org.apache.commons.numbers.combinatorics.BinomialCoefficient Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of virtdata-lib-curves4 Show documentation
Show all versions of virtdata-lib-curves4 Show documentation
Statistical sampling library for use in virtdata libraries, based
on apache commons math 4
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.numbers.combinatorics;
import org.apache.commons.numbers.core.ArithmeticUtils;
/**
* Representation of the
* binomial coefficient.
* It is "{@code n choose k}", the number of {@code k}-element subsets that
* can be selected from an {@code n}-element set.
*/
public class BinomialCoefficient {
/**
* Computes de binomial coefficient.
* The largest value of {@code n} for which all coefficients can
* fit into a {@code long} is 66.
*
* @param n Size of the set.
* @param k Size of the subsets to be counted.
* @return {@code n choose k}.
* @throws IllegalArgumentException if {@code n < 0}.
* @throws IllegalArgumentException if {@code k > n}.
* @throws ArithmeticException if the result is too large to be
* represented by a {@code long}.
*/
public static long value(int n, int k) {
checkBinomial(n, k);
if (n == k ||
k == 0) {
return 1;
}
if (k == 1 ||
k == n - 1) {
return n;
}
// Use symmetry for large k.
if (k > n / 2) {
return value(n, n - k);
}
// We use the formulae:
// (n choose k) = n! / (n-k)! / k!
// (n choose k) = ((n-k+1)*...*n) / (1*...*k)
// which can be written
// (n choose k) = (n-1 choose k-1) * n / k
long result = 1;
if (n <= 61) {
// For n <= 61, the naive implementation cannot overflow.
int i = n - k + 1;
for (int j = 1; j <= k; j++) {
result = result * i / j;
i++;
}
} else if (n <= 66) {
// For n > 61 but n <= 66, the result cannot overflow,
// but we must take care not to overflow intermediate values.
int i = n - k + 1;
for (int j = 1; j <= k; j++) {
// We know that (result * i) is divisible by j,
// but (result * i) may overflow, so we split j:
// Filter out the gcd, d, so j/d and i/d are integer.
// result is divisible by (j/d) because (j/d)
// is relative prime to (i/d) and is a divisor of
// result * (i/d).
final long d = ArithmeticUtils.gcd(i, j);
result = (result / (j / d)) * (i / d);
++i;
}
} else {
// For n > 66, a result overflow might occur, so we check
// the multiplication, taking care to not overflow
// unnecessary.
int i = n - k + 1;
for (int j = 1; j <= k; j++) {
final long d = ArithmeticUtils.gcd(i, j);
result = ArithmeticUtils.mulAndCheck(result / (j / d), i / d);
++i;
}
}
return result;
}
/**
* Check binomial preconditions.
*
* @param n Size of the set.
* @param k Size of the subsets to be counted.
* @throws IllegalArgumentException if {@code n < 0}.
* @throws IllegalArgumentException if {@code k > n} or {@code k < 0}.
*/
static void checkBinomial(int n,
int k) {
if (n < 0) {
throw new CombinatoricsException(CombinatoricsException.NEGATIVE, n);
}
if (k > n ||
k < 0) {
throw new CombinatoricsException(CombinatoricsException.OUT_OF_RANGE, k, 0, n);
}
}
}