All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.statistics.distribution.LevyDistribution Maven / Gradle / Ivy

Go to download

Statistical sampling library for use in virtdata libraries, based on apache commons math 4

There is a newer version: 5.17.0
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.statistics.distribution;

import org.apache.commons.numbers.gamma.Erfc;
import org.apache.commons.numbers.gamma.InverseErfc;

/**
 * This class implements the 
 * Lévy distribution.
 */
public class LevyDistribution extends AbstractContinuousDistribution {
    /** Location parameter. */
    private final double mu;
    /** Scale parameter. */
    private final double c;
    /** Half of c (for calculations). */
    private final double halfC;

    /**
     * Creates a distribution.
     *
     * @param mu location
     * @param c scale parameter
     */
    public LevyDistribution(final double mu,
                            final double c) {
        this.mu = mu;
        this.c = c;
        this.halfC = 0.5 * c;
    }

    /** {@inheritDoc}
    * 

* From Wikipedia: The probability density function of the Lévy distribution * over the domain is *

*
* f(x; μ, c) = √(c / 2π) * e-c / 2 (x - μ) / (x - μ)3/2 *
*

* For this distribution, {@code X}, this method returns {@code P(X < x)}. * If {@code x} is less than location parameter μ, {@code Double.NaN} is * returned, as in these cases the distribution is not defined. *

*/ @Override public double density(final double x) { if (x < mu) { return Double.NaN; } final double delta = x - mu; final double f = halfC / delta; return Math.sqrt(f / Math.PI) * Math.exp(-f) /delta; } /** {@inheritDoc} * * See documentation of {@link #density(double)} for computation details. */ @Override public double logDensity(double x) { if (x < mu) { return Double.NaN; } final double delta = x - mu; final double f = halfC / delta; return 0.5 * Math.log(f / Math.PI) - f - Math.log(delta); } /** {@inheritDoc} *

* From Wikipedia: the cumulative distribution function is *

*
     * f(x; u, c) = erfc (√ (c / 2 (x - u )))
     * 
*/ @Override public double cumulativeProbability(final double x) { if (x < mu) { return Double.NaN; } return Erfc.value(Math.sqrt(halfC / (x - mu))); } /** {@inheritDoc} */ @Override public double inverseCumulativeProbability(final double p) { if (p < 0 || p > 1) { throw new DistributionException(DistributionException.OUT_OF_RANGE, p, 0, 1); } final double t = InverseErfc.value(p); return mu + halfC / (t * t); } /** * Gets the scale parameter of the distribution. * * @return scale parameter of the distribution */ public double getScale() { return c; } /** * Gets the location parameter of the distribution. * * @return location parameter of the distribution */ public double getLocation() { return mu; } /** {@inheritDoc} */ @Override public double getMean() { return Double.POSITIVE_INFINITY; } /** {@inheritDoc} */ @Override public double getVariance() { return Double.POSITIVE_INFINITY; } /** {@inheritDoc} */ @Override public double getSupportLowerBound() { return mu; } /** {@inheritDoc} */ @Override public double getSupportUpperBound() { return Double.POSITIVE_INFINITY; } /** {@inheritDoc} */ @Override public boolean isSupportConnected() { return true; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy