All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.statistics.distribution.LogNormalDistribution Maven / Gradle / Ivy

Go to download

Statistical sampling library for use in virtdata libraries, based on apache commons math 4

There is a newer version: 5.17.0
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.statistics.distribution;

import org.apache.commons.numbers.gamma.Erf;
import org.apache.commons.numbers.gamma.ErfDifference;
import org.apache.commons.rng.UniformRandomProvider;
import org.apache.commons.rng.sampling.distribution.ContinuousSampler;
import org.apache.commons.rng.sampling.distribution.LogNormalSampler;
import org.apache.commons.rng.sampling.distribution.ZigguratNormalizedGaussianSampler;

/**
 * Implementation of the log-normal distribution.
 *
 * 

* Parameters: * {@code X} is log-normally distributed if its natural logarithm {@code log(X)} * is normally distributed. The probability distribution function of {@code X} * is given by (for {@code x > 0}) *

*

* {@code exp(-0.5 * ((ln(x) - m) / s)^2) / (s * sqrt(2 * pi) * x)} *

*
    *
  • {@code m} is the scale parameter: this is the mean of the * normally distributed natural logarithm of this distribution,
  • *
  • {@code s} is the shape parameter: this is the standard * deviation of the normally distributed natural logarithm of this * distribution. *
*/ public class LogNormalDistribution extends AbstractContinuousDistribution { /** √(2 π) */ private static final double SQRT2PI = Math.sqrt(2 * Math.PI); /** √(2) */ private static final double SQRT2 = Math.sqrt(2); /** The scale parameter of this distribution. */ private final double scale; /** The shape parameter of this distribution. */ private final double shape; /** The value of {@code log(shape) + 0.5 * log(2*PI)} stored for faster computation. */ private final double logShapePlusHalfLog2Pi; /** * Creates a log-normal distribution. * * @param scale Scale parameter of this distribution. * @param shape Shape parameter of this distribution. * @throws IllegalArgumentException if {@code shape <= 0}. */ public LogNormalDistribution(double scale, double shape) { if (shape <= 0) { throw new DistributionException(DistributionException.NEGATIVE, shape); } this.scale = scale; this.shape = shape; this.logShapePlusHalfLog2Pi = Math.log(shape) + 0.5 * Math.log(2 * Math.PI); } /** * Returns the scale parameter of this distribution. * * @return the scale parameter */ public double getScale() { return scale; } /** * Returns the shape parameter of this distribution. * * @return the shape parameter */ public double getShape() { return shape; } /** * {@inheritDoc} * * For scale {@code m}, and shape {@code s} of this distribution, the PDF * is given by *
    *
  • {@code 0} if {@code x <= 0},
  • *
  • {@code exp(-0.5 * ((ln(x) - m) / s)^2) / (s * sqrt(2 * pi) * x)} * otherwise.
  • *
*/ @Override public double density(double x) { if (x <= 0) { return 0; } final double x0 = Math.log(x) - scale; final double x1 = x0 / shape; return Math.exp(-0.5 * x1 * x1) / (shape * SQRT2PI * x); } /** {@inheritDoc} * * See documentation of {@link #density(double)} for computation details. */ @Override public double logDensity(double x) { if (x <= 0) { return Double.NEGATIVE_INFINITY; } final double logX = Math.log(x); final double x0 = logX - scale; final double x1 = x0 / shape; return -0.5 * x1 * x1 - (logShapePlusHalfLog2Pi + logX); } /** * {@inheritDoc} * * For scale {@code m}, and shape {@code s} of this distribution, the CDF * is given by *
    *
  • {@code 0} if {@code x <= 0},
  • *
  • {@code 0} if {@code ln(x) - m < 0} and {@code m - ln(x) > 40 * s}, as * in these cases the actual value is within {@code Double.MIN_VALUE} of 0, *
  • {@code 1} if {@code ln(x) - m >= 0} and {@code ln(x) - m > 40 * s}, * as in these cases the actual value is within {@code Double.MIN_VALUE} of * 1,
  • *
  • {@code 0.5 + 0.5 * erf((ln(x) - m) / (s * sqrt(2))} otherwise.
  • *
*/ @Override public double cumulativeProbability(double x) { if (x <= 0) { return 0; } final double dev = Math.log(x) - scale; if (Math.abs(dev) > 40 * shape) { return dev < 0 ? 0.0d : 1.0d; } return 0.5 + 0.5 * Erf.value(dev / (shape * SQRT2)); } /** {@inheritDoc} */ @Override public double probability(double x0, double x1) { if (x0 > x1) { throw new DistributionException(DistributionException.TOO_LARGE, x0, x1); } if (x0 <= 0 || x1 <= 0) { return super.probability(x0, x1); } final double denom = shape * SQRT2; final double v0 = (Math.log(x0) - scale) / denom; final double v1 = (Math.log(x1) - scale) / denom; return 0.5 * ErfDifference.value(v0, v1); } /** * {@inheritDoc} * * For scale {@code m} and shape {@code s}, the mean is * {@code exp(m + s^2 / 2)}. */ @Override public double getMean() { double s = shape; return Math.exp(scale + (s * s / 2)); } /** * {@inheritDoc} * * For scale {@code m} and shape {@code s}, the variance is * {@code (exp(s^2) - 1) * exp(2 * m + s^2)}. */ @Override public double getVariance() { final double s = shape; final double ss = s * s; return (Math.expm1(ss)) * Math.exp(2 * scale + ss); } /** * {@inheritDoc} * * The lower bound of the support is always 0 no matter the parameters. * * @return lower bound of the support (always 0) */ @Override public double getSupportLowerBound() { return 0; } /** * {@inheritDoc} * * The upper bound of the support is always positive infinity * no matter the parameters. * * @return upper bound of the support (always * {@code Double.POSITIVE_INFINITY}) */ @Override public double getSupportUpperBound() { return Double.POSITIVE_INFINITY; } /** * {@inheritDoc} * * The support of this distribution is connected. * * @return {@code true} */ @Override public boolean isSupportConnected() { return true; } /** {@inheritDoc} */ @Override public ContinuousDistribution.Sampler createSampler(final UniformRandomProvider rng) { return new ContinuousDistribution.Sampler() { /** * Log normal distribution sampler. */ private final ContinuousSampler sampler = new LogNormalSampler(new ZigguratNormalizedGaussianSampler(rng), scale, shape); /**{@inheritDoc} */ @Override public double sample() { return sampler.sample(); } }; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy