org.apache.commons.rng.sampling.distribution.InverseTransformDiscreteSampler Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of virtdata-lib-curves4 Show documentation
Show all versions of virtdata-lib-curves4 Show documentation
Statistical sampling library for use in virtdata libraries, based
on apache commons math 4
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.rng.sampling.distribution;
import org.apache.commons.rng.UniformRandomProvider;
/**
* Distribution sampler that uses the
*
* inversion method.
*
* It can be used to sample any distribution that provides access to its
* inverse cumulative probability function.
*
* Sampling uses {@link UniformRandomProvider#nextDouble()}.
*
* Example:
*
* import org.apache.commons.math3.distribution.IntegerDistribution;
* import org.apache.commons.math3.distribution.BinomialDistribution;
*
* import org.apache.commons.rng.simple.RandomSource;
* import org.apache.commons.rng.sampling.distribution.DiscreteSampler;
* import org.apache.commons.rng.sampling.distribution.InverseTransformDiscreteSampler;
* import org.apache.commons.rng.sampling.distribution.DiscreteInverseCumulativeProbabilityFunction;
*
* // Distribution to sample.
* final IntegerDistribution dist = new BinomialDistribution(11, 0.56);
* // Create the sampler.
* final DiscreteSampler binomialSampler =
* new InverseTransformDiscreteSampler(RandomSource.create(RandomSource.MT),
* new DiscreteInverseCumulativeProbabilityFunction() {
* public int inverseCumulativeProbability(double p) {
* return dist.inverseCumulativeProbability(p);
* }
* });
*
* // Generate random deviate.
* int random = binomialSampler.sample();
*
*
* @since 1.0
*/
public class InverseTransformDiscreteSampler
extends SamplerBase
implements DiscreteSampler {
/** Inverse cumulative probability function. */
private final DiscreteInverseCumulativeProbabilityFunction function;
/** Underlying source of randomness. */
private final UniformRandomProvider rng;
/**
* @param rng Generator of uniformly distributed random numbers.
* @param function Inverse cumulative probability function.
*/
public InverseTransformDiscreteSampler(UniformRandomProvider rng,
DiscreteInverseCumulativeProbabilityFunction function) {
super(null);
this.rng = rng;
this.function = function;
}
/** {@inheritDoc} */
@Override
public int sample() {
return function.inverseCumulativeProbability(rng.nextDouble());
}
/** {@inheritDoc} */
@Override
public String toString() {
return function.toString() + " (inverse method) [" + rng.toString() + "]";
}
}