All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.statistics.distribution.PascalDistribution Maven / Gradle / Ivy

Go to download

Statistical sampling library for use in virtdata libraries, based on apache commons math 4

There is a newer version: 5.17.0
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.statistics.distribution;

import org.apache.commons.numbers.combinatorics.BinomialCoefficientDouble;
import org.apache.commons.numbers.combinatorics.LogBinomialCoefficient;
import org.apache.commons.numbers.gamma.RegularizedBeta;

/**
 * Implementation of the Pascal distribution.
 *
 * The Pascal distribution is a special case of the Negative Binomial distribution
 * where the number of successes parameter is an integer.
 *
 * There are various ways to express the probability mass and distribution
 * functions for the Pascal distribution. The present implementation represents
 * the distribution of the number of failures before {@code r} successes occur.
 * This is the convention adopted in e.g.
 * MathWorld,
 * but not in
 * Wikipedia.
 *
 * For a random variable {@code X} whose values are distributed according to this
 * distribution, the probability mass function is given by
* {@code P(X = k) = C(k + r - 1, r - 1) * p^r * (1 - p)^k,}
* where {@code r} is the number of successes, {@code p} is the probability of * success, and {@code X} is the total number of failures. {@code C(n, k)} is * the binomial coefficient ({@code n} choose {@code k}). The mean and variance * of {@code X} are
* {@code E(X) = (1 - p) * r / p, var(X) = (1 - p) * r / p^2.}
* Finally, the cumulative distribution function is given by
* {@code P(X <= k) = I(p, r, k + 1)}, * where I is the regularized incomplete Beta function. */ public class PascalDistribution extends AbstractDiscreteDistribution { /** The number of successes. */ private final int numberOfSuccesses; /** The probability of success. */ private final double probabilityOfSuccess; /** The value of {@code log(p)}, where {@code p} is the probability of success, * stored for faster computation. */ private final double logProbabilityOfSuccess; /** The value of {@code log(1-p)}, where {@code p} is the probability of success, * stored for faster computation. */ private final double log1mProbabilityOfSuccess; /** * Create a Pascal distribution with the given number of successes and * probability of success. * * @param r Number of successes. * @param p Probability of success. * @throws IllegalArgumentException if {@code r <= 0} or {@code p < 0} * or {@code p > 1}. */ public PascalDistribution(int r, double p) { if (r <= 0) { throw new DistributionException(DistributionException.NEGATIVE, r); } if (p < 0 || p > 1) { throw new DistributionException(DistributionException.OUT_OF_RANGE, p, 0, 1); } numberOfSuccesses = r; probabilityOfSuccess = p; logProbabilityOfSuccess = Math.log(p); log1mProbabilityOfSuccess = Math.log1p(-p); } /** * Access the number of successes for this distribution. * * @return the number of successes. */ public int getNumberOfSuccesses() { return numberOfSuccesses; } /** * Access the probability of success for this distribution. * * @return the probability of success. */ public double getProbabilityOfSuccess() { return probabilityOfSuccess; } /** {@inheritDoc} */ @Override public double probability(int x) { double ret; if (x < 0) { ret = 0.0; } else { ret = BinomialCoefficientDouble.value(x + numberOfSuccesses - 1, numberOfSuccesses - 1) * Math.pow(probabilityOfSuccess, numberOfSuccesses) * Math.pow(1.0 - probabilityOfSuccess, x); } return ret; } /** {@inheritDoc} */ @Override public double logProbability(int x) { double ret; if (x < 0) { ret = Double.NEGATIVE_INFINITY; } else { ret = LogBinomialCoefficient.value(x + numberOfSuccesses - 1, numberOfSuccesses - 1) + logProbabilityOfSuccess * numberOfSuccesses + log1mProbabilityOfSuccess * x; } return ret; } /** {@inheritDoc} */ @Override public double cumulativeProbability(int x) { double ret; if (x < 0) { ret = 0.0; } else { ret = RegularizedBeta.value(probabilityOfSuccess, numberOfSuccesses, x + 1.0); } return ret; } /** * {@inheritDoc} * * For number of successes {@code r} and probability of success {@code p}, * the mean is {@code r * (1 - p) / p}. */ @Override public double getMean() { final double p = getProbabilityOfSuccess(); final double r = getNumberOfSuccesses(); return (r * (1 - p)) / p; } /** * {@inheritDoc} * * For number of successes {@code r} and probability of success {@code p}, * the variance is {@code r * (1 - p) / p^2}. */ @Override public double getVariance() { final double p = getProbabilityOfSuccess(); final double r = getNumberOfSuccesses(); return r * (1 - p) / (p * p); } /** * {@inheritDoc} * * The lower bound of the support is always 0 no matter the parameters. * * @return lower bound of the support (always 0) */ @Override public int getSupportLowerBound() { return 0; } /** * {@inheritDoc} * * The upper bound of the support is always positive infinity no matter the * parameters. Positive infinity is symbolized by {@code Integer.MAX_VALUE}. * * @return upper bound of the support (always {@code Integer.MAX_VALUE} * for positive infinity) */ @Override public int getSupportUpperBound() { return Integer.MAX_VALUE; } /** * {@inheritDoc} * * The support of this distribution is connected. * * @return {@code true} */ @Override public boolean isSupportConnected() { return true; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy