org.apache.commons.numbers.complex.Complex Maven / Gradle / Ivy
Show all versions of virtdata-lib-curves4 Show documentation
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.numbers.complex;
import org.apache.commons.numbers.core.Precision;
import java.io.Serializable;
import java.util.ArrayList;
import java.util.List;
/**
* Representation of a Complex number, i.e. a number which has both a
* real and imaginary part.
*
* Implementations of arithmetic operations handle {@code NaN} and
* infinite values according to the rules for {@link Double}, i.e.
* {@link #equals} is an equivalence relation for all instances that have
* a {@code NaN} in either real or imaginary part, e.g. the following are
* considered equal:
*
* - {@code 1 + NaNi}
* - {@code NaN + i}
* - {@code NaN + NaNi}
*
* Note that this contradicts the IEEE-754 standard for floating
* point numbers (according to which the test {@code x == x} must fail if
* {@code x} is {@code NaN}). The method
* {@link Precision#equals(double,double,int)
* equals for primitive double} in class {@code Precision} conforms with
* IEEE-754 while this class conforms with the standard behavior for Java
* object types.
*
*/
public final class Complex implements Serializable {
/** The square root of -1, a.k.a. "i". */
public static final Complex I = new Complex(0, 1);
/** A complex number representing "+INF + INF i" */
public static final Complex INF = new Complex(Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY);
/** A complex number representing one. */
public static final Complex ONE = new Complex(1, 0);
/** A complex number representing zero. */
public static final Complex ZERO = new Complex(0, 0);
/** A complex number representing "NaN + NaN i" */
private static final Complex NAN = new Complex(Double.NaN, Double.NaN);
/** Serializable version identifier. */
private static final long serialVersionUID = 20180201L;
/** {@link #toString() String representation}. */
private static final String FORMAT_START = "(";
/** {@link #toString() String representation}. */
private static final String FORMAT_END = ")";
/** {@link #toString() String representation}. */
private static final String FORMAT_SEP = ",";
/** The imaginary part. */
private final double imaginary;
/** The real part. */
private final double real;
/**
* Private default constructor.
*
* @param real Real part.
* @param imaginary Imaginary part.
*/
private Complex(double real, double imaginary) {
this.real = real;
this.imaginary = imaginary;
}
/**
* Create a complex number given the real and imaginary parts.
*
* @param real Real part.
* @param imaginary Imaginary part.
* @return {@code Complex} object
*/
public static Complex ofCartesian(double real, double imaginary) {
return new Complex(real, imaginary);
}
/**
* Create a complex number given the real part.
*
* @param real Real part.
* @return {@code Complex} object
*/
public static Complex ofReal(double real) {
return new Complex(real, 0);
}
/**
* Creates a Complex from its polar representation.
*
* If {@code r} is infinite and {@code theta} is finite, infinite or NaN
* values may be returned in parts of the result, following the rules for
* double arithmetic.
*
*
* Examples:
* {@code
* polar2Complex(INFINITY, \(\pi\)) = INFINITY + INFINITY i
* polar2Complex(INFINITY, 0) = INFINITY + NaN i
* polar2Complex(INFINITY, \(-\frac{\pi}{4}\)) = INFINITY - INFINITY i
* polar2Complex(INFINITY, \(5\frac{\pi}{4}\)) = -INFINITY - INFINITY i }
*
*
* @param r the modulus of the complex number to create
* @param theta the argument of the complex number to create
* @return {@code Complex}
*/
public static Complex ofPolar(double r, double theta) {
checkNotNegative(r);
return new Complex(r * Math.cos(theta), r * Math.sin(theta));
}
/**
* For a real constructor argument x, returns a new Complex object c
* where {@code c = cos(x) + i sin (x)}
*
* @param x {@code double} to build the cis number
* @return {@code Complex}
*/
public static Complex ofCis(double x) {
return new Complex(Math.cos(x), Math.sin(x));
}
/**
* Parses a string that would be produced by {@link #toString()}
* and instantiates the corresponding object.
*
* @param s String representation.
* @return an instance.
* @throws IllegalArgumentException if the string does not
* conform to the specification.
*/
public static Complex parse(String s) {
final int len = s.length();
final int startParen = s.indexOf(FORMAT_START);
if (startParen != 0) {
throw new ComplexParsingException("Expected start string: " + FORMAT_START);
}
final int endParen = s.indexOf(FORMAT_END);
if (endParen != len - 1) {
throw new ComplexParsingException("Expected end string: " + FORMAT_END);
}
final String[] elements = s.substring(1, s.length() - 1).split(FORMAT_SEP);
if (elements.length != 2) {
throw new ComplexParsingException("Incorrect number of parts: Expected 2 but was " +
elements.length +
" (separator is '" + FORMAT_SEP + "')");
}
final double re;
try {
re = Double.parseDouble(elements[0]);
} catch (NumberFormatException ex) {
throw new ComplexParsingException("Could not parse real part" + elements[0]);
}
final double im;
try {
im = Double.parseDouble(elements[1]);
} catch (NumberFormatException ex) {
throw new ComplexParsingException("Could not parse imaginary part" + elements[1]);
}
return ofCartesian(re, im);
}
/**
* Returns true if either real or imaginary component of the Complex
* is NaN
*
* @return {@code boolean}
*/
public boolean isNaN() {
if (Double.isNaN(real) ||
Double.isNaN(imaginary)) {
return true;
} else {
return false;
}
}
/**
* Returns true if either real or imaginary component of the Complex
* is Infinite
*
* @return {@code boolean}
*/
public boolean isInfinite() {
if (Double.isInfinite(real) ||
Double.isInfinite(imaginary)) {
return true;
} else {
return false;
}
}
/**
* Returns projection of this complex number onto the Riemann sphere,
* i.e. all infinities (including those with an NaN component)
* project onto real infinity, as described in the
*
* IEEE and ISO C standards.
*
*
*
* @return {@code Complex} projected onto the Riemann sphere.
*/
public Complex proj() {
if (Double.isInfinite(real) ||
Double.isInfinite(imaginary)) {
return new Complex(Double.POSITIVE_INFINITY, 0);
} else {
return this;
}
}
/**
* Return the absolute value of this complex number.
* This code follows the ISO C Standard, Annex G,
* in calculating the returned value (i.e. the hypot(x,y) method)
* and in handling of NaNs.
*
* @return the absolute value.
*/
public double abs() {
if (Math.abs(real) < Math.abs(imaginary)) {
final double q = real / imaginary;
return Math.abs(imaginary) * Math.sqrt(1 + q * q);
} else {
if (real == 0) {
return Math.abs(imaginary);
}
final double q = imaginary / real;
return Math.abs(real) * Math.sqrt(1 + q * q);
}
}
/**
* Returns a {@code Complex} whose value is
* {@code (this + addend)}.
* Uses the definitional formula
*
* {@code (a + bi) + (c + di) = (a+c) + (b+d)i}
*
*
* @param addend Value to be added to this {@code Complex}.
* @return {@code this + addend}.
*/
public Complex add(Complex addend) {
return new Complex(real + addend.real,
imaginary + addend.imaginary);
}
/**
* Returns a {@code Complex} whose value is {@code (this + addend)},
* with {@code addend} interpreted as a real number.
*
* @param addend Value to be added to this {@code Complex}.
* @return {@code this + addend}.
* @see #add(Complex)
*/
public Complex add(double addend) {
return new Complex(real + addend, imaginary);
}
/**
* Returns the conjugate of this complex number.
* The conjugate of {@code a + bi} is {@code a - bi}.
*
* @return the conjugate of this complex object.
*/
public Complex conjugate() {
return new Complex(real, -imaginary);
}
/**
* Returns the conjugate of this complex number.
* C++11 grammar.
* @return the conjugate of this complex object.
*/
public Complex conj() {
return conjugate();
}
/**
* Returns a {@code Complex} whose value is
* {@code (this / divisor)}.
* Implements the definitional formula
*
*
* a + bi ac + bd + (bc - ad)i
* ----------- = -------------------------
* c + di c2 + d2
*
*
*
*
* Recalculates to recover infinities as specified in C.99
* standard G.5.1. Method is fully in accordance with
* C++11 standards for complex numbers.
*
* @param divisor Value by which this {@code Complex} is to be divided.
* @return {@code this / divisor}.
*/
public Complex divide(Complex divisor) {
double a = real;
double b = imaginary;
double c = divisor.getReal();
double d = divisor.getImaginary();
int ilogbw = 0;
double logbw = Math.log(Math.max(Math.abs(c), Math.abs(d))) / Math.log(2);
if (!Double.isInfinite(logbw)) {
ilogbw = (int)logbw;
c = Math.scalb(c, -ilogbw);
d = Math.scalb(d, -ilogbw);
}
double denom = c*c + d*d;
double x = Math.scalb( (a*c + b*d) / denom, -ilogbw);
double y = Math.scalb( (b*c - a*d) / denom, -ilogbw);
if (Double.isNaN(x) && Double.isNaN(y)) {
if ((denom == 0.0) &&
(!Double.isNaN(a) || !Double.isNaN(b))) {
x = Math.copySign(Double.POSITIVE_INFINITY, c) * a;
y = Math.copySign(Double.POSITIVE_INFINITY, c) * b;
} else if ((Double.isInfinite(a) && Double.isInfinite(b)) &&
!Double.isInfinite(c) && !Double.isInfinite(d)) {
a = Math.copySign(Double.isInfinite(a) ? 1.0 : 0.0, a);
b = Math.copySign(Double.isInfinite(b) ? 1.0 : 0.0, b);
x = Double.POSITIVE_INFINITY * (a*c + b*d);
y = Double.POSITIVE_INFINITY * (b*c - a*d);
} else if (Double.isInfinite(logbw) &&
!Double.isInfinite(a) && !Double.isInfinite(b)) {
c = Math.copySign(Double.isInfinite(c) ? 1.0 : 0.0, c);
d = Math.copySign(Double.isInfinite(d) ? 1.0 : 0.0, d);
x = 0.0 * (a*c + b*d);
y = 0.0 * (b*c - a*d);
}
}
return new Complex(x, y);
}
/**
* Returns a {@code Complex} whose value is {@code (this / divisor)},
* with {@code divisor} interpreted as a real number.
*
* @param divisor Value by which this {@code Complex} is to be divided.
* @return {@code this / divisor}.
* @see #divide(Complex)
*/
public Complex divide(double divisor) {
return divide(new Complex(divisor, 0));
}
/**
* Returns the multiplicative inverse of this instance.
*
* @return {@code 1 / this}.
* @see #divide(Complex)
*/
public Complex reciprocal() {
if (Math.abs(real) < Math.abs(imaginary)) {
final double q = real / imaginary;
final double scale = 1. / (real * q + imaginary);
double scaleQ = 0;
if (q != 0 &&
scale != 0) {
scaleQ = scale * q;
}
return new Complex(scaleQ, -scale);
} else {
final double q = imaginary / real;
final double scale = 1. / (imaginary * q + real);
double scaleQ = 0;
if (q != 0 &&
scale != 0) {
scaleQ = scale * q;
}
return new Complex(scale, -scaleQ);
}
}
/**
* Test for equality with another object.
* If both the real and imaginary parts of two complex numbers
* are exactly the same, and neither is {@code Double.NaN}, the two
* Complex objects are considered to be equal.
* The behavior is the same as for JDK's {@link Double#equals(Object)
* Double}:
*
* - All {@code NaN} values are considered to be equal,
* i.e, if either (or both) real and imaginary parts of the complex
* number are equal to {@code Double.NaN}, the complex number is equal
* to {@code NaN}.
*
* -
* Instances constructed with different representations of zero (i.e.
* either "0" or "-0") are not considered to be equal.
*
*
*
* @param other Object to test for equality with this instance.
* @return {@code true} if the objects are equal, {@code false} if object
* is {@code null}, not an instance of {@code Complex}, or not equal to
* this instance.
*/
@Override
public boolean equals(Object other) {
if (this == other) {
return true;
}
if (other instanceof Complex){
Complex c = (Complex) other;
return equals(real, c.real) &&
equals(imaginary, c.imaginary);
}
return false;
}
/**
* Test for the floating-point equality between Complex objects.
* It returns {@code true} if both arguments are equal or within the
* range of allowed error (inclusive).
*
* @param x First value (cannot be {@code null}).
* @param y Second value (cannot be {@code null}).
* @param maxUlps {@code (maxUlps - 1)} is the number of floating point
* values between the real (resp. imaginary) parts of {@code x} and
* {@code y}.
* @return {@code true} if there are fewer than {@code maxUlps} floating
* point values between the real (resp. imaginary) parts of {@code x}
* and {@code y}.
*
* @see Precision#equals(double,double,int)
*/
public static boolean equals(Complex x,
Complex y,
int maxUlps) {
return Precision.equals(x.real, y.real, maxUlps) &&
Precision.equals(x.imaginary, y.imaginary, maxUlps);
}
/**
* Returns {@code true} iff the values are equal as defined by
* {@link #equals(Complex,Complex,int) equals(x, y, 1)}.
*
* @param x First value (cannot be {@code null}).
* @param y Second value (cannot be {@code null}).
* @return {@code true} if the values are equal.
*/
public static boolean equals(Complex x,
Complex y) {
return equals(x, y, 1);
}
/**
* Returns {@code true} if, both for the real part and for the imaginary
* part, there is no double value strictly between the arguments or the
* difference between them is within the range of allowed error
* (inclusive). Returns {@code false} if either of the arguments is NaN.
*
* @param x First value (cannot be {@code null}).
* @param y Second value (cannot be {@code null}).
* @param eps Amount of allowed absolute error.
* @return {@code true} if the values are two adjacent floating point
* numbers or they are within range of each other.
*
* @see Precision#equals(double,double,double)
*/
public static boolean equals(Complex x,
Complex y,
double eps) {
return Precision.equals(x.real, y.real, eps) &&
Precision.equals(x.imaginary, y.imaginary, eps);
}
/**
* Returns {@code true} if, both for the real part and for the imaginary
* part, there is no double value strictly between the arguments or the
* relative difference between them is smaller or equal to the given
* tolerance. Returns {@code false} if either of the arguments is NaN.
*
* @param x First value (cannot be {@code null}).
* @param y Second value (cannot be {@code null}).
* @param eps Amount of allowed relative error.
* @return {@code true} if the values are two adjacent floating point
* numbers or they are within range of each other.
*
* @see Precision#equalsWithRelativeTolerance(double,double,double)
*/
public static boolean equalsWithRelativeTolerance(Complex x, Complex y,
double eps) {
return Precision.equalsWithRelativeTolerance(x.real, y.real, eps) &&
Precision.equalsWithRelativeTolerance(x.imaginary, y.imaginary, eps);
}
/**
* Get a hash code for the complex number.
* Any {@code Double.NaN} value in real or imaginary part produces
* the same hash code {@code 7}.
*
* @return a hash code value for this object.
*/
@Override
public int hashCode() {
if (Double.isNaN(real) ||
Double.isNaN(imaginary)) {
return 7;
}
return 37 * (17 * hash(imaginary) + hash(real));
}
/**
* @param d Value.
* @return a hash code for the given value.
*/
private int hash(double d) {
final long v = Double.doubleToLongBits(d);
return (int) (v ^ (v >>> 32));
//return new Double(d).hashCode();
}
/**
* Access the imaginary part.
*
* @return the imaginary part.
*/
public double getImaginary() {
return imaginary;
}
/**
* Access the imaginary part (C++ grammar)
*
* @return the imaginary part.
*/
public double imag() {
return imaginary;
}
/**
* Access the real part.
*
* @return the real part.
*/
public double getReal() {
return real;
}
/**
* Access the real part (C++ grammar)
*
* @return the real part.
*/
public double real() {
return real;
}
/**
* Returns a {@code Complex} whose value is {@code this * factor}.
* Implements the definitional formula:
*
* {@code (a + bi)(c + di) = (ac - bd) + (ad + bc)i}
*
* Recalculates to recover infinities as specified in C.99
* standard G.5.1. Method is fully in accordance with
* C++11 standards for complex numbers.
*
* @param factor value to be multiplied by this {@code Complex}.
* @return {@code this * factor}.
*/
public Complex multiply(Complex factor) {
double a = real;
double b = imaginary;
double c = factor.getReal();
double d = factor.getImaginary();
final double ac = a*c;
final double bd = b*d;
final double ad = a*d;
final double bc = b*c;
double x = ac - bd;
double y = ad + bc;
if (Double.isNaN(a) && Double.isNaN(b)) {
boolean recalc = false;
if (Double.isInfinite(a) || Double.isInfinite(b)) {
a = Math.copySign(Double.isInfinite(a) ? 1.0 : 0.0, a);
b = Math.copySign(Double.isInfinite(a) ? 1.0 : 0.0, a);
if (Double.isNaN(c)) {
c = Math.copySign(0.0, c);
}
if (Double.isNaN(d)) {
d = Math.copySign(0.0, d);
}
recalc = true;
}
if (Double.isInfinite(c) || Double.isInfinite(d)) {
c = Math.copySign(Double.isInfinite(c) ? 1.0 : 0.0, c);
d = Math.copySign(Double.isInfinite(d) ? 1.0 : 0.0, d);
if (Double.isNaN(a)) {
a = Math.copySign(0.0, a);
}
if (Double.isNaN(b)) {
b = Math.copySign(0.0, b);
}
recalc = true;
}
if (!recalc && (Double.isInfinite(ac) || Double.isInfinite(bd) ||
Double.isInfinite(ad) || Double.isInfinite(bc))) {
if (Double.isNaN(a)) {
a = Math.copySign(0.0, a);
}
if (Double.isNaN(b)) {
b = Math.copySign(0.0, b);
}
if (Double.isNaN(c)) {
c = Math.copySign(0.0, c);
}
if (Double.isNaN(d)) {
d = Math.copySign(0.0, d);
}
recalc = true;
}
if (recalc) {
x = Double.POSITIVE_INFINITY * (a*c - b*d);
y = Double.POSITIVE_INFINITY * (a*d + b*c);
}
}
return new Complex(x, y);
}
/**
* Returns a {@code Complex} whose value is {@code this * factor}, with {@code factor}
* interpreted as a integer number.
*
* @param factor value to be multiplied by this {@code Complex}.
* @return {@code this * factor}.
* @see #multiply(Complex)
*/
public Complex multiply(final int factor) {
return new Complex(real * factor, imaginary * factor);
}
/**
* Returns a {@code Complex} whose value is {@code this * factor}, with {@code factor}
* interpreted as a real number.
*
* @param factor value to be multiplied by this {@code Complex}.
* @return {@code this * factor}.
* @see #multiply(Complex)
*/
public Complex multiply(double factor) {
return new Complex(real * factor, imaginary * factor);
}
/**
* Returns a {@code Complex} whose value is {@code (-this)}.
*
* @return {@code -this}.
*/
public Complex negate() {
return new Complex(-real, -imaginary);
}
/**
* Returns a {@code Complex} whose value is
* {@code (this - subtrahend)}.
* Uses the definitional formula
*
* {@code (a + bi) - (c + di) = (a-c) + (b-d)i}
*
*
* @param subtrahend value to be subtracted from this {@code Complex}.
* @return {@code this - subtrahend}.
*/
public Complex subtract(Complex subtrahend) {
return new Complex(real - subtrahend.real,
imaginary - subtrahend.imaginary);
}
/**
* Returns a {@code Complex} whose value is
* {@code (this - subtrahend)}.
*
* @param subtrahend value to be subtracted from this {@code Complex}.
* @return {@code this - subtrahend}.
* @see #subtract(Complex)
*/
public Complex subtract(double subtrahend) {
return new Complex(real - subtrahend, imaginary);
}
/**
* Compute the
*
* inverse cosine of this complex number.
* Implements the formula:
*
* {@code acos(z) = -i (log(z + i (sqrt(1 - z2))))}
*
*
* @return the inverse cosine of this complex number.
*/
public Complex acos() {
if (real == 0 &&
Double.isNaN(imaginary)) {
return new Complex(Math.PI * 0.5, Double.NaN);
} else if (neitherInfiniteNorZeroNorNaN(real) &&
imaginary == Double.POSITIVE_INFINITY) {
return new Complex(Math.PI * 0.5, Double.NEGATIVE_INFINITY);
} else if (real == Double.NEGATIVE_INFINITY &&
imaginary == 1) {
return new Complex(Math.PI, Double.NEGATIVE_INFINITY);
} else if (real == Double.POSITIVE_INFINITY &&
imaginary == 1) {
return new Complex(0, Double.NEGATIVE_INFINITY);
} else if (real == Double.NEGATIVE_INFINITY &&
imaginary == Double.POSITIVE_INFINITY) {
return new Complex(Math.PI * 0.75, Double.NEGATIVE_INFINITY);
} else if (real == Double.POSITIVE_INFINITY &&
imaginary == Double.POSITIVE_INFINITY) {
return new Complex(Math.PI * 0.25, Double.NEGATIVE_INFINITY);
} else if (real == Double.POSITIVE_INFINITY &&
Double.isNaN(imaginary)) {
return new Complex(Double.NaN , Double.POSITIVE_INFINITY);
} else if (real == Double.NEGATIVE_INFINITY &&
Double.isNaN(imaginary)) {
return new Complex(Double.NaN, Double.NEGATIVE_INFINITY);
} else if (Double.isNaN(real) &&
imaginary == Double.POSITIVE_INFINITY) {
return new Complex(Double.NaN, Double.NEGATIVE_INFINITY);
}
return add(sqrt1z().multiply(I)).log().multiply(I.negate());
}
/**
* Compute the
*
* inverse sine of this complex number.
*
* {@code asin(z) = -i (log(sqrt(1 - z2) + iz))}
*
* @return the inverse sine of this complex number
*/
public Complex asin() {
return sqrt1z().add(multiply(I)).log().multiply(I.negate());
}
/**
* Compute the
*
* inverse tangent of this complex number.
* Implements the formula:
*
* {@code atan(z) = (i/2) log((i + z)/(i - z))}
*
* @return the inverse tangent of this complex number
*/
public Complex atan() {
return add(I).divide(I.subtract(this)).log().multiply(I.multiply(0.5));
}
/**
* Compute the
*
* inverse hyperbolic sine of this complex number.
* Implements the formula:
*
* {@code asinh(z) = log(z+sqrt(z^2+1))}
*
* @return the inverse hyperbolic cosine of this complex number
*/
public Complex asinh(){
if (neitherInfiniteNorZeroNorNaN(real) &&
imaginary == Double.POSITIVE_INFINITY) {
return new Complex(Double.POSITIVE_INFINITY, Math.PI * 0.5);
} else if (real == Double.POSITIVE_INFINITY &&
!Double.isInfinite(imaginary) && !Double.isNaN(imaginary)) {
return new Complex(Double.POSITIVE_INFINITY, 0);
} else if (real == Double.POSITIVE_INFINITY &&
imaginary == Double.POSITIVE_INFINITY) {
return new Complex(Double.POSITIVE_INFINITY, Math.PI * 0.25);
} else if (real == Double.POSITIVE_INFINITY &&
Double.isNaN(imaginary)) {
return new Complex(Double.POSITIVE_INFINITY, Double.NaN);
} else if (Double.isNaN(real) &&
imaginary == 0) {
return new Complex(Double.NaN, 0);
} else if (Double.isNaN(real) &&
imaginary == Double.POSITIVE_INFINITY) {
return new Complex(Double.POSITIVE_INFINITY, Double.NaN);
}
return square().add(ONE).sqrt().add(this).log();
}
/**
* Compute the
*
* inverse hyperbolic tangent of this complex number.
* Implements the formula:
*
* {@code atanh(z) = log((1+z)/(1-z))/2}
*
* @return the inverse hyperbolic cosine of this complex number
*/
public Complex atanh(){
if (real == 0 &&
Double.isNaN(imaginary)) {
return new Complex(0, Double.NaN);
} else if (neitherInfiniteNorZeroNorNaN(real) &&
imaginary == 0) {
return new Complex(Double.POSITIVE_INFINITY, 0);
} else if (neitherInfiniteNorZeroNorNaN(real) &&
imaginary == Double.POSITIVE_INFINITY) {
return new Complex(0, Math.PI * 0.5);
} else if (real == Double.POSITIVE_INFINITY &&
neitherInfiniteNorZeroNorNaN(imaginary)) {
return new Complex(0, Math.PI * 0.5);
} else if (real == Double.POSITIVE_INFINITY &&
imaginary == Double.POSITIVE_INFINITY) {
return new Complex(0, Math.PI * 0.5);
} else if (real == Double.POSITIVE_INFINITY &&
Double.isNaN(imaginary)) {
return new Complex(0, Double.NaN);
} else if (Double.isNaN(real) &&
imaginary == Double.POSITIVE_INFINITY) {
return new Complex(0, Math.PI * 0.5);
}
return add(ONE).divide(ONE.subtract(this)).log().multiply(0.5);
}
/**
* Compute the
*
* inverse hyperbolic cosine of this complex number.
* Implements the formula:
*
* {@code acosh(z) = log(z+sqrt(z^2-1))}
*
* @return the inverse hyperbolic cosine of this complex number
*/
public Complex acosh() {
return square().subtract(ONE).sqrt().add(this).log();
}
/**
* Compute the square of this complex number.
*
* @return square of this complex number
*/
public Complex square() {
return multiply(this);
}
/**
* Compute the
*
* cosine of this complex number.
* Implements the formula:
*
* {@code cos(a + bi) = cos(a)cosh(b) - sin(a)sinh(b)i}
*
* where the (real) functions on the right-hand side are
* {@link Math#sin}, {@link Math#cos},
* {@link Math#cosh} and {@link Math#sinh}.
*
*
* @return the cosine of this complex number.
*/
public Complex cos() {
return new Complex(Math.cos(real) * Math.cosh(imaginary),
-Math.sin(real) * Math.sinh(imaginary));
}
/**
* Compute the
*
* hyperbolic cosine of this complex number.
* Implements the formula:
*
*
* cosh(a + bi) = cosh(a)cos(b) + sinh(a)sin(b)i
*
*
* where the (real) functions on the right-hand side are
* {@link Math#sin}, {@link Math#cos},
* {@link Math#cosh} and {@link Math#sinh}.
*
*
* @return the hyperbolic cosine of this complex number.
*/
public Complex cosh() {
if (real == 0 &&
imaginary == Double.POSITIVE_INFINITY) {
return new Complex(Double.NaN, 0);
} else if (real == 0 &&
Double.isNaN(imaginary)) {
return new Complex(Double.NaN, 0);
} else if (real == Double.POSITIVE_INFINITY &&
imaginary == 0) {
return new Complex(Double.POSITIVE_INFINITY, 0);
} else if (real == Double.POSITIVE_INFINITY &&
imaginary == Double.POSITIVE_INFINITY) {
return new Complex(Double.POSITIVE_INFINITY, Double.NaN);
} else if (real == Double.POSITIVE_INFINITY &&
Double.isNaN(imaginary)) {
return new Complex(Double.POSITIVE_INFINITY, Double.NaN);
} else if (Double.isNaN(real) &&
imaginary == 0) {
return new Complex(Double.NaN, 0);
}
return new Complex(Math.cosh(real) * Math.cos(imaginary),
Math.sinh(real) * Math.sin(imaginary));
}
/**
* Compute the
*
* exponential function of this complex number.
* Implements the formula:
*
*
* exp(a + bi) = exp(a)cos(b) + exp(a)sin(b)i
*
*
* where the (real) functions on the right-hand side are
* {@link Math#exp}, {@link Math#cos}, and
* {@link Math#sin}.
*
* @return ethis
.
*/
public Complex exp() {
if (real == Double.POSITIVE_INFINITY &&
imaginary == 0) {
return new Complex(Double.POSITIVE_INFINITY, 0);
} else if (real == Double.NEGATIVE_INFINITY &&
imaginary == Double.POSITIVE_INFINITY) {
return Complex.ZERO;
} else if (real == Double.POSITIVE_INFINITY &&
imaginary == Double.POSITIVE_INFINITY) {
return new Complex(Double.POSITIVE_INFINITY, Double.NaN);
} else if (real == Double.NEGATIVE_INFINITY &&
Double.isNaN(imaginary)) {
return Complex.ZERO;
} else if (real == Double.POSITIVE_INFINITY &&
Double.isNaN(imaginary)) {
return new Complex(Double.POSITIVE_INFINITY, Double.NaN);
} else if (Double.isNaN(real) &&
imaginary == 0) {
return new Complex(Double.NaN, 0);
}
double expReal = Math.exp(real);
return new Complex(expReal * Math.cos(imaginary),
expReal * Math.sin(imaginary));
}
/**
* Compute the
*
* natural logarithm of this complex number.
* Implements the formula:
*
*
* log(a + bi) = ln(|a + bi|) + arg(a + bi)i
*
*
* where ln on the right hand side is {@link Math#log},
* {@code |a + bi|} is the modulus, {@link Complex#abs}, and
* {@code arg(a + bi) = }{@link Math#atan2}(b, a).
*
* @return the value ln this
, the natural logarithm
* of {@code this}.
*/
public Complex log() {
if (real == Double.POSITIVE_INFINITY &&
imaginary == Double.POSITIVE_INFINITY) {
return new Complex(Double.POSITIVE_INFINITY, Math.PI * 0.25);
} else if (real == Double.POSITIVE_INFINITY &&
Double.isNaN(imaginary)) {
return new Complex(Double.POSITIVE_INFINITY, Double.NaN);
} else if (Double.isNaN(real) &&
imaginary == Double.POSITIVE_INFINITY) {
return new Complex(Double.POSITIVE_INFINITY, Double.NaN);
}
return new Complex(Math.log(abs()),
Math.atan2(imaginary, real));
}
/**
* Compute the base 10 or
*
* common logarithm of this complex number.
*
* @return the base 10 logarithm of this
.
*/
public Complex log10() {
return new Complex(Math.log(abs()) / Math.log(10),
Math.atan2(imaginary, real));
}
/**
* Returns of value of this complex number raised to the power of {@code x}.
* Implements the formula:
*
*
* yx = exp(x·log(y))
*
*
* where {@code exp} and {@code log} are {@link #exp} and
* {@link #log}, respectively.
*
* @param x exponent to which this {@code Complex} is to be raised.
* @return thisx
.
*/
public Complex pow(Complex x) {
if (real == 0 &&
imaginary == 0) {
if (x.real > 0 &&
x.imaginary == 0) {
// 0 raised to positive number is 0
return ZERO;
} else {
// 0 raised to anything else is NaN
return NAN;
}
}
return log().multiply(x).exp();
}
/**
* Returns of value of this complex number raised to the power of {@code x}.
*
* @param x exponent to which this {@code Complex} is to be raised.
* @return thisx
.
* @see #pow(Complex)
*/
public Complex pow(double x) {
if (real == 0 &&
imaginary == 0) {
if (x > 0) {
// 0 raised to positive number is 0
return ZERO;
} else {
// 0 raised to anything else is NaN
return NAN;
}
}
return log().multiply(x).exp();
}
/**
* Compute the
*
* sine
* of this complex number.
* Implements the formula:
*
*
* sin(a + bi) = sin(a)cosh(b) - cos(a)sinh(b)i
*
*
* where the (real) functions on the right-hand side are
* {@link Math#sin}, {@link Math#cos},
* {@link Math#cosh} and {@link Math#sinh}.
*
* @return the sine of this complex number.
*/
public Complex sin() {
return new Complex(Math.sin(real) * Math.cosh(imaginary),
Math.cos(real) * Math.sinh(imaginary));
}
/**
* Compute the
*
* hyperbolic sine of this complex number.
* Implements the formula:
*
*
* sinh(a + bi) = sinh(a)cos(b)) + cosh(a)sin(b)i
*
*
* where the (real) functions on the right-hand side are
* {@link Math#sin}, {@link Math#cos},
* {@link Math#cosh} and {@link Math#sinh}.
*
* @return the hyperbolic sine of {@code this}.
*/
public Complex sinh() {
if (real == 0 &&
imaginary == 0) {
return Complex.ZERO;
} else if (real == 0 &&
imaginary == Double.POSITIVE_INFINITY) {
return new Complex(0, Double.NaN);
} else if (real == 0 &&
Double.isNaN(imaginary)) {
return new Complex(0, Double.NaN);
} else if (real == Double.POSITIVE_INFINITY &&
imaginary == 0) {
return new Complex(Double.POSITIVE_INFINITY, 0);
} else if (real == Double.POSITIVE_INFINITY &&
imaginary == Double.POSITIVE_INFINITY) {
return new Complex(Double.POSITIVE_INFINITY, Double.NaN);
} else if (real == Double.POSITIVE_INFINITY &&
Double.isNaN(imaginary)) {
return new Complex(Double.POSITIVE_INFINITY, Double.NaN);
} else if (Double.isNaN(real) &&
imaginary == 0) {
return new Complex(Double.NaN, 0);
}
return new Complex(Math.sinh(real) * Math.cos(imaginary),
Math.cosh(real) * Math.sin(imaginary));
}
/**
* Compute the
*
* square root of this complex number.
* Implements the following algorithm to compute {@code sqrt(a + bi)}:
* - Let {@code t = sqrt((|a| + |a + bi|) / 2)}
* if {@code a ≥ 0} return {@code t + (b/2t)i}
* else return {@code |b|/2t + sign(b)t i }
*
* where
* - {@code |a| = }{@link Math#abs}(a)
* - {@code |a + bi| = }{@link Complex#abs}(a + bi)
* - {@code sign(b) = }{@link Math#copySign(double,double) copySign(1d, b)}
*
*
* @return the square root of {@code this}.
*/
public Complex sqrt() {
if (real == 0 &&
imaginary == 0) {
return ZERO;
} else if (neitherInfiniteNorZeroNorNaN(real) &&
imaginary == Double.POSITIVE_INFINITY) {
return new Complex(Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY);
} else if (real == Double.NEGATIVE_INFINITY &&
neitherInfiniteNorZeroNorNaN(imaginary)) {
return new Complex(0, Double.NaN);
} else if (real == Double.NEGATIVE_INFINITY &&
Double.isNaN(imaginary)) {
return new Complex(Double.NaN, Double.POSITIVE_INFINITY);
} else if (real == Double.POSITIVE_INFINITY &&
Double.isNaN(imaginary)) {
return new Complex(Double.POSITIVE_INFINITY, Double.NaN);
}
final double t = Math.sqrt((Math.abs(real) + abs()) / 2);
if (real >= 0) {
return new Complex(t, imaginary / (2 * t));
} else {
return new Complex(Math.abs(imaginary) / (2 * t),
Math.copySign(1d, imaginary) * t);
}
}
/**
* Compute the
*
* square root of 1 - this2
for this complex
* number.
* Computes the result directly as
* {@code sqrt(ONE.subtract(z.multiply(z)))}.
*
* @return the square root of 1 - this2
.
*/
private Complex sqrt1z() {
return ONE.subtract(square()).sqrt();
}
/**
* Compute the
*
* tangent of this complex number.
* Implements the formula:
*
*
* tan(a + bi) = sin(2a)/(cos(2a)+cosh(2b)) + [sinh(2b)/(cos(2a)+cosh(2b))]i
*
*
* where the (real) functions on the right-hand side are
* {@link Math#sin}, {@link Math#cos}, {@link Math#cosh} and
* {@link Math#sinh}.
*
* @return the tangent of {@code this}.
*/
public Complex tan() {
if (imaginary > 20) {
return ONE;
}
if (imaginary < -20) {
return new Complex(0, -1);
}
final double real2 = 2 * real;
final double imaginary2 = 2 * imaginary;
final double d = Math.cos(real2) + Math.cosh(imaginary2);
return new Complex(Math.sin(real2) / d,
Math.sinh(imaginary2) / d);
}
/**
* Compute the
*
* hyperbolic tangent of this complex number.
* Implements the formula:
*
*
* tan(a + bi) = sinh(2a)/(cosh(2a)+cos(2b)) + [sin(2b)/(cosh(2a)+cos(2b))]i
*
*
* where the (real) functions on the right-hand side are
* {@link Math#sin}, {@link Math#cos}, {@link Math#cosh} and
* {@link Math#sinh}.
*
* @return the hyperbolic tangent of {@code this}.
*/
public Complex tanh() {
if (real == Double.POSITIVE_INFINITY &&
imaginary == Double.POSITIVE_INFINITY) {
return ONE;
} else if (real == Double.POSITIVE_INFINITY &&
Double.isNaN(imaginary)) {
return ONE;
} else if (Double.isNaN(real) &&
imaginary == 0) {
return new Complex(Double.NaN, 0);
}
final double real2 = 2 * real;
final double imaginary2 = 2 * imaginary;
final double d = Math.cosh(real2) + Math.cos(imaginary2);
return new Complex(Math.sinh(real2) / d,
Math.sin(imaginary2) / d);
}
/**
* Compute the argument of this complex number.
* The argument is the angle phi between the positive real axis and
* the point representing this number in the complex plane.
* The value returned is between -PI (not inclusive)
* and PI (inclusive), with negative values returned for numbers with
* negative imaginary parts.
*
* If either real or imaginary part (or both) is NaN, NaN is returned.
* Infinite parts are handled as {@code Math.atan2} handles them,
* essentially treating finite parts as zero in the presence of an
* infinite coordinate and returning a multiple of pi/4 depending on
* the signs of the infinite parts.
* See the javadoc for {@code Math.atan2} for full details.
*
* @return the argument of {@code this}.
*/
public double getArgument() {
return Math.atan2(imaginary, real);
}
/**
* Compute the argument of this complex number.
* C++11 syntax
*
* @return the argument of {@code this}.
*/
public double arg() {
return getArgument();
}
/**
* Computes the n-th roots of this complex number.
* The nth roots are defined by the formula:
*
*
* zk = abs1/n (cos(phi + 2πk/n) + i (sin(phi + 2πk/n))
*
*
* for {@code k=0, 1, ..., n-1}, where {@code abs} and {@code phi}
* are respectively the {@link #abs() modulus} and
* {@link #getArgument() argument} of this complex number.
*
* If one or both parts of this complex number is NaN, a list with just
* one element, {@code NaN + NaN i} is returned.
* if neither part is NaN, but at least one part is infinite, the result
* is a one-element list containing {@link #INF}.
*
* @param n Degree of root.
* @return a List of all {@code n}-th roots of {@code this}.
*/
public List nthRoot(int n) {
if (n == 0) {
throw new IllegalArgumentException("cannot compute zeroth root");
}
final List result = new ArrayList();
// nth root of abs -- faster / more accurate to use a solver here?
final double nthRootOfAbs = Math.pow(abs(), 1d / n);
// Compute nth roots of complex number with k = 0, 1, ... n-1
final double nthPhi = getArgument() / n;
final double slice = 2 * Math.PI / n;
double innerPart = nthPhi;
for (int k = 0; k < Math.abs(n) ; k++) {
// inner part
final double realPart = nthRootOfAbs * Math.cos(innerPart);
final double imaginaryPart = nthRootOfAbs * Math.sin(innerPart);
result.add(new Complex(realPart, imaginaryPart));
innerPart += slice;
}
return result;
}
/** {@inheritDoc} */
@Override
public String toString() {
final StringBuilder s = new StringBuilder();
s.append(FORMAT_START)
.append(real).append(FORMAT_SEP)
.append(imaginary)
.append(FORMAT_END);
return s.toString();
}
/**
* Check that the argument is positive and throw a RuntimeException
* if it is not.
* @param arg {@code double} to check
*/
private static void checkNotNegative(double arg) {
if (arg <= 0) {
throw new IllegalArgumentException("Complex: Non-positive argument");
}
}
/**
* Returns {@code true} if the values are equal according to semantics of
* {@link Double#equals(Object)}.
*
* @param x Value
* @param y Value
* @return {@code Double.valueof(x).equals(Double.valueOf(y))}
*/
private static boolean equals(double x, double y) {
return Double.doubleToLongBits(x) == Double.doubleToLongBits(y);
}
/**
* Check that a value meets all the following conditions:
*
* - it is not {@code NaN},
* - it is not infinite,
* - it is not zero,
*
*
* @param d Value.
* @return {@code true} if {@code d} meets all the conditions and
* {@code false} otherwise.
*/
private static boolean neitherInfiniteNorZeroNorNaN(double d) {
return !Double.isNaN(d) &&
!Double.isInfinite(d) &&
d != 0;
}
/** See {@link #parse(String)}. */
private static class ComplexParsingException extends IllegalArgumentException {
/** Serializable version identifier. */
private static final long serialVersionUID = 20180430L;
/**
* @param msg Error message.
*/
ComplexParsingException(String msg) {
super(msg);
}
}
}