org.apache.commons.statistics.distribution.LaplaceDistribution Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of virtdata-lib-curves4 Show documentation
Show all versions of virtdata-lib-curves4 Show documentation
Statistical sampling library for use in virtdata libraries, based
on apache commons math 4
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.statistics.distribution;
/**
* This class implements the Laplace distribution.
*
* @see Laplace distribution (Wikipedia)
*
* @since 3.4
*/
public class LaplaceDistribution extends AbstractContinuousDistribution {
/** Serializable version identifier. */
private static final long serialVersionUID = 20160311L;
/** The location parameter. */
private final double mu;
/** The scale parameter. */
private final double beta;
/**
* Creates a distribution.
*
* @param mu location parameter
* @param beta scale parameter (must be positive)
* @throws IllegalArgumentException if {@code beta <= 0}
*/
public LaplaceDistribution(double mu,
double beta) {
if (beta <= 0.0) {
throw new DistributionException(DistributionException.NEGATIVE, beta);
}
this.mu = mu;
this.beta = beta;
}
/**
* Access the location parameter, {@code mu}.
*
* @return the location parameter.
*/
public double getLocation() {
return mu;
}
/**
* Access the scale parameter, {@code beta}.
*
* @return the scale parameter.
*/
public double getScale() {
return beta;
}
/** {@inheritDoc} */
@Override
public double density(double x) {
return Math.exp(-Math.abs(x - mu) / beta) / (2.0 * beta);
}
/** {@inheritDoc} */
@Override
public double cumulativeProbability(double x) {
if (x <= mu) {
return Math.exp((x - mu) / beta) / 2.0;
} else {
return 1.0 - Math.exp((mu - x) / beta) / 2.0;
}
}
/** {@inheritDoc} */
@Override
public double inverseCumulativeProbability(double p) {
if (p < 0 ||
p > 1) {
throw new DistributionException(DistributionException.OUT_OF_RANGE, p, 0, 1);
} else if (p == 0) {
return Double.NEGATIVE_INFINITY;
} else if (p == 1) {
return Double.POSITIVE_INFINITY;
}
double x = (p > 0.5) ? -Math.log(2.0 - 2.0 * p) : Math.log(2.0 * p);
return mu + beta * x;
}
/** {@inheritDoc} */
@Override
public double getMean() {
return mu;
}
/** {@inheritDoc} */
@Override
public double getVariance() {
return 2.0 * beta * beta;
}
/** {@inheritDoc} */
@Override
public double getSupportLowerBound() {
return Double.NEGATIVE_INFINITY;
}
/** {@inheritDoc} */
@Override
public double getSupportUpperBound() {
return Double.POSITIVE_INFINITY;
}
/** {@inheritDoc} */
@Override
public boolean isSupportConnected() {
return true;
}
}