org.apache.commons.numbers.combinatorics.LogBinomialCoefficient Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of virtdata-lib-curves4 Show documentation
Show all versions of virtdata-lib-curves4 Show documentation
Statistical sampling library for use in virtdata libraries, based
on apache commons math 4
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.numbers.combinatorics;
/**
* Natural logarithm of the
* binomial coefficient.
* It is "{@code n choose k}", the number of {@code k}-element subsets that
* can be selected from an {@code n}-element set.
*/
public class LogBinomialCoefficient {
/**
* Computes the logarithm of the binomial coefficient.
* The largest value of {@code n} for which all coefficients can
* fit into a {@code long} is 66.
*
* @param n Size of the set.
* @param k Size of the subsets to be counted.
* @return {@code log(n choose k)}.
* @throws IllegalArgumentException if {@code n < 0}.
* @throws IllegalArgumentException if {@code k > n}.
* @throws IllegalArgumentException if the result is too large to be
* represented by a {@code long}.
*/
public static double value(int n, int k) {
BinomialCoefficient.checkBinomial(n, k);
if (n == k ||
k == 0) {
return 0;
}
if (k == 1 ||
k == n - 1) {
return Math.log(n);
}
// For values small enough to do exact integer computation,
// return the log of the exact value.
if (n < 67) {
return Math.log(BinomialCoefficient.value(n, k));
}
// Logarithm of "BinomialCoefficientDouble" for values that
// will not overflow.
if (n < 1030) {
return Math.log(BinomialCoefficientDouble.value(n, k));
}
if (k > n / 2) {
return value(n, n - k);
}
// Sum for values that could overflow.
double logSum = 0;
// n! / (n - k)!
for (int i = n - k + 1; i <= n; i++) {
logSum += Math.log(i);
}
// Divide by k!
for (int i = 2; i <= k; i++) {
logSum -= Math.log(i);
}
return logSum;
}
}