org.apache.commons.statistics.distribution.ExponentialDistribution Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of virtdata-lib-curves4 Show documentation
Show all versions of virtdata-lib-curves4 Show documentation
Statistical sampling library for use in virtdata libraries, based
on apache commons math 4
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.statistics.distribution;
import org.apache.commons.rng.UniformRandomProvider;
import org.apache.commons.rng.sampling.distribution.AhrensDieterExponentialSampler;
import org.apache.commons.rng.sampling.distribution.ContinuousSampler;
/**
* Implementation of the exponential distribution.
*/
public class ExponentialDistribution extends AbstractContinuousDistribution {
/** The mean of this distribution. */
private final double mean;
/** The logarithm of the mean, stored to reduce computing time. */
private final double logMean;
/**
* Creates a distribution.
*
* @param mean Mean of this distribution.
* @throws IllegalArgumentException if {@code mean <= 0}.
*/
public ExponentialDistribution(double mean) {
if (mean <= 0) {
throw new DistributionException(DistributionException.NEGATIVE, mean);
}
this.mean = mean;
logMean = Math.log(mean);
}
/** {@inheritDoc} */
@Override
public double density(double x) {
final double logDensity = logDensity(x);
return logDensity == Double.NEGATIVE_INFINITY ? 0 : Math.exp(logDensity);
}
/** {@inheritDoc} **/
@Override
public double logDensity(double x) {
if (x < 0) {
return Double.NEGATIVE_INFINITY;
}
return -x / mean - logMean;
}
/**
* {@inheritDoc}
*
* The implementation of this method is based on:
*
* -
*
* Exponential Distribution, equation (1).
*
*/
@Override
public double cumulativeProbability(double x) {
double ret;
if (x <= 0) {
ret = 0;
} else {
ret = 1 - Math.exp(-x / mean);
}
return ret;
}
/**
* {@inheritDoc}
*
* Returns {@code 0} when {@code p= = 0} and
* {@code Double.POSITIVE_INFINITY} when {@code p == 1}.
*/
@Override
public double inverseCumulativeProbability(double p) {
double ret;
if (p < 0 ||
p > 1) {
throw new DistributionException(DistributionException.OUT_OF_RANGE, p, 0, 1);
} else if (p == 1) {
ret = Double.POSITIVE_INFINITY;
} else {
ret = -mean * Math.log(1 - p);
}
return ret;
}
/** {@inheritDoc} */
@Override
public double getMean() {
return mean;
}
/**
* {@inheritDoc}
*
* For mean parameter {@code k}, the variance is {@code k^2}.
*/
@Override
public double getVariance() {
return mean * mean;
}
/**
* {@inheritDoc}
*
* The lower bound of the support is always 0 no matter the mean parameter.
*
* @return lower bound of the support (always 0)
*/
@Override
public double getSupportLowerBound() {
return 0;
}
/**
* {@inheritDoc}
*
* The upper bound of the support is always positive infinity
* no matter the mean parameter.
*
* @return upper bound of the support (always Double.POSITIVE_INFINITY)
*/
@Override
public double getSupportUpperBound() {
return Double.POSITIVE_INFINITY;
}
/**
* {@inheritDoc}
*
* The support of this distribution is connected.
*
* @return {@code true}
*/
@Override
public boolean isSupportConnected() {
return true;
}
/**
* {@inheritDoc}
*
* Sampling algorithm uses the
*
* inversion method to generate exponentially distributed
* random values from uniform deviates.
*
*/
@Override
public ContinuousDistribution.Sampler createSampler(final UniformRandomProvider rng) {
return new ContinuousDistribution.Sampler() {
/**
* Exponential distribution sampler.
*/
private final ContinuousSampler sampler =
new AhrensDieterExponentialSampler(rng, mean);
/**{@inheritDoc} */
@Override
public double sample() {
return sampler.sample();
}
};
}
}