org.apache.commons.statistics.distribution.UniformContinuousDistribution Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of virtdata-lib-curves4 Show documentation
Show all versions of virtdata-lib-curves4 Show documentation
Statistical sampling library for use in virtdata libraries, based
on apache commons math 4
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.statistics.distribution;
import org.apache.commons.rng.UniformRandomProvider;
import org.apache.commons.rng.sampling.distribution.ContinuousSampler;
import org.apache.commons.rng.sampling.distribution.ContinuousUniformSampler;
/**
* Implementation of the uniform distribution.
*/
public class UniformContinuousDistribution extends AbstractContinuousDistribution {
/** Lower bound of this distribution (inclusive). */
private final double lower;
/** Upper bound of this distribution (exclusive). */
private final double upper;
/**
* Creates a uniform distribution.
*
* @param lower Lower bound of this distribution (inclusive).
* @param upper Upper bound of this distribution (exclusive).
* @throws IllegalArgumentException if {@code lower >= upper}.
*/
public UniformContinuousDistribution(double lower,
double upper) {
if (lower >= upper) {
throw new DistributionException(DistributionException.TOO_LARGE,
lower, upper);
}
this.lower = lower;
this.upper = upper;
}
/** {@inheritDoc} */
@Override
public double density(double x) {
if (x < lower ||
x > upper) {
return 0;
}
return 1 / (upper - lower);
}
/** {@inheritDoc} */
@Override
public double cumulativeProbability(double x) {
if (x <= lower) {
return 0;
}
if (x >= upper) {
return 1;
}
return (x - lower) / (upper - lower);
}
/** {@inheritDoc} */
@Override
public double inverseCumulativeProbability(final double p) {
if (p < 0 ||
p > 1) {
throw new DistributionException(DistributionException.OUT_OF_RANGE, p, 0, 1);
}
return p * (upper - lower) + lower;
}
/**
* {@inheritDoc}
*
* For lower bound {@code lower} and upper bound {@code upper}, the mean is
* {@code 0.5 * (lower + upper)}.
*/
@Override
public double getMean() {
return 0.5 * (lower + upper);
}
/**
* {@inheritDoc}
*
* For lower bound {@code lower} and upper bound {@code upper}, the
* variance is {@code (upper - lower)^2 / 12}.
*/
@Override
public double getVariance() {
double ul = upper - lower;
return ul * ul / 12;
}
/**
* {@inheritDoc}
*
* The lower bound of the support is equal to the lower bound parameter
* of the distribution.
*
* @return lower bound of the support
*/
@Override
public double getSupportLowerBound() {
return lower;
}
/**
* {@inheritDoc}
*
* The upper bound of the support is equal to the upper bound parameter
* of the distribution.
*
* @return upper bound of the support
*/
@Override
public double getSupportUpperBound() {
return upper;
}
/**
* {@inheritDoc}
*
* The support of this distribution is connected.
*
* @return {@code true}
*/
@Override
public boolean isSupportConnected() {
return true;
}
/** {@inheritDoc} */
@Override
public ContinuousDistribution.Sampler createSampler(final UniformRandomProvider rng) {
return new ContinuousDistribution.Sampler() {
/**
* Uniform distribution sampler.
*/
private final ContinuousSampler sampler =
new ContinuousUniformSampler(rng, lower, upper);
/**{@inheritDoc} */
@Override
public double sample() {
return sampler.sample();
}
};
}
}