All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.numbers.complex.streams.ComplexUtils Maven / Gradle / Ivy

Go to download

Statistical sampling library for use in virtdata libraries, based on apache commons math 4

There is a newer version: 5.17.0
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.numbers.complex.streams;

import org.apache.commons.numbers.complex.Complex;

/**
 * Static implementations of common {@link Complex} utilities functions.
 */
public class ComplexUtils {

    /**
     * Utility class.
     */
    private ComplexUtils() {}

    /**
     * Creates a complex number from the given polar representation.
     * 

* If either {@code r} or {@code theta} is NaN, or {@code theta} is * infinite, {@link Complex#NAN} is returned. *

* If {@code r} is infinite and {@code theta} is finite, infinite or NaN * values may be returned in parts of the result, following the rules for * double arithmetic. * * Examples: *

     * {@code
     * polar2Complex(INFINITY, \(\pi\)) = INFINITY + INFINITY i
     * polar2Complex(INFINITY, 0) = INFINITY + NaN i
     * polar2Complex(INFINITY, \(-\frac{\pi}{4}\)) = INFINITY - INFINITY i
     * polar2Complex(INFINITY, \(5\frac{\pi}{4}\)) = -INFINITY - INFINITY i }
     * 
* * @param r the modulus of the complex number to create * @param theta the argument of the complex number to create * @return {@code Complex} */ public static Complex polar2Complex(double r, double theta) { if (r < 0) { throw new NegativeModulusException(r); } return Complex.ofCartesian(r * Math.cos(theta), r * Math.sin(theta)); } /** * Creates {@code Complex[]} array given {@code double[]} arrays of r and * theta. * * @param r {@code double[]} of moduli * @param theta {@code double[]} of arguments * @return {@code Complex[]} */ public static Complex[] polar2Complex(double[] r, double[] theta) { final int length = r.length; final Complex[] c = new Complex[length]; for (int x = 0; x < length; x++) { if (r[x] < 0) { throw new NegativeModulusException(r[x]); } c[x] = Complex.ofCartesian(r[x] * Math.cos(theta[x]), r[x] * Math.sin(theta[x])); } return c; } /** * Creates {@code Complex[][]} array given {@code double[][]} arrays of r * and theta. * * @param r {@code double[]} of moduli * @param theta {@code double[]} of arguments * @return {@code Complex[][]} */ public static Complex[][] polar2Complex(double[][] r, double[][] theta) { final int length = r.length; final Complex[][] c = new Complex[length][]; for (int x = 0; x < length; x++) { c[x] = polar2Complex(r[x], theta[x]); } return c; } /** * Creates {@code Complex[][][]} array given {@code double[][][]} arrays of * r and theta. * * @param r array of moduli * @param theta array of arguments * @return {@code Complex} */ public static Complex[][][] polar2Complex(double[][][] r, double[][][] theta) { final int length = r.length; final Complex[][][] c = new Complex[length][][]; for (int x = 0; x < length; x++) { c[x] = polar2Complex(r[x], theta[x]); } return c; } /** * Returns double from array {@code real[]} at entry {@code index} as a * {@code Complex}. * * @param real array of real numbers * @param index location in the array * @return {@code Complex}. */ public static Complex extractComplexFromRealArray(double[] real, int index) { return Complex.ofReal(real[index]); } /** * Returns float from array {@code real[]} at entry {@code index} as a * {@code Complex}. * * @param real array of real numbers * @param index location in the array * @return {@code Complex} array */ public static Complex extractComplexFromRealArray(float[] real, int index) { return Complex.ofReal(real[index]); } /** * Returns double from array {@code imaginary[]} at entry {@code index} as a * {@code Complex}. * * @param imaginary array of imaginary numbers * @param index location in the array * @return {@code Complex} array */ public static Complex extractComplexFromImaginaryArray(double[] imaginary, int index) { return Complex.ofCartesian(0, imaginary[index]); } /** * Returns float from array {@code imaginary[]} at entry {@code index} as a * {@code Complex}. * * @param imaginary array of imaginary numbers * @param index location in the array * @return {@code Complex} array */ public static Complex extractComplexFromImaginaryArray(float[] imaginary, int index) { return Complex.ofCartesian(0, imaginary[index]); } /** * Returns real component of Complex from array {@code Complex[]} at entry * {@code index} as a {@code double}. * * @param complex array of complex numbers * @param index location in the array * @return {@code double}. */ public static double extractRealFromComplexArray(Complex[] complex, int index) { return complex[index].getReal(); } /** * Returns real component of array {@code Complex[]} at entry {@code index} * as a {@code float}. * * @param complex array of complex numbers * @param index location in the array * @return {@code float}. */ public static float extractRealFloatFromComplexArray(Complex[] complex, int index) { return (float) complex[index].getReal(); } /** * Returns imaginary component of Complex from array {@code Complex[]} at * entry {@code index} as a {@code double}. * * @param complex array of complex numbers * @param index location in the array * @return {@code double}. */ public static double extractImaginaryFromComplexArray(Complex[] complex, int index) { return complex[index].getImaginary(); } /** * Returns imaginary component of array {@code Complex[]} at entry * {@code index} as a {@code float}. * * @param complex array of complex numbers * @param index location in the array * @return {@code float}. */ public static float extractImaginaryFloatFromComplexArray(Complex[] complex, int index) { return (float) complex[index].getImaginary(); } /** * Returns a Complex object from interleaved {@code double[]} array at entry * {@code index}. * * @param d array of interleaved complex numbers alternating real and imaginary values * @param index location in the array This is the location by complex number, e.g. index number 5 in the array will return {@code Complex.ofCartesian(d[10], d[11])} * @return {@code Complex}. */ public static Complex extractComplexFromInterleavedArray(double[] d, int index) { return Complex.ofCartesian(d[index * 2], d[index * 2 + 1]); } /** * Returns a Complex object from interleaved {@code float[]} array at entry * {@code index}. * * @param f float array of interleaved complex numbers alternating real and imaginary values * @param index location in the array This is the location by complex number, e.g. index number 5 in the {@code float[]} array will return new {@code Complex(d[10], d[11])} * @return {@code Complex}. */ public static Complex extractComplexFromInterleavedArray(float[] f, int index) { return Complex.ofCartesian(f[index * 2], f[index * 2 + 1]); } /** * Returns values of Complex object from array {@code Complex[]} at entry * {@code index} as a size 2 {@code double} of the form {real, imag}. * * @param complex array of complex numbers * @param index location in the array * @return size 2 array. */ public static double[] extractInterleavedFromComplexArray(Complex[] complex, int index) { return new double[] { complex[index].getReal(), complex[index].getImaginary() }; } /** * Returns Complex object from array {@code Complex[]} at entry * {@code index} as a size 2 {@code float} of the form {real, imag}. * * @param complex {@code Complex} array * @param index location in the array * @return size 2 {@code float[]}. */ public static float[] extractInterleavedFloatFromComplexArray(Complex[] complex, int index) { return new float[] { (float) complex[index].getReal(), (float) complex[index].getImaginary() }; } /** * Converts a {@code double[]} array to a {@code Complex[]} array. * * @param real array of numbers to be converted to their {@code Complex} equivalent * @return {@code Complex} array */ public static Complex[] real2Complex(double[] real) { int index = 0; final Complex[] c = new Complex[real.length]; for (double d : real) { c[index] = Complex.ofReal(d); index++; } return c; } /** * Converts a {@code float[]} array to a {@code Complex[]} array. * * @param real array of numbers to be converted to their {@code Complex} equivalent * @return {@code Complex} array */ public static Complex[] real2Complex(float[] real) { int index = 0; final Complex[] c = new Complex[real.length]; for (float d : real) { c[index] = Complex.ofReal(d); index++; } return c; } /** * Converts a 2D real {@code double[][]} array to a 2D {@code Complex[][]} * array. * * @param d 2D array * @return 2D {@code Complex} array */ public static Complex[][] real2Complex(double[][] d) { final int w = d.length; final Complex[][] c = new Complex[w][]; for (int n = 0; n < w; n++) { c[n] = ComplexUtils.real2Complex(d[n]); } return c; } /** * Converts a 2D real {@code float[][]} array to a 2D {@code Complex[][]} * array. * * @param d 2D array * @return 2D {@code Complex} array */ public static Complex[][] real2Complex(float[][] d) { final int w = d.length; final Complex[][] c = new Complex[w][]; for (int n = 0; n < w; n++) { c[n] = ComplexUtils.real2Complex(d[n]); } return c; } /** * Converts a 3D real {@code double[][][]} array to a {@code Complex [][][]} * array. * * @param d 3D complex interleaved array * @return 3D {@code Complex} array */ public static Complex[][][] real2Complex(double[][][] d) { final int w = d.length; final Complex[][][] c = new Complex[w][][]; for (int x = 0; x < w; x++) { c[x] = ComplexUtils.real2Complex(d[x]); } return c; } /** * Converts a 3D real {@code float[][][]} array to a {@code Complex [][][]} * array. * * @param d 3D complex interleaved array * @return 3D {@code Complex} array */ public static Complex[][][] real2Complex(float[][][] d) { final int w = d.length; final Complex[][][] c = new Complex[w][][]; for (int x = 0; x < w; x++) { c[x] = ComplexUtils.real2Complex(d[x]); } return c; } /** * Converts a 4D real {@code double[][][][]} array to a {@code Complex [][][][]} * array. * * @param d 4D complex interleaved array * @return 4D {@code Complex} array */ public static Complex[][][][] real2Complex(double[][][][] d) { final int w = d.length; final Complex[][][][] c = new Complex[w][][][]; for (int x = 0; x < w; x++) { c[x] = ComplexUtils.real2Complex(d[x]); } return c; } /** * Converts real component of {@code Complex[]} array to a {@code double[]} * array. * * @param c {@code Complex} array * @return array of the real component */ public static double[] complex2Real(Complex[] c) { int index = 0; final double[] d = new double[c.length]; for (Complex cc : c) { d[index] = cc.getReal(); index++; } return d; } /** * Converts real component of {@code Complex[]} array to a {@code float[]} * array. * * @param c {@code Complex} array * @return {@code float[]} array of the real component */ public static float[] complex2RealFloat(Complex[] c) { int index = 0; final float[] f = new float[c.length]; for (Complex cc : c) { f[index] = (float) cc.getReal(); index++; } return f; } /** * Converts real component of a 2D {@code Complex[][]} array to a 2D * {@code double[][]} array. * * @param c 2D {@code Complex} array * @return {@code double[][]} of real component */ public static double[][] complex2Real(Complex[][] c) { final int length = c.length; double[][] d = new double[length][]; for (int n = 0; n < length; n++) { d[n] = complex2Real(c[n]); } return d; } /** * Converts real component of a 2D {@code Complex[][]} array to a 2D * {@code float[][]} array. * * @param c 2D {@code Complex} array * @return {@code float[][]} of real component */ public static float[][] complex2RealFloat(Complex[][] c) { final int length = c.length; float[][] f = new float[length][]; for (int n = 0; n < length; n++) { f[n] = complex2RealFloat(c[n]); } return f; } /** * Converts real component of a 3D {@code Complex[][][]} array to a 3D * {@code double[][][]} array. * * @param c 3D complex interleaved array * @return array of real component */ public static double[][][] complex2Real(Complex[][][] c) { final int length = c.length; double[][][] d = new double[length][][]; for (int n = 0; n < length; n++) { d[n] = complex2Real(c[n]); } return d; } /** * Converts real component of a 3D {@code Complex[][][]} array to a 3D * {@code float[][][]} array. * * @param c 3D {@code Complex} array * @return {@code float[][][]} of real component */ public static float[][][] complex2RealFloat(Complex[][][] c) { final int length = c.length; float[][][] f = new float[length][][]; for (int n = 0; n < length; n++) { f[n] = complex2RealFloat(c[n]); } return f; } /** * Converts real component of a 4D {@code Complex[][][][]} array to a 4D * {@code double[][][][]} array. * * @param c 4D complex interleaved array * @return array of real component */ public static double[][][][] complex2Real(Complex[][][][] c) { final int length = c.length; double[][][][] d = new double[length][][][]; for (int n = 0; n < length; n++) { d[n] = complex2Real(c[n]); } return d; } /** * Converts real component of a 4D {@code Complex[][][][]} array to a 4D * {@code float[][][][]} array. * * @param c 4D {@code Complex} array * @return {@code float[][][][]} of real component */ public static float[][][][] complex2RealFloat(Complex[][][][] c) { final int length = c.length; float[][][][] f = new float[length][][][]; for (int n = 0; n < length; n++) { f[n] = complex2RealFloat(c[n]); } return f; } /** * Converts a {@code double[]} array to an imaginary {@code Complex[]} * array. * * @param imaginary array of numbers to be converted to their {@code Complex} equivalent * @return {@code Complex} array */ public static Complex[] imaginary2Complex(double[] imaginary) { int index = 0; final Complex[] c = new Complex[imaginary.length]; for (double d : imaginary) { c[index] = Complex.ofCartesian(0, d); index++; } return c; } /** * Converts a {@code float[]} array to an imaginary {@code Complex[]} array. * * @param imaginary array of numbers to be converted to their {@code Complex} equivalent * @return {@code Complex} array */ public static Complex[] imaginary2Complex(float[] imaginary) { int index = 0; final Complex[] c = new Complex[imaginary.length]; for (float d : imaginary) { c[index] = Complex.ofCartesian(0, d); index++; } return c; } /** * Converts a 2D imaginary array {@code double[][]} to a 2D * {@code Complex[][]} array. * * @param i 2D array * @return 2D {@code Complex} array */ public static Complex[][] imaginary2Complex(double[][] i) { int w = i.length; Complex[][] c = new Complex[w][]; for (int n = 0; n < w; n++) { c[n] = ComplexUtils.imaginary2Complex(i[n]); } return c; } /** * Converts a 3D imaginary array {@code double[][][]} to a {@code Complex[]} * array. * * @param i 3D complex imaginary array * @return 3D {@code Complex} array */ public static Complex[][][] imaginary2Complex(double[][][] i) { int w = i.length; Complex[][][] c = new Complex[w][][]; for (int n = 0; n < w; n++) { c[n] = ComplexUtils.imaginary2Complex(i[n]); } return c; } /** * Converts a 4D imaginary array {@code double[][][][]} to a 4D {@code Complex[][][][]} * array. * * @param i 4D complex imaginary array * @return 4D {@code Complex} array */ public static Complex[][][][] imaginary2Complex(double[][][][] i) { int w = i.length; Complex[][][][] c = new Complex[w][][][]; for (int n = 0; n < w; n++) { c[n] = ComplexUtils.imaginary2Complex(i[n]); } return c; } /** * Converts imaginary part of a {@code Complex[]} array to a * {@code double[]} array. * * @param c {@code Complex} array. * @return array of the imaginary component */ public static double[] complex2Imaginary(Complex[] c) { int index = 0; final double[] i = new double[c.length]; for (Complex cc : c) { i[index] = cc.getImaginary(); index++; } return i; } /** * Converts imaginary component of a {@code Complex[]} array to a * {@code float[]} array. * * @param c {@code Complex} array. * @return {@code float[]} array of the imaginary component */ public static float[] complex2ImaginaryFloat(Complex[] c) { int index = 0; final float[] f = new float[c.length]; for (Complex cc : c) { f[index] = (float) cc.getImaginary(); index++; } return f; } /** * Converts imaginary component of a 2D {@code Complex[][]} array to a 2D * {@code double[][]} array. * * @param c 2D {@code Complex} array * @return {@code double[][]} of imaginary component */ public static double[][] complex2Imaginary(Complex[][] c) { final int length = c.length; double[][] i = new double[length][]; for (int n = 0; n < length; n++) { i[n] = complex2Imaginary(c[n]); } return i; } /** * Converts imaginary component of a 2D {@code Complex[][]} array to a 2D * {@code float[][]} array. * * @param c 2D {@code Complex} array * @return {@code float[][]} of imaginary component */ public static float[][] complex2ImaginaryFloat(Complex[][] c) { final int length = c.length; float[][] f = new float[length][]; for (int n = 0; n < length; n++) { f[n] = complex2ImaginaryFloat(c[n]); } return f; } /** * Converts imaginary component of a 3D {@code Complex[][][]} array to a 3D * {@code double[][][]} array. * * @param c 3D complex interleaved array * @return 3D {@code Complex} array */ public static double[][][] complex2Imaginary(Complex[][][] c) { final int length = c.length; double[][][] i = new double[length][][]; for (int n = 0; n < length; n++) { i[n] = complex2Imaginary(c[n]); } return i; } /** * Converts imaginary component of a 3D {@code Complex[][][]} array to a 3D * {@code float[][][]} array. * * @param c 3D {@code Complex} array * @return {@code float[][][]} of imaginary component */ public static float[][][] complex2ImaginaryFloat(Complex[][][] c) { final int length = c.length; float[][][] f = new float[length][][]; for (int n = 0; n < length; n++) { f[n] = complex2ImaginaryFloat(c[n]); } return f; } /** * Converts imaginary component of a 4D {@code Complex[][][][]} array to a 4D * {@code double[][][][]} array. * * @param c 4D complex interleaved array * @return 4D {@code Complex} array */ public static double[][][][] complex2Imaginary(Complex[][][][] c) { final int length = c.length; double[][][][] i = new double[length][][][]; for (int n = 0; n < length; n++) { i[n] = complex2Imaginary(c[n]); } return i; } /** * Converts imaginary component of a 4D {@code Complex[][][][]} array to a 4D * {@code float[][][][]} array. * * @param c 4D {@code Complex} array * @return {@code float[][][][]} of imaginary component */ public static float[][][][] complex2ImaginaryFloat(Complex[][][][] c) { final int length = c.length; float[][][][] f = new float[length][][][]; for (int n = 0; n < length; n++) { f[n] = complex2ImaginaryFloat(c[n]); } return f; } // INTERLEAVED METHODS /** * Converts a complex interleaved {@code double[]} array to a * {@code Complex[]} array * * @param interleaved array of numbers to be converted to their {@code Complex} equivalent * @return {@code Complex} array */ public static Complex[] interleaved2Complex(double[] interleaved) { final int length = interleaved.length / 2; final Complex[] c = new Complex[length]; for (int n = 0; n < length; n++) { c[n] = Complex.ofCartesian(interleaved[n * 2], interleaved[n * 2 + 1]); } return c; } /** * Converts a complex interleaved {@code float[]} array to a * {@code Complex[]} array * * @param interleaved float[] array of numbers to be converted to their {@code Complex} equivalent * @return {@code Complex} array */ public static Complex[] interleaved2Complex(float[] interleaved) { final int length = interleaved.length / 2; final Complex[] c = new Complex[length]; for (int n = 0; n < length; n++) { c[n] = Complex.ofCartesian(interleaved[n * 2], interleaved[n * 2 + 1]); } return c; } /** * Converts a {@code Complex[]} array to an interleaved complex * {@code double[]} array * * @param c Complex array * @return complex interleaved array alternating real and * imaginary values */ public static double[] complex2Interleaved(Complex[] c) { int index = 0; final double[] i = new double[c.length * 2]; for (Complex cc : c) { int real = index * 2; int imag = index * 2 + 1; i[real] = cc.getReal(); i[imag] = cc.getImaginary(); index++; } return i; } /** * Converts a {@code Complex[]} array to an interleaved complex * {@code float[]} array * * @param c Complex array * @return complex interleaved {@code float[]} alternating real and * imaginary values */ public static float[] complex2InterleavedFloat(Complex[] c) { int index = 0; final float[] f = new float[c.length * 2]; for (Complex cc : c) { int real = index * 2; int imag = index * 2 + 1; f[real] = (float) cc.getReal(); f[imag] = (float) cc.getImaginary(); index++; } return f; } /** * Converts a 2D {@code Complex[][]} array to an interleaved complex * {@code double[][]} array. * * @param c 2D Complex array * @param interleavedDim Depth level of the array to interleave * @return complex interleaved array alternating real and * imaginary values */ public static double[][] complex2Interleaved(Complex[][] c, int interleavedDim) { if (interleavedDim > 1 || interleavedDim < 0) { throw new IndexOutOfRangeException(interleavedDim); } final int w = c.length; final int h = c[0].length; double[][] i; if (interleavedDim == 0) { i = new double[2 * w][h]; for (int x = 0; x < w; x++) { for (int y = 0; y < h; y++) { i[x * 2][y] = c[x][y].getReal(); i[x * 2 + 1][y] = c[x][y].getImaginary(); } } } else { i = new double[w][2 * h]; for (int x = 0; x < w; x++) { for (int y = 0; y < h; y++) { i[x][y * 2] = c[x][y].getReal(); i[x][y * 2 + 1] = c[x][y].getImaginary(); } } } return i; } /** * Converts a 2D {@code Complex[][]} array to an interleaved complex * {@code double[][]} array. The second d level of the array is assumed * to be interleaved. * * @param c 2D Complex array * @return complex interleaved array alternating real and * imaginary values */ public static double[][] complex2Interleaved(Complex[][] c) { return complex2Interleaved(c, 1); } /** * Converts a 3D {@code Complex[][][]} array to an interleaved complex * {@code double[][][]} array. * * @param c 3D Complex array * @param interleavedDim Depth level of the array to interleave * @return complex interleaved array alternating real and * imaginary values */ public static double[][][] complex2Interleaved(Complex[][][] c, int interleavedDim) { if (interleavedDim > 2 || interleavedDim < 0) { throw new IndexOutOfRangeException(interleavedDim); } int w = c.length; int h = c[0].length; int d = c[0][0].length; double[][][] i; if (interleavedDim == 0) { i = new double[2 * w][h][d]; for (int x = 0; x < w; x++) { for (int y = 0; y < h; y++) { for (int z = 0; z < d; z++) { i[x * 2][y][z] = c[x][y][z].getReal(); i[x * 2 + 1][y][z] = c[x][y][z].getImaginary(); } } } } else if (interleavedDim == 1) { i = new double[w][2 * h][d]; for (int x = 0; x < w; x++) { for (int y = 0; y < h; y++) { for (int z = 0; z < d; z++) { i[x][y * 2][z] = c[x][y][z].getReal(); i[x][y * 2 + 1][z] = c[x][y][z].getImaginary(); } } } } else { i = new double[w][h][2 * d]; for (int x = 0; x < w; x++) { for (int y = 0; y < h; y++) { for (int z = 0; z < d; z++) { i[x][y][z * 2] = c[x][y][z].getReal(); i[x][y][z * 2 + 1] = c[x][y][z].getImaginary(); } } } } return i; } /** * Converts a 4D {@code Complex[][][][]} array to an interleaved complex * {@code double[][][][]} array. * * @param c 4D Complex array * @param interleavedDim Depth level of the array to interleave * @return complex interleaved array alternating real and * imaginary values */ public static double[][][][] complex2Interleaved(Complex[][][][] c, int interleavedDim) { if (interleavedDim > 3 || interleavedDim < 0) { throw new IndexOutOfRangeException(interleavedDim); } int w = c.length; int h = c[0].length; int d = c[0][0].length; int v = c[0][0][0].length; double[][][][] i; if (interleavedDim == 0) { i = new double[2 * w][h][d][v]; for (int x = 0; x < w; x++) { for (int y = 0; y < h; y++) { for (int z = 0; z < d; z++) { for (int t = 0; t < v; t++) { i[x * 2][y][z][t] = c[x][y][z][t].getReal(); i[x * 2 + 1][y][z][t] = c[x][y][z][t].getImaginary(); } } } } } else if (interleavedDim == 1) { i = new double[w][2 * h][d][v]; for (int x = 0; x < w; x++) { for (int y = 0; y < h; y++) { for (int z = 0; z < d; z++) { for (int t = 0; t < v; t++) { i[x][y * 2][z][t] = c[x][y][z][t].getReal(); i[x][y * 2 + 1][z][t] = c[x][y][z][t].getImaginary(); } } } } } else if (interleavedDim == 2) { i = new double[w][h][2 * d][v]; for (int x = 0; x < w; x++) { for (int y = 0; y < h; y++) { for (int z = 0; z < d; z++) { for (int t = 0; t < v; t++) { i[x][y][z * 2][t] = c[x][y][z][t].getReal(); i[x][y][z * 2 + 1][t] = c[x][y][z][t].getImaginary(); } } } } } else { i = new double[w][h][d][2 * v]; for (int x = 0; x < w; x++) { for (int y = 0; y < h; y++) { for (int z = 0; z < d; z++) { for (int t = 0; t < v; t++) { i[x][y][z][t * 2] = c[x][y][z][t].getReal(); i[x][y][z][t * 2 + 1] = c[x][y][z][t].getImaginary(); } } } } } return i; } /** * Converts a 3D {@code Complex[][][]} array to an interleaved complex * {@code double[][][]} array. The third level of the array is * interleaved. * * @param c 3D Complex array * @return complex interleaved array alternating real and * imaginary values */ public static double[][][] complex2Interleaved(Complex[][][] c) { return complex2Interleaved(c, 2); } /** * Converts a 4D {@code Complex[][][][]} array to an interleaved complex * {@code double[][][][]} array. The fourth level of the array is * interleaved. * * @param c 4D Complex array * @return complex interleaved array alternating real and * imaginary values */ public static double[][][][] complex2Interleaved(Complex[][][][] c) { return complex2Interleaved(c, 3); } /** * Converts a 2D {@code Complex[][]} array to an interleaved complex * {@code float[][]} array. * * @param c 2D Complex array * @param interleavedDim Depth level of the array to interleave * @return complex interleaved {@code float[][]} alternating real and * imaginary values */ public static float[][] complex2InterleavedFloat(Complex[][] c, int interleavedDim) { if (interleavedDim > 1 || interleavedDim < 0) { throw new IndexOutOfRangeException(interleavedDim); } final int w = c.length; final int h = c[0].length; float[][] i; if (interleavedDim == 0) { i = new float[2 * w][h]; for (int x = 0; x < w; x++) { for (int y = 0; y < h; y++) { i[x * 2][y] = (float) c[x][y].getReal(); i[x * 2 + 1][y] = (float) c[x][y].getImaginary(); } } } else { i = new float[w][2 * h]; for (int x = 0; x < w; x++) { for (int y = 0; y < h; y++) { i[x][y * 2] = (float) c[x][y].getReal(); i[x][y * 2 + 1] = (float) c[x][y].getImaginary(); } } } return i; } /** * Converts a 2D {@code Complex[][]} array to an interleaved complex * {@code float[][]} array. The second d level of the array is assumed * to be interleaved. * * @param c 2D Complex array * * @return complex interleaved {@code float[][]} alternating real and * imaginary values */ public static float[][] complex2InterleavedFloat(Complex[][] c) { return complex2InterleavedFloat(c, 1); } /** * Converts a 3D {@code Complex[][][]} array to an interleaved complex * {@code float[][][]} array. * * @param c 3D Complex array * @param interleavedDim Depth level of the array to interleave * @return complex interleaved {@code float[][][]} alternating real and * imaginary values */ public static float[][][] complex2InterleavedFloat(Complex[][][] c, int interleavedDim) { if (interleavedDim > 2 || interleavedDim < 0) { throw new IndexOutOfRangeException(interleavedDim); } final int w = c.length; final int h = c[0].length; final int d = c[0][0].length; float[][][] i; if (interleavedDim == 0) { i = new float[2 * w][h][d]; for (int x = 0; x < w; x++) { for (int y = 0; y < h; y++) { for (int z = 0; z < d; z++) { i[x * 2][y][z] = (float) c[x][y][z].getReal(); i[x * 2 + 1][y][z] = (float) c[x][y][z].getImaginary(); } } } } else if (interleavedDim == 1) { i = new float[w][2 * h][d]; for (int x = 0; x < w; x++) { for (int y = 0; y < h; y++) { for (int z = 0; z < d; z++) { i[x][y * 2][z] = (float) c[x][y][z].getReal(); i[x][y * 2 + 1][z] = (float) c[x][y][z].getImaginary(); } } } } else { i = new float[w][h][2 * d]; for (int x = 0; x < w; x++) { for (int y = 0; y < h; y++) { for (int z = 0; z < d; z++) { i[x][y][z * 2] = (float) c[x][y][z].getReal(); i[x][y][z * 2 + 1] = (float) c[x][y][z].getImaginary(); } } } } return i; } /** * Converts a 3D {@code Complex[][][]} array to an interleaved complex * {@code float[][][]} array. The third d level of the array is * interleaved. * * @param c 2D Complex array * * @return complex interleaved {@code float[][][]} alternating real and * imaginary values */ public static float[][][] complex2InterleavedFloat(Complex[][][] c) { return complex2InterleavedFloat(c, 2); } /** * Converts a 2D interleaved complex {@code double[][]} array to a * {@code Complex[][]} array. * * @param i 2D complex interleaved array * @param interleavedDim Depth level of the array to interleave * @return 2D {@code Complex} array */ public static Complex[][] interleaved2Complex(double[][] i, int interleavedDim) { if (interleavedDim > 1 || interleavedDim < 0) { throw new IndexOutOfRangeException(interleavedDim); } final int w = i.length; final int h = i[0].length; Complex[][] c; if (interleavedDim == 0) { c = new Complex[w / 2][h]; for (int x = 0; x < w / 2; x++) { for (int y = 0; y < h; y++) { c[x][y] = Complex.ofCartesian(i[x * 2][y], i[x * 2 + 1][y]); } } } else { c = new Complex[w][h / 2]; for (int x = 0; x < w; x++) { for (int y = 0; y < h / 2; y++) { c[x][y] = Complex.ofCartesian(i[x][y * 2], i[x][y * 2 + 1]); } } } return c; } /** * Converts a 2D interleaved complex {@code double[][]} array to a * {@code Complex[][]} array. The second d level of the array is assumed * to be interleaved. * * @param d 2D complex interleaved array * @return 2D {@code Complex} array */ public static Complex[][] interleaved2Complex(double[][] d) { return interleaved2Complex(d, 1); } /** * Converts a 3D interleaved complex {@code double[][][]} array to a * {@code Complex[][][]} array. * * @param i 3D complex interleaved array * @param interleavedDim Depth level of the array to interleave * @return 3D {@code Complex} array */ public static Complex[][][] interleaved2Complex(double[][][] i, int interleavedDim) { if (interleavedDim > 2 || interleavedDim < 0) { throw new IndexOutOfRangeException(interleavedDim); } final int w = i.length; final int h = i[0].length; final int d = i[0][0].length; Complex[][][] c; if (interleavedDim == 0) { c = new Complex[w / 2][h][d]; for (int x = 0; x < w / 2; x++) { for (int y = 0; y < h; y++) { for (int z = 0; z < d; z++) { c[x][y][z] = Complex.ofCartesian(i[x * 2][y][z], i[x * 2 + 1][y][z]); } } } } else if (interleavedDim == 1) { c = new Complex[w][h / 2][d]; for (int x = 0; x < w; x++) { for (int y = 0; y < h / 2; y++) { for (int z = 0; z < d; z++) { c[x][y][z] = Complex.ofCartesian(i[x][y * 2][z], i[x][y * 2 + 1][z]); } } } } else { c = new Complex[w][h][d / 2]; for (int x = 0; x < w; x++) { for (int y = 0; y < h; y++) { for (int z = 0; z < d / 2; z++) { c[x][y][z] = Complex.ofCartesian(i[x][y][z * 2], i[x][y][z * 2 + 1]); } } } } return c; } /** * Converts a 4D interleaved complex {@code double[][][][]} array to a * {@code Complex[][][][]} array. * * @param i 4D complex interleaved array * @param interleavedDim Depth level of the array to interleave * @return 4D {@code Complex} array */ public static Complex[][][][] interleaved2Complex(double[][][][] i, int interleavedDim) { if (interleavedDim > 3 || interleavedDim < 0) { throw new IndexOutOfRangeException(interleavedDim); } final int w = i.length; final int h = i[0].length; final int d = i[0][0].length; final int v = i[0][0][0].length; Complex[][][][] c; if (interleavedDim == 0) { c = new Complex[w / 2][h][d][v]; for (int x = 0; x < w / 2; x++) { for (int y = 0; y < h; y++) { for (int z = 0; z < d; z++) { for (int t = 0; t < v; t++) { c[x][y][z][t] = Complex.ofCartesian(i[x * 2][y][z][t], i[x * 2 + 1][y][z][t]); } } } } } else if (interleavedDim == 1) { c = new Complex[w][h / 2][d][v]; for (int x = 0; x < w; x++) { for (int y = 0; y < h / 2; y++) { for (int z = 0; z < d; z++) { for (int t = 0; t < v; t++) { c[x][y][z][t] = Complex.ofCartesian(i[x][y * 2][z][t], i[x][y * 2 + 1][z][t]); } } } } } else if (interleavedDim == 2) { c = new Complex[w][h][d / 2][v]; for (int x = 0; x < w; x++) { for (int y = 0; y < h; y++) { for (int z = 0; z < d / 2; z++) { for (int t = 0; t < v; t++) { c[x][y][z][t] = Complex.ofCartesian(i[x][y][z * 2][t], i[x][y][z * 2 + 1][t]); } } } } } else { c = new Complex[w][h][d][v / 2]; for (int x = 0; x < w; x++) { for (int y = 0; y < h; y++) { for (int z = 0; z < d; z++) { for (int t = 0; t < v / 2; t++) { c[x][y][z][t] = Complex.ofCartesian(i[x][y][z][t * 2], i[x][y][z][t * 2 + 1]); } } } } } return c; } /** * Converts a 3D interleaved complex {@code double[][][]} array to a * {@code Complex[][][]} array. The third d level is assumed to be * interleaved. * * @param d 3D complex interleaved array * @return 3D {@code Complex} array */ public static Complex[][][] interleaved2Complex(double[][][] d) { return interleaved2Complex(d, 2); } /** * Converts a 2D interleaved complex {@code float[][]} array to a * {@code Complex[][]} array. * * @param i 2D complex interleaved float array * @param interleavedDim Depth level of the array to interleave * @return 2D {@code Complex} array */ public static Complex[][] interleaved2Complex(float[][] i, int interleavedDim) { if (interleavedDim > 1 || interleavedDim < 0) { throw new IndexOutOfRangeException(interleavedDim); } final int w = i.length; final int h = i[0].length; Complex[][] c; if (interleavedDim == 0) { c = new Complex[w / 2][h]; for (int x = 0; x < w / 2; x++) { for (int y = 0; y < h; y++) { c[x][y] = Complex.ofCartesian(i[x * 2][y], i[x * 2 + 1][y]); } } } else { c = new Complex[w][h / 2]; for (int x = 0; x < w; x++) { for (int y = 0; y < h / 2; y++) { c[x][y] = Complex.ofCartesian(i[x][y * 2], i[x][y * 2 + 1]); } } } return c; } /** * Converts a 2D interleaved complex {@code float[][]} array to a * {@code Complex[][]} array. The second d level of the array is assumed * to be interleaved. * * @param d 2D complex interleaved float array * @return 2D {@code Complex} array */ public static Complex[][] interleaved2Complex(float[][] d) { return interleaved2Complex(d, 1); } /** * Converts a 3D interleaved complex {@code float[][][]} array to a * {@code Complex[][][]} array. * * @param i 3D complex interleaved float array * @param interleavedDim Depth level of the array to interleave * @return 3D {@code Complex} array */ public static Complex[][][] interleaved2Complex(float[][][] i, int interleavedDim) { if (interleavedDim > 2 || interleavedDim < 0) { throw new IndexOutOfRangeException(interleavedDim); } final int w = i.length; final int h = i[0].length; final int d = i[0][0].length; Complex[][][] c; if (interleavedDim == 0) { c = new Complex[w / 2][h][d]; for (int x = 0; x < w/2; x ++) { for (int y = 0; y < h; y++) { for (int z = 0; z < d; z++) { c[x][y][z] = Complex.ofCartesian(i[x * 2][y][z], i[x * 2 + 1][y][z]); } } } } else if (interleavedDim == 1) { c = new Complex[w][h / 2][d]; for (int x = 0; x < w; x++) { for (int y = 0; y < h/2; y ++) { for (int z = 0; z < d; z++) { c[x][y][z] = Complex.ofCartesian(i[x][y * 2][z], i[x][y * 2 + 1][z]); } } } } else { c = new Complex[w][h][d / 2]; for (int x = 0; x < w; x++) { for (int y = 0; y < h; y++) { for (int z = 0; z < d/2; z++) { c[x][y][z] = Complex.ofCartesian(i[x][y][z * 2], i[x][y][z * 2 + 1]); } } } } return c; } /** * Converts a 3D interleaved complex {@code float[][][]} array to a * {@code Complex[]} array. The third level of the array is assumed to * be interleaved. * * @param d 3D complex interleaved float array * @return 3D {@code Complex} array */ public static Complex[][][] interleaved2Complex(float[][][] d) { return interleaved2Complex(d, 2); } // SPLIT METHODS /** * Converts a split complex array {@code double[] r, double[] i} to a * {@code Complex[]} array. * * @param real real component * @param imag imaginary component * @return {@code Complex} array */ public static Complex[] split2Complex(double[] real, double[] imag) { final int length = real.length; final Complex[] c = new Complex[length]; for (int n = 0; n < length; n++) { c[n] = Complex.ofCartesian(real[n], imag[n]); } return c; } /** * Converts a 2D split complex array {@code double[][] r, double[][] i} to a * 2D {@code Complex[][]} array. * * @param real real component * @param imag imaginary component * @return 2D {@code Complex} array */ public static Complex[][] split2Complex(double[][] real, double[][] imag) { final int length = real.length; Complex[][] c = new Complex[length][]; for (int x = 0; x < length; x++) { c[x] = split2Complex(real[x], imag[x]); } return c; } /** * Converts a 3D split complex array {@code double[][][] r, double[][][] i} * to a 3D {@code Complex[][][]} array. * * @param real real component * @param imag imaginary component * @return 3D {@code Complex} array */ public static Complex[][][] split2Complex(double[][][] real, double[][][] imag) { final int length = real.length; Complex[][][] c = new Complex[length][][]; for (int x = 0; x < length; x++) { c[x] = split2Complex(real[x], imag[x]); } return c; } /** * Converts a 4D split complex array {@code double[][][][] r, double[][][][] i} * to a 4D {@code Complex[][][][]} array. * * @param real real component * @param imag imaginary component * @return 4D {@code Complex} array */ public static Complex[][][][] split2Complex(double[][][][] real, double[][][][] imag) { final int length = real.length; Complex[][][][] c = new Complex[length][][][]; for (int x = 0; x < length; x++) { c[x] = split2Complex(real[x], imag[x]); } return c; } /** * Converts a split complex array {@code float[] r, float[] i} to a * {@code Complex[]} array. * * @param real real component * @param imag imaginary component * @return {@code Complex} array */ public static Complex[] split2Complex(float[] real, float[] imag) { final int length = real.length; final Complex[] c = new Complex[length]; for (int n = 0; n < length; n++) { c[n] = Complex.ofCartesian(real[n], imag[n]); } return c; } /** * Converts a 2D split complex array {@code float[][] r, float[][] i} to a * 2D {@code Complex[][]} array. * * @param real real component * @param imag imaginary component * @return 2D {@code Complex} array */ public static Complex[][] split2Complex(float[][] real, float[][] imag) { final int length = real.length; Complex[][] c = new Complex[length][]; for (int x = 0; x < length; x++) { c[x] = split2Complex(real[x], imag[x]); } return c; } /** * Converts a 3D split complex array {@code float[][][] r, float[][][] i} to * a 3D {@code Complex[][][]} array. * * @param real real component * @param imag imaginary component * @return 3D {@code Complex} array */ public static Complex[][][] split2Complex(float[][][] real, float[][][] imag) { final int length = real.length; Complex[][][] c = new Complex[length][][]; for (int x = 0; x < length; x++) { c[x] = split2Complex(real[x], imag[x]); } return c; } // MISC /** * Initializes a {@code Complex[]} array to zero, to avoid * NullPointerExceptions. * * @param c Complex array * @return c */ public static Complex[] initialize(Complex[] c) { final int length = c.length; for (int x = 0; x < length; x++) { c[x] = Complex.ZERO; } return c; } /** * Initializes a {@code Complex[][]} array to zero, to avoid * NullPointerExceptions. * * @param c {@code Complex} array * @return c */ public static Complex[][] initialize(Complex[][] c) { final int length = c.length; for (int x = 0; x < length; x++) { c[x] = initialize(c[x]); } return c; } /** * Initializes a {@code Complex[][][]} array to zero, to avoid * NullPointerExceptions. * * @param c {@code Complex} array * @return c */ public static Complex[][][] initialize(Complex[][][] c) { final int length = c.length; for (int x = 0; x < length; x++) { c[x] = initialize(c[x]); } return c; } /** * Returns {@code double[]} containing absolute values (magnitudes) of a * {@code Complex[]} array. * * @param c {@code Complex} array * @return {@code double[]} */ public static double[] abs(Complex[] c) { final int length = c.length; final double[] i = new double[length]; for (int x = 0; x < length; x++) { i[x] = c[x].abs(); } return i; } /** * Returns {@code double[]} containing arguments (phase angles) of a * {@code Complex[]} array. * * @param c {@code Complex} array * @return {@code double[]} array */ public static double[] arg(Complex[] c) { final int length = c.length; final double[] i = new double[length]; for (int x = 0; x < length; x++) { i[x] = c[x].getArgument(); } return i; } /** * Exception to be throw when a negative value is passed as the modulus. */ private static class NegativeModulusException extends IllegalArgumentException { /** Serializable version identifier. */ private static final long serialVersionUID = 20181205L; /** * @param r Wrong modulus. */ NegativeModulusException(double r) { super("Modulus is negative: " + r); } } /** * Exception to be throw when an out-of-range index value is passed. */ private static class IndexOutOfRangeException extends IllegalArgumentException { /** Serializable version identifier. */ private static final long serialVersionUID = 20181205L; /** * @param i Wrong index. */ IndexOutOfRangeException(int i) { super("Out of range: " + i); } } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy