org.apache.commons.rng.sampling.distribution.ZigguratNormalizedGaussianSampler Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of virtdata-lib-curves4 Show documentation
Show all versions of virtdata-lib-curves4 Show documentation
Statistical sampling library for use in virtdata libraries, based
on apache commons math 4
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.rng.sampling.distribution;
import org.apache.commons.rng.UniformRandomProvider;
/**
*
* Marsaglia and Tsang "Ziggurat" method for sampling from a Gaussian
* distribution with mean 0 and standard deviation 1.
*
* The algorithm is explained in this
* paper
* and this implementation has been adapted from the C code provided therein.
*
* Sampling uses:
*
*
* - {@link UniformRandomProvider#nextLong()}
*
- {@link UniformRandomProvider#nextDouble()}
*
*
* @since 1.1
*/
public class ZigguratNormalizedGaussianSampler
implements NormalizedGaussianSampler {
/** Start of tail. */
private static final double R = 3.442619855899;
/** Inverse of R. */
private static final double ONE_OVER_R = 1 / R;
/** Rectangle area. */
private static final double V = 9.91256303526217e-3;
/** 2^63 */
private static final double MAX = Math.pow(2, 63);
/** 2^-63 */
private static final double ONE_OVER_MAX = 1d / MAX;
/** Number of entries. */
private static final int LEN = 128;
/** Index of last entry. */
private static final int LAST = LEN - 1;
/** Auxiliary table. */
private static final long[] K = new long[LEN];
/** Auxiliary table. */
private static final double[] W = new double[LEN];
/** Auxiliary table. */
private static final double[] F = new double[LEN];
/** Underlying source of randomness. */
private final UniformRandomProvider rng;
static {
// Filling the tables.
double d = R;
double t = d;
double fd = gauss(d);
final double q = V / fd;
K[0] = (long) ((d / q) * MAX);
K[1] = 0;
W[0] = q * ONE_OVER_MAX;
W[LAST] = d * ONE_OVER_MAX;
F[0] = 1;
F[LAST] = fd;
for (int i = LAST - 1; i >= 1; i--) {
d = Math.sqrt(-2 * Math.log(V / d + fd));
fd = gauss(d);
K[i + 1] = (long) ((d / t) * MAX);
t = d;
F[i] = fd;
W[i] = d * ONE_OVER_MAX;
}
}
/**
* @param rng Generator of uniformly distributed random numbers.
*/
public ZigguratNormalizedGaussianSampler(UniformRandomProvider rng) {
this.rng = rng;
}
/** {@inheritDoc} */
@Override
public double sample() {
final long j = rng.nextLong();
final int i = (int) (j & LAST);
if (Math.abs(j) < K[i]) {
return j * W[i];
} else {
return fix(j, i);
}
}
/** {@inheritDoc} */
@Override
public String toString() {
return "Ziggurat normalized Gaussian deviate [" + rng.toString() + "]";
}
/**
* Gets the value from the tail of the distribution.
*
* @param hz Start random integer.
* @param iz Index of cell corresponding to {@code hz}.
* @return the requested random value.
*/
private double fix(long hz,
int iz) {
double x;
double y;
x = hz * W[iz];
if (iz == 0) {
// Base strip.
// This branch is called about 5.7624515E-4 times per sample.
do {
y = -Math.log(rng.nextDouble());
x = -Math.log(rng.nextDouble()) * ONE_OVER_R;
} while (y + y < x * x);
final double out = R + x;
return hz > 0 ? out : -out;
} else {
// Wedge of other strips.
// This branch is called about 0.027323 times per sample.
if (F[iz] + rng.nextDouble() * (F[iz - 1] - F[iz]) < gauss(x)) {
return x;
} else {
// Try again.
// This branch is called about 0.012362 times per sample.
return sample();
}
}
}
/**
* @param x Argument.
* @return \( e^{-\frac{x^2}{2}} \)
*/
private static double gauss(double x) {
return Math.exp(-0.5 * x * x);
}
}