All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.statistics.distribution.AbstractDiscreteDistribution Maven / Gradle / Ivy

Go to download

Statistical sampling library for use in virtdata libraries, based on apache commons math 4

There is a newer version: 5.17.0
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.statistics.distribution;

import org.apache.commons.rng.UniformRandomProvider;
import org.apache.commons.rng.sampling.distribution.DiscreteInverseCumulativeProbabilityFunction;
import org.apache.commons.rng.sampling.distribution.DiscreteSampler;
import org.apache.commons.rng.sampling.distribution.InverseTransformDiscreteSampler;

/**
 * Base class for integer-valued discrete distributions.  Default
 * implementations are provided for some of the methods that do not vary
 * from distribution to distribution.
 */
abstract class AbstractDiscreteDistribution
    implements DiscreteDistribution {
    /**
     * {@inheritDoc}
     *
     * The default implementation uses the identity
     * {@code P(x0 < X <= x1) = P(X <= x1) - P(X <= x0)}
     */
    @Override
    public double probability(int x0,
                              int x1) {
        if (x1 < x0) {
            throw new DistributionException(DistributionException.TOO_SMALL,
                                            x1, x0);
        }
        return cumulativeProbability(x1) - cumulativeProbability(x0);
    }

    /**
     * {@inheritDoc}
     *
     * The default implementation returns
     * 
    *
  • {@link #getSupportLowerBound()} for {@code p = 0},
  • *
  • {@link #getSupportUpperBound()} for {@code p = 1}, and
  • *
  • {@link #solveInverseCumulativeProbability(double, int, int)} for * {@code 0 < p < 1}.
  • *
*/ @Override public int inverseCumulativeProbability(final double p) { if (p < 0 || p > 1) { throw new DistributionException(DistributionException.OUT_OF_RANGE, p, 0, 1); } int lower = getSupportLowerBound(); if (p == 0.0) { return lower; } if (lower == Integer.MIN_VALUE) { if (checkedCumulativeProbability(lower) >= p) { return lower; } } else { lower -= 1; // this ensures cumulativeProbability(lower) < p, which // is important for the solving step } int upper = getSupportUpperBound(); if (p == 1.0) { return upper; } // use the one-sided Chebyshev inequality to narrow the bracket // cf. AbstractRealDistribution.inverseCumulativeProbability(double) final double mu = getMean(); final double sigma = Math.sqrt(getVariance()); final boolean chebyshevApplies = !(Double.isInfinite(mu) || Double.isNaN(mu) || Double.isInfinite(sigma) || Double.isNaN(sigma) || sigma == 0.0); if (chebyshevApplies) { double k = Math.sqrt((1.0 - p) / p); double tmp = mu - k * sigma; if (tmp > lower) { lower = ((int) Math.ceil(tmp)) - 1; } k = 1.0 / k; tmp = mu + k * sigma; if (tmp < upper) { upper = ((int) Math.ceil(tmp)) - 1; } } return solveInverseCumulativeProbability(p, lower, upper); } /** * This is a utility function used by {@link * #inverseCumulativeProbability(double)}. It assumes {@code 0 < p < 1} and * that the inverse cumulative probability lies in the bracket {@code * (lower, upper]}. The implementation does simple bisection to find the * smallest {@code p}-quantile {@code inf{x in Z | P(X <= x) >= p}}. * * @param p Cumulative probability. * @param lower Value satisfying {@code cumulativeProbability(lower) < p}. * @param upper Value satisfying {@code p <= cumulativeProbability(upper)}. * @return the smallest {@code p}-quantile of this distribution. */ private int solveInverseCumulativeProbability(final double p, int lower, int upper) { while (lower + 1 < upper) { int xm = (lower + upper) / 2; if (xm < lower || xm > upper) { /* * Overflow. * There will never be an overflow in both calculation methods * for xm at the same time */ xm = lower + (upper - lower) / 2; } double pm = checkedCumulativeProbability(xm); if (pm >= p) { upper = xm; } else { lower = xm; } } return upper; } /** * Computes the cumulative probability function and checks for {@code NaN} * values returned. Throws {@code MathInternalError} if the value is * {@code NaN}. Rethrows any exception encountered evaluating the cumulative * probability function. Throws {@code MathInternalError} if the cumulative * probability function returns {@code NaN}. * * @param argument Input value. * @return the cumulative probability. * @throws IllegalStateException if the cumulative probability is {@code NaN}. */ private double checkedCumulativeProbability(int argument) { final double result = cumulativeProbability(argument); if (Double.isNaN(result)) { throw new IllegalStateException("Internal error"); } return result; } /** * Utility function for allocating an array and filling it with {@code n} * samples generated by the given {@code sampler}. * * @param n Number of samples. * @param sampler Sampler. * @return an array of size {@code n}. */ public static int[] sample(int n, DiscreteDistribution.Sampler sampler) { final int[] samples = new int[n]; for (int i = 0; i < n; i++) { samples[i] = sampler.sample(); } return samples; } /** {@inheritDoc} */ @Override public DiscreteDistribution.Sampler createSampler(final UniformRandomProvider rng) { return new DiscreteDistribution.Sampler() { /** * Inversion method distribution sampler. */ private final DiscreteSampler sampler = new InverseTransformDiscreteSampler(rng, createICPF()); /** {@inheritDoc} */ @Override public int sample() { return sampler.sample(); } }; } /** * @return an instance for use by {@link #createSampler(UniformRandomProvider)}. */ private DiscreteInverseCumulativeProbabilityFunction createICPF() { return new DiscreteInverseCumulativeProbabilityFunction() { /** {@inheritDoc} */ @Override public int inverseCumulativeProbability(double p) { return AbstractDiscreteDistribution.this.inverseCumulativeProbability(p); } }; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy