All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.numbers.gamma.RegularizedBeta Maven / Gradle / Ivy

Go to download

Statistical sampling library for use in virtdata libraries, based on apache commons math 4

There is a newer version: 5.17.0
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.numbers.gamma;

import org.apache.commons.numbers.fraction.ContinuedFraction;

/**
 * 
 * Regularized Beta function.
 * 

* This class is immutable. *

*/ public class RegularizedBeta { /** Maximum allowed numerical error. */ private static final double DEFAULT_EPSILON = 1e-14; /** * Computes the value of the * * regularized beta function I(x, a, b). * * @param x Value. * @param a Parameter {@code a}. * @param b Parameter {@code b}. * @return the regularized beta function I(x, a, b). * @throws ArithmeticException if the algorithm fails to converge. */ public static double value(double x, double a, double b) { return value(x, a, b, DEFAULT_EPSILON, Integer.MAX_VALUE); } /** * Computes the value of the * * regularized beta function I(x, a, b). * * The implementation of this method is based on: * * * @param x the value. * @param a Parameter {@code a}. * @param b Parameter {@code b}. * @param epsilon When the absolute value of the nth item in the * series is less than epsilon the approximation ceases to calculate * further elements in the series. * @param maxIterations Maximum number of "iterations" to complete. * @return the regularized beta function I(x, a, b). * @throws ArithmeticException if the algorithm fails to converge. */ public static double value(double x, final double a, final double b, double epsilon, int maxIterations) { if (Double.isNaN(x) || Double.isNaN(a) || Double.isNaN(b) || x < 0 || x > 1 || a <= 0 || b <= 0) { return Double.NaN; } else if (x > (a + 1) / (2 + b + a) && 1 - x <= (b + 1) / (2 + b + a)) { return 1 - value(1 - x, b, a, epsilon, maxIterations); } else { final ContinuedFraction fraction = new ContinuedFraction() { /** {@inheritDoc} */ @Override protected double getB(int n, double x) { if (n % 2 == 0) { // even final double m = n / 2d; return (m * (b - m) * x) / ((a + (2 * m) - 1) * (a + (2 * m))); } else { final double m = (n - 1d) / 2d; return -((a + m) * (a + b + m) * x) / ((a + (2 * m)) * (a + (2 * m) + 1)); } } /** {@inheritDoc} */ @Override protected double getA(int n, double x) { return 1; } }; return Math.exp((a * Math.log(x)) + (b * Math.log1p(-x)) - Math.log(a) - LogBeta.value(a, b)) / fraction.evaluate(x, epsilon, maxIterations); } } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy