org.apache.commons.statistics.distribution.NakagamiDistribution Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of virtdata-lib-curves4 Show documentation
Show all versions of virtdata-lib-curves4 Show documentation
Statistical sampling library for use in virtdata libraries, based
on apache commons math 4
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.statistics.distribution;
import org.apache.commons.numbers.gamma.Gamma;
import org.apache.commons.numbers.gamma.RegularizedGamma;
/**
* This class implements the Nakagami distribution.
*/
public class NakagamiDistribution extends AbstractContinuousDistribution {
/** The shape parameter. */
private final double mu;
/** The scale parameter. */
private final double omega;
/**
* Creates a distribution.
*
* @param mu shape parameter
* @param omega scale parameter (must be positive)
* @throws IllegalArgumentException if {@code mu < 0.5} or if
* {@code omega <= 0}.
*/
public NakagamiDistribution(double mu,
double omega) {
if (mu < 0.5) {
throw new DistributionException(DistributionException.TOO_SMALL, mu, 0.5);
}
if (omega <= 0) {
throw new DistributionException(DistributionException.NEGATIVE, omega);
}
this.mu = mu;
this.omega = omega;
}
/**
* Access the shape parameter, {@code mu}.
*
* @return the shape parameter.
*/
public double getShape() {
return mu;
}
/**
* Access the scale parameter, {@code omega}.
*
* @return the scale parameter.
*/
public double getScale() {
return omega;
}
/** {@inheritDoc} */
@Override
public double density(double x) {
if (x <= 0) {
return 0.0;
}
return 2.0 * Math.pow(mu, mu) / (Gamma.value(mu) * Math.pow(omega, mu)) *
Math.pow(x, 2 * mu - 1) * Math.exp(-mu * x * x / omega);
}
/** {@inheritDoc} */
@Override
public double cumulativeProbability(double x) {
return RegularizedGamma.P.value(mu, mu * x * x / omega);
}
/** {@inheritDoc} */
@Override
public double getMean() {
return Gamma.value(mu + 0.5) / Gamma.value(mu) * Math.sqrt(omega / mu);
}
/** {@inheritDoc} */
@Override
public double getVariance() {
double v = Gamma.value(mu + 0.5) / Gamma.value(mu);
return omega * (1 - 1 / mu * v * v);
}
/** {@inheritDoc} */
@Override
public double getSupportLowerBound() {
return 0;
}
/** {@inheritDoc} */
@Override
public double getSupportUpperBound() {
return Double.POSITIVE_INFINITY;
}
/** {@inheritDoc} */
@Override
public boolean isSupportConnected() {
return true;
}
}