org.apache.commons.statistics.distribution.UniformDiscreteDistribution Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of virtdata-lib-curves4 Show documentation
Show all versions of virtdata-lib-curves4 Show documentation
Statistical sampling library for use in virtdata libraries, based
on apache commons math 4
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.statistics.distribution;
import org.apache.commons.rng.UniformRandomProvider;
import org.apache.commons.rng.sampling.distribution.DiscreteSampler;
import org.apache.commons.rng.sampling.distribution.DiscreteUniformSampler;
/**
* Implementation of the
* uniform integer distribution.
*/
public class UniformDiscreteDistribution extends AbstractDiscreteDistribution {
/** 1 / 12 **/
private static final double ONE_TWELFTH = 1 / 12d;
/** Lower bound (inclusive) of this distribution. */
private final int lower;
/** Upper bound (inclusive) of this distribution. */
private final int upper;
/** "upper" + "lower" (to avoid overflow). */
private final double upperPlusLower;
/** "upper" - "lower" (to avoid overflow). */
private final double upperMinusLower;
/**
* Creates a new uniform integer distribution using the given lower and
* upper bounds (both inclusive).
*
* @param lower Lower bound (inclusive) of this distribution.
* @param upper Upper bound (inclusive) of this distribution.
* @throws IllegalArgumentException if {@code lower > upper}.
*/
public UniformDiscreteDistribution(int lower,
int upper) {
if (lower > upper) {
throw new DistributionException(DistributionException.TOO_LARGE,
lower, upper);
}
this.lower = lower;
this.upper = upper;
upperPlusLower = (double) upper + (double) lower;
upperMinusLower = (double) upper - (double) lower;
}
/** {@inheritDoc} */
@Override
public double probability(int x) {
if (x < lower || x > upper) {
return 0;
}
return 1 / (upperMinusLower + 1);
}
/** {@inheritDoc} */
@Override
public double cumulativeProbability(int x) {
if (x < lower) {
return 0;
}
if (x > upper) {
return 1;
}
return (x - lower + 1) / (upperMinusLower + 1);
}
/**
* {@inheritDoc}
*
* For lower bound {@code lower} and upper bound {@code upper}, the mean is
* {@code 0.5 * (lower + upper)}.
*/
@Override
public double getMean() {
return 0.5 * upperPlusLower;
}
/**
* {@inheritDoc}
*
* For lower bound {@code lower} and upper bound {@code upper}, and
* {@code n = upper - lower + 1}, the variance is {@code (n^2 - 1) / 12}.
*/
@Override
public double getVariance() {
double n = upperMinusLower + 1;
return ONE_TWELFTH * (n * n - 1);
}
/**
* {@inheritDoc}
*
* The lower bound of the support is equal to the lower bound parameter
* of the distribution.
*
* @return lower bound of the support
*/
@Override
public int getSupportLowerBound() {
return lower;
}
/**
* {@inheritDoc}
*
* The upper bound of the support is equal to the upper bound parameter
* of the distribution.
*
* @return upper bound of the support
*/
@Override
public int getSupportUpperBound() {
return upper;
}
/**
* {@inheritDoc}
*
* The support of this distribution is connected.
*
* @return {@code true}
*/
@Override
public boolean isSupportConnected() {
return true;
}
/**{@inheritDoc} */
@Override
public DiscreteDistribution.Sampler createSampler(final UniformRandomProvider rng) {
return new DiscreteDistribution.Sampler() {
/**
* Discrete uniform distribution sampler.
*/
private final DiscreteSampler sampler =
new DiscreteUniformSampler(rng, lower, upper);
/**{@inheritDoc} */
@Override
public int sample() {
return sampler.sample();
}
};
}
}