular array representing the x sample * @throws NullArgumentException if x is null * @throws NoDataException if x is empty * @throws DimensionMismatchException if x is not rectangular */ protected void newXSampleData(double[][] x) { if (x == null) { throw new NullArgumentException(); } if (x.length == 0) { throw new NoDataException(); } if (noIntercept) { this.xMatrix = new Array2DRowRealMatrix(x, true); } else { // Augment design matrix with initial unitary column final int nVars = x[0].length; final double[][] xAug = new double[x.length][nVars + 1]; for (int i = 0; i < x.length; i++) { if (x[i].length != nVars) { throw new DimensionMismatchException(x[i].length, nVars); } xAug[i][0] = 1.0d; System.arraycopy(x[i], 0, xAug[i], 1, nVars); } this.xMatrix = new Array2DRowRealMatrix(xAug, false); } } /** * Validates sample data. Checks that *
  • Neither x nor y is null or empty;
  • *
  • The length (i.e. number of rows) of x equals the length of y
  • *
  • x has at least one more row than it has columns (i.e. there is * sufficient data to estimate regression coefficients for each of the * columns in x plus an intercept.
  • *
* * @param x the [n,k] array representing the x data * @param y the [n,1] array representing the y data * @throws NullArgumentException if {@code x} or {@code y} is null * @throws DimensionMismatchException if {@code x} and {@code y} do not * have the same length * @throws NoDataException if {@code x} or {@code y} are zero-length * @throws MathIllegalArgumentException if the number of rows of {@code x} * is not larger than the number of columns + 1 */ protected void validateSampleData(double[][] x, double[] y) throws MathIllegalArgumentException { if ((x == null) || (y == null)) { throw new NullArgumentException(); } if (x.length != y.length) { throw new DimensionMismatchException(y.length, x.length); } if (x.length == 0) { // Must be no y data either throw new NoDataException(); } if (x[0].length + 1 > x.length) { throw new MathIllegalArgumentException( LocalizedFormats.NOT_ENOUGH_DATA_FOR_NUMBER_OF_PREDICTORS, x.length, x[0].length); } } /** * Validates that the x data and covariance matrix have the same * number of rows and that the covariance matrix is square. * * @param x the [n,k] array representing the x sample * @param covariance the [n,n] array representing the covariance matrix * @throws DimensionMismatchException if the number of rows in x is not equal * to the number of rows in covariance * @throws NonSquareMatrixException if the covariance matrix is not square */ protected void validateCovarianceData(double[][] x, double[][] covariance) { if (x.length != covariance.length) { throw new DimensionMismatchException(x.length, covariance.length); } if (covariance.length > 0 && covariance.length != covariance[0].length) { throw new NonSquareMatrixException(covariance.length, covariance[0].length); } } /** * {@inheritDoc} */ @Override public double[] estimateRegressionParameters() { RealVector b = calculateBeta(); return b.toArray(); } /** * {@inheritDoc} */ @Override public double[] estimateResiduals() { RealVector b = calculateBeta(); RealVector e = yVector.subtract(xMatrix.operate(b)); return e.toArray(); } /** * {@inheritDoc} */ @Override public double[][] estimateRegressionParametersVariance() { return calculateBetaVariance().getData(); } /** * {@inheritDoc} */ @Override public double[] estimateRegressionParametersStandardErrors() { double[][] betaVariance = estimateRegressionParametersVariance(); double sigma = calculateErrorVariance(); int length = betaVariance[0].length; double[] result = new double[length]; for (int i = 0; i < length; i++) { result[i] = FastMath.sqrt(sigma * betaVariance[i][i]); } return result; } /** * {@inheritDoc} */ @Override public double estimateRegressandVariance() { return calculateYVariance(); } /** * Estimates the variance of the error. * * @return estimate of the error variance * @since 2.2 */ public double estimateErrorVariance() { return calculateErrorVariance(); } /** * Estimates the standard error of the regression. * * @return regression standard error * @since 2.2 */ public double estimateRegressionStandardError() { return FastMath.sqrt(estimateErrorVariance()); } /** * Calculates the beta of multiple linear regression in matrix notation. * * @return beta */ protected abstract RealVector calculateBeta(); /** * Calculates the beta variance of multiple linear regression in matrix * notation. * * @return beta variance */ protected abstract RealMatrix calculateBetaVariance(); /** * Calculates the variance of the y values. * * @return Y variance */ protected double calculateYVariance() { return new Variance().evaluate(yVector.toArray()); } /** *

Calculates the variance of the error term.

* Uses the formula
     * var(u) = u · u / (n - k)
     * 
* where n and k are the row and column dimensions of the design * matrix X. * * @return error variance estimate * @since 2.2 */ protected double calculateErrorVariance() { RealVector residuals = calculateResiduals(); return residuals.dotProduct(residuals) / (xMatrix.getRowDimension() - xMatrix.getColumnDimension()); } /** * Calculates the residuals of multiple linear regression in matrix * notation. * *
     * u = y - X * b
     * 
* * @return The residuals [n,1] matrix */ protected RealVector calculateResiduals() { RealVector b = calculateBeta(); return yVector.subtract(xMatrix.operate(b)); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy