org.apache.commons.rng.sampling.distribution.GaussianSampler Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of virtdata-lib-curves4 Show documentation
Show all versions of virtdata-lib-curves4 Show documentation
Statistical sampling library for use in virtdata libraries, based
on apache commons math 4
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.rng.sampling.distribution;
/**
* Sampling from a Gaussian distribution with given mean and
* standard deviation.
*
* @since 1.1
*/
public class GaussianSampler implements ContinuousSampler {
/** Mean. */
private final double mean;
/** standardDeviation. */
private final double standardDeviation;
/** Normalized Gaussian sampler. */
private final NormalizedGaussianSampler normalized;
/**
* @param normalized Generator of N(0,1) Gaussian distributed random numbers.
* @param mean Mean of the Gaussian distribution.
* @param standardDeviation Standard deviation of the Gaussian distribution.
* @throws IllegalArgumentException if {@code standardDeviation <= 0}
*/
public GaussianSampler(NormalizedGaussianSampler normalized,
double mean,
double standardDeviation) {
if (standardDeviation <= 0) {
throw new IllegalArgumentException(
"standard deviation is not strictly positive: " + standardDeviation);
}
this.normalized = normalized;
this.mean = mean;
this.standardDeviation = standardDeviation;
}
/** {@inheritDoc} */
@Override
public double sample() {
return standardDeviation * normalized.sample() + mean;
}
/** {@inheritDoc} */
@Override
public String toString() {
return "Gaussian deviate [" + normalized.toString() + "]";
}
}