All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.statistics.distribution.ParetoDistribution Maven / Gradle / Ivy

Go to download

Statistical sampling library for use in virtdata libraries, based on apache commons math 4

There is a newer version: 5.17.0
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.statistics.distribution;

import org.apache.commons.rng.UniformRandomProvider;
import org.apache.commons.rng.sampling.distribution.ContinuousSampler;
import org.apache.commons.rng.sampling.distribution.InverseTransformParetoSampler;

/**
 * Implementation of the Pareto distribution.
 *
 * 

* Parameters: * The probability distribution function of {@code X} is given by (for {@code x >= k}): *

 *  α * k^α / x^(α + 1)
 * 
*
    *
  • {@code k} is the scale parameter: this is the minimum possible value of {@code X},
  • *
  • {@code α} is the shape parameter: this is the Pareto index
  • *
*/ public class ParetoDistribution extends AbstractContinuousDistribution { /** The scale parameter of this distribution. */ private final double scale; /** The shape parameter of this distribution. */ private final double shape; /** * Creates a Pareto distribution. * * @param scale Scale parameter of this distribution. * @param shape Shape parameter of this distribution. * @throws IllegalArgumentException if {@code scale <= 0} or {@code shape <= 0}. */ public ParetoDistribution(double scale, double shape) { if (scale <= 0) { throw new DistributionException(DistributionException.NEGATIVE, scale); } if (shape <= 0) { throw new DistributionException(DistributionException.NEGATIVE, shape); } this.scale = scale; this.shape = shape; } /** * Returns the scale parameter of this distribution. * * @return the scale parameter */ public double getScale() { return scale; } /** * Returns the shape parameter of this distribution. * * @return the shape parameter */ public double getShape() { return shape; } /** * {@inheritDoc} *

* For scale {@code k}, and shape {@code α} of this distribution, the PDF * is given by *

    *
  • {@code 0} if {@code x < k},
  • *
  • {@code α * k^α / x^(α + 1)} otherwise.
  • *
*/ @Override public double density(double x) { if (x < scale) { return 0; } return Math.pow(scale, shape) / Math.pow(x, shape + 1) * shape; } /** {@inheritDoc} * * See documentation of {@link #density(double)} for computation details. */ @Override public double logDensity(double x) { if (x < scale) { return Double.NEGATIVE_INFINITY; } return Math.log(scale) * shape - Math.log(x) * (shape + 1) + Math.log(shape); } /** * {@inheritDoc} *

* For scale {@code k}, and shape {@code α} of this distribution, the CDF is given by *

    *
  • {@code 0} if {@code x < k},
  • *
  • {@code 1 - (k / x)^α} otherwise.
  • *
*/ @Override public double cumulativeProbability(double x) { if (x <= scale) { return 0; } return 1 - Math.pow(scale / x, shape); } /** * {@inheritDoc} *

* For scale {@code k} and shape {@code α}, the mean is given by *

    *
  • {@code ∞} if {@code α <= 1},
  • *
  • {@code α * k / (α - 1)} otherwise.
  • *
*/ @Override public double getMean() { if (shape <= 1) { return Double.POSITIVE_INFINITY; } return shape * scale / (shape - 1); } /** * {@inheritDoc} *

* For scale {@code k} and shape {@code α}, the variance is given by *

    *
  • {@code ∞} if {@code 1 < α <= 2},
  • *
  • {@code k^2 * α / ((α - 1)^2 * (α - 2))} otherwise.
  • *
*/ @Override public double getVariance() { if (shape <= 2) { return Double.POSITIVE_INFINITY; } double s = shape - 1; return scale * scale * shape / (s * s) / (shape - 2); } /** * {@inheritDoc} *

* The lower bound of the support is equal to the scale parameter {@code k}. * * @return lower bound of the support */ @Override public double getSupportLowerBound() { return scale; } /** * {@inheritDoc} *

* The upper bound of the support is always positive infinity no matter the parameters. * * @return upper bound of the support (always {@code Double.POSITIVE_INFINITY}) */ @Override public double getSupportUpperBound() { return Double.POSITIVE_INFINITY; } /** * {@inheritDoc} *

* The support of this distribution is connected. * * @return {@code true} */ @Override public boolean isSupportConnected() { return true; } /** {@inheritDoc} */ @Override public ContinuousDistribution.Sampler createSampler(final UniformRandomProvider rng) { return new ContinuousDistribution.Sampler() { /** * Pareto distribution sampler. */ private final ContinuousSampler sampler = new InverseTransformParetoSampler(rng, scale, shape); /**{@inheritDoc} */ @Override public double sample() { return sampler.sample(); } }; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy