All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.fitting.GaussianCurveFitter Maven / Gradle / Ivy

There is a newer version: 5.17.0
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.fitting;

import java.util.ArrayList;
import java.util.Collection;
import java.util.Collections;
import java.util.Comparator;
import java.util.List;

import org.apache.commons.math3.analysis.function.Gaussian;
import org.apache.commons.math3.exception.NotStrictlyPositiveException;
import org.apache.commons.math3.exception.NullArgumentException;
import org.apache.commons.math3.exception.NumberIsTooSmallException;
import org.apache.commons.math3.exception.OutOfRangeException;
import org.apache.commons.math3.exception.ZeroException;
import org.apache.commons.math3.exception.util.LocalizedFormats;
import org.apache.commons.math3.fitting.leastsquares.LeastSquaresBuilder;
import org.apache.commons.math3.fitting.leastsquares.LeastSquaresProblem;
import org.apache.commons.math3.linear.DiagonalMatrix;
import org.apache.commons.math3.util.FastMath;

/**
 * Fits points to a {@link
 * org.apache.commons.math3.analysis.function.Gaussian.Parametric Gaussian}
 * function.
 * 
* The {@link #withStartPoint(double[]) initial guess values} must be passed * in the following order: *
    *
  • Normalization
  • *
  • Mean
  • *
  • Sigma
  • *
* The optimal values will be returned in the same order. * *

* Usage example: *

 *   WeightedObservedPoints obs = new WeightedObservedPoints();
 *   obs.add(4.0254623,  531026.0);
 *   obs.add(4.03128248, 984167.0);
 *   obs.add(4.03839603, 1887233.0);
 *   obs.add(4.04421621, 2687152.0);
 *   obs.add(4.05132976, 3461228.0);
 *   obs.add(4.05326982, 3580526.0);
 *   obs.add(4.05779662, 3439750.0);
 *   obs.add(4.0636168,  2877648.0);
 *   obs.add(4.06943698, 2175960.0);
 *   obs.add(4.07525716, 1447024.0);
 *   obs.add(4.08237071, 717104.0);
 *   obs.add(4.08366408, 620014.0);
 *   double[] parameters = GaussianCurveFitter.create().fit(obs.toList());
 * 
* * @since 3.3 */ public class GaussianCurveFitter extends AbstractCurveFitter { /** Parametric function to be fitted. */ private static final Gaussian.Parametric FUNCTION = new Gaussian.Parametric() { /** {@inheritDoc} */ @Override public double value(double x, double ... p) { double v = Double.POSITIVE_INFINITY; try { v = super.value(x, p); } catch (NotStrictlyPositiveException e) { // NOPMD // Do nothing. } return v; } /** {@inheritDoc} */ @Override public double[] gradient(double x, double ... p) { double[] v = { Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY }; try { v = super.gradient(x, p); } catch (NotStrictlyPositiveException e) { // NOPMD // Do nothing. } return v; } }; /** Initial guess. */ private final double[] initialGuess; /** Maximum number of iterations of the optimization algorithm. */ private final int maxIter; /** * Contructor used by the factory methods. * * @param initialGuess Initial guess. If set to {@code null}, the initial guess * will be estimated using the {@link ParameterGuesser}. * @param maxIter Maximum number of iterations of the optimization algorithm. */ private GaussianCurveFitter(double[] initialGuess, int maxIter) { this.initialGuess = initialGuess; this.maxIter = maxIter; } /** * Creates a default curve fitter. * The initial guess for the parameters will be {@link ParameterGuesser} * computed automatically, and the maximum number of iterations of the * optimization algorithm is set to {@link Integer#MAX_VALUE}. * * @return a curve fitter. * * @see #withStartPoint(double[]) * @see #withMaxIterations(int) */ public static GaussianCurveFitter create() { return new GaussianCurveFitter(null, Integer.MAX_VALUE); } /** * Configure the start point (initial guess). * @param newStart new start point (initial guess) * @return a new instance. */ public GaussianCurveFitter withStartPoint(double[] newStart) { return new GaussianCurveFitter(newStart.clone(), maxIter); } /** * Configure the maximum number of iterations. * @param newMaxIter maximum number of iterations * @return a new instance. */ public GaussianCurveFitter withMaxIterations(int newMaxIter) { return new GaussianCurveFitter(initialGuess, newMaxIter); } /** {@inheritDoc} */ @Override protected LeastSquaresProblem getProblem(Collection observations) { // Prepare least-squares problem. final int len = observations.size(); final double[] target = new double[len]; final double[] weights = new double[len]; int i = 0; for (WeightedObservedPoint obs : observations) { target[i] = obs.getY(); weights[i] = obs.getWeight(); ++i; } final AbstractCurveFitter.TheoreticalValuesFunction model = new AbstractCurveFitter.TheoreticalValuesFunction(FUNCTION, observations); final double[] startPoint = initialGuess != null ? initialGuess : // Compute estimation. new ParameterGuesser(observations).guess(); // Return a new least squares problem set up to fit a Gaussian curve to the // observed points. return new LeastSquaresBuilder(). maxEvaluations(Integer.MAX_VALUE). maxIterations(maxIter). start(startPoint). target(target). weight(new DiagonalMatrix(weights)). model(model.getModelFunction(), model.getModelFunctionJacobian()). build(); } /** * Guesses the parameters {@code norm}, {@code mean}, and {@code sigma} * of a {@link org.apache.commons.math3.analysis.function.Gaussian.Parametric} * based on the specified observed points. */ public static class ParameterGuesser { /** Normalization factor. */ private final double norm; /** Mean. */ private final double mean; /** Standard deviation. */ private final double sigma; /** * Constructs instance with the specified observed points. * * @param observations Observed points from which to guess the * parameters of the Gaussian. * @throws NullArgumentException if {@code observations} is * {@code null}. * @throws NumberIsTooSmallException if there are less than 3 * observations. */ public ParameterGuesser(Collection observations) { if (observations == null) { throw new NullArgumentException(LocalizedFormats.INPUT_ARRAY); } if (observations.size() < 3) { throw new NumberIsTooSmallException(observations.size(), 3, true); } final List sorted = sortObservations(observations); final double[] params = basicGuess(sorted.toArray(new WeightedObservedPoint[0])); norm = params[0]; mean = params[1]; sigma = params[2]; } /** * Gets an estimation of the parameters. * * @return the guessed parameters, in the following order: *
    *
  • Normalization factor
  • *
  • Mean
  • *
  • Standard deviation
  • *
*/ public double[] guess() { return new double[] { norm, mean, sigma }; } /** * Sort the observations. * * @param unsorted Input observations. * @return the input observations, sorted. */ private List sortObservations(Collection unsorted) { final List observations = new ArrayList(unsorted); final Comparator cmp = new Comparator() { /** {@inheritDoc} */ public int compare(WeightedObservedPoint p1, WeightedObservedPoint p2) { if (p1 == null && p2 == null) { return 0; } if (p1 == null) { return -1; } if (p2 == null) { return 1; } final int cmpX = Double.compare(p1.getX(), p2.getX()); if (cmpX < 0) { return -1; } if (cmpX > 0) { return 1; } final int cmpY = Double.compare(p1.getY(), p2.getY()); if (cmpY < 0) { return -1; } if (cmpY > 0) { return 1; } final int cmpW = Double.compare(p1.getWeight(), p2.getWeight()); if (cmpW < 0) { return -1; } if (cmpW > 0) { return 1; } return 0; } }; Collections.sort(observations, cmp); return observations; } /** * Guesses the parameters based on the specified observed points. * * @param points Observed points, sorted. * @return the guessed parameters (normalization factor, mean and * sigma). */ private double[] basicGuess(WeightedObservedPoint[] points) { final int maxYIdx = findMaxY(points); final double n = points[maxYIdx].getY(); final double m = points[maxYIdx].getX(); double fwhmApprox; try { final double halfY = n + ((m - n) / 2); final double fwhmX1 = interpolateXAtY(points, maxYIdx, -1, halfY); final double fwhmX2 = interpolateXAtY(points, maxYIdx, 1, halfY); fwhmApprox = fwhmX2 - fwhmX1; } catch (OutOfRangeException e) { // TODO: Exceptions should not be used for flow control. fwhmApprox = points[points.length - 1].getX() - points[0].getX(); } final double s = fwhmApprox / (2 * FastMath.sqrt(2 * FastMath.log(2))); return new double[] { n, m, s }; } /** * Finds index of point in specified points with the largest Y. * * @param points Points to search. * @return the index in specified points array. */ private int findMaxY(WeightedObservedPoint[] points) { int maxYIdx = 0; for (int i = 1; i < points.length; i++) { if (points[i].getY() > points[maxYIdx].getY()) { maxYIdx = i; } } return maxYIdx; } /** * Interpolates using the specified points to determine X at the * specified Y. * * @param points Points to use for interpolation. * @param startIdx Index within points from which to start the search for * interpolation bounds points. * @param idxStep Index step for searching interpolation bounds points. * @param y Y value for which X should be determined. * @return the value of X for the specified Y. * @throws ZeroException if {@code idxStep} is 0. * @throws OutOfRangeException if specified {@code y} is not within the * range of the specified {@code points}. */ private double interpolateXAtY(WeightedObservedPoint[] points, int startIdx, int idxStep, double y) throws OutOfRangeException { if (idxStep == 0) { throw new ZeroException(); } final WeightedObservedPoint[] twoPoints = getInterpolationPointsForY(points, startIdx, idxStep, y); final WeightedObservedPoint p1 = twoPoints[0]; final WeightedObservedPoint p2 = twoPoints[1]; if (p1.getY() == y) { return p1.getX(); } if (p2.getY() == y) { return p2.getX(); } return p1.getX() + (((y - p1.getY()) * (p2.getX() - p1.getX())) / (p2.getY() - p1.getY())); } /** * Gets the two bounding interpolation points from the specified points * suitable for determining X at the specified Y. * * @param points Points to use for interpolation. * @param startIdx Index within points from which to start search for * interpolation bounds points. * @param idxStep Index step for search for interpolation bounds points. * @param y Y value for which X should be determined. * @return the array containing two points suitable for determining X at * the specified Y. * @throws ZeroException if {@code idxStep} is 0. * @throws OutOfRangeException if specified {@code y} is not within the * range of the specified {@code points}. */ private WeightedObservedPoint[] getInterpolationPointsForY(WeightedObservedPoint[] points, int startIdx, int idxStep, double y) throws OutOfRangeException { if (idxStep == 0) { throw new ZeroException(); } for (int i = startIdx; idxStep < 0 ? i + idxStep >= 0 : i + idxStep < points.length; i += idxStep) { final WeightedObservedPoint p1 = points[i]; final WeightedObservedPoint p2 = points[i + idxStep]; if (isBetween(y, p1.getY(), p2.getY())) { if (idxStep < 0) { return new WeightedObservedPoint[] { p2, p1 }; } else { return new WeightedObservedPoint[] { p1, p2 }; } } } // Boundaries are replaced by dummy values because the raised // exception is caught and the message never displayed. // TODO: Exceptions should not be used for flow control. throw new OutOfRangeException(y, Double.NEGATIVE_INFINITY, Double.POSITIVE_INFINITY); } /** * Determines whether a value is between two other values. * * @param value Value to test whether it is between {@code boundary1} * and {@code boundary2}. * @param boundary1 One end of the range. * @param boundary2 Other end of the range. * @return {@code true} if {@code value} is between {@code boundary1} and * {@code boundary2} (inclusive), {@code false} otherwise. */ private boolean isBetween(double value, double boundary1, double boundary2) { return (value >= boundary1 && value <= boundary2) || (value >= boundary2 && value <= boundary1); } } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy