All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.analysis.function.HarmonicOscillator Maven / Gradle / Ivy

There is a newer version: 5.17.0
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math3.analysis.function;

import org.apache.commons.math3.analysis.DifferentiableUnivariateFunction;
import org.apache.commons.math3.analysis.FunctionUtils;
import org.apache.commons.math3.analysis.ParametricUnivariateFunction;
import org.apache.commons.math3.analysis.UnivariateFunction;
import org.apache.commons.math3.analysis.differentiation.DerivativeStructure;
import org.apache.commons.math3.analysis.differentiation.UnivariateDifferentiableFunction;
import org.apache.commons.math3.exception.DimensionMismatchException;
import org.apache.commons.math3.exception.NullArgumentException;
import org.apache.commons.math3.util.FastMath;

/**
 * 
 *  simple harmonic oscillator function.
 *
 * @since 3.0
 */
public class HarmonicOscillator implements UnivariateDifferentiableFunction, DifferentiableUnivariateFunction {
    /** Amplitude. */
    private final double amplitude;
    /** Angular frequency. */
    private final double omega;
    /** Phase. */
    private final double phase;

    /**
     * Harmonic oscillator function.
     *
     * @param amplitude Amplitude.
     * @param omega Angular frequency.
     * @param phase Phase.
     */
    public HarmonicOscillator(double amplitude,
                              double omega,
                              double phase) {
        this.amplitude = amplitude;
        this.omega = omega;
        this.phase = phase;
    }

    /** {@inheritDoc} */
    public double value(double x) {
        return value(omega * x + phase, amplitude);
    }

    /** {@inheritDoc}
     * @deprecated as of 3.1, replaced by {@link #value(DerivativeStructure)}
     */
    @Deprecated
    public UnivariateFunction derivative() {
        return FunctionUtils.toDifferentiableUnivariateFunction(this).derivative();
    }

    /**
     * Parametric function where the input array contains the parameters of
     * the harmonic oscillator function, ordered as follows:
     * 
    *
  • Amplitude
  • *
  • Angular frequency
  • *
  • Phase
  • *
*/ public static class Parametric implements ParametricUnivariateFunction { /** * Computes the value of the harmonic oscillator at {@code x}. * * @param x Value for which the function must be computed. * @param param Values of norm, mean and standard deviation. * @return the value of the function. * @throws NullArgumentException if {@code param} is {@code null}. * @throws DimensionMismatchException if the size of {@code param} is * not 3. */ public double value(double x, double ... param) throws NullArgumentException, DimensionMismatchException { validateParameters(param); return HarmonicOscillator.value(x * param[1] + param[2], param[0]); } /** * Computes the value of the gradient at {@code x}. * The components of the gradient vector are the partial * derivatives of the function with respect to each of the * parameters (amplitude, angular frequency and phase). * * @param x Value at which the gradient must be computed. * @param param Values of amplitude, angular frequency and phase. * @return the gradient vector at {@code x}. * @throws NullArgumentException if {@code param} is {@code null}. * @throws DimensionMismatchException if the size of {@code param} is * not 3. */ public double[] gradient(double x, double ... param) throws NullArgumentException, DimensionMismatchException { validateParameters(param); final double amplitude = param[0]; final double omega = param[1]; final double phase = param[2]; final double xTimesOmegaPlusPhase = omega * x + phase; final double a = HarmonicOscillator.value(xTimesOmegaPlusPhase, 1); final double p = -amplitude * FastMath.sin(xTimesOmegaPlusPhase); final double w = p * x; return new double[] { a, w, p }; } /** * Validates parameters to ensure they are appropriate for the evaluation of * the {@link #value(double,double[])} and {@link #gradient(double,double[])} * methods. * * @param param Values of norm, mean and standard deviation. * @throws NullArgumentException if {@code param} is {@code null}. * @throws DimensionMismatchException if the size of {@code param} is * not 3. */ private void validateParameters(double[] param) throws NullArgumentException, DimensionMismatchException { if (param == null) { throw new NullArgumentException(); } if (param.length != 3) { throw new DimensionMismatchException(param.length, 3); } } } /** * @param xTimesOmegaPlusPhase {@code omega * x + phase}. * @param amplitude Amplitude. * @return the value of the harmonic oscillator function at {@code x}. */ private static double value(double xTimesOmegaPlusPhase, double amplitude) { return amplitude * FastMath.cos(xTimesOmegaPlusPhase); } /** {@inheritDoc} * @since 3.1 */ public DerivativeStructure value(final DerivativeStructure t) throws DimensionMismatchException { final double x = t.getValue(); double[] f = new double[t.getOrder() + 1]; final double alpha = omega * x + phase; f[0] = amplitude * FastMath.cos(alpha); if (f.length > 1) { f[1] = -amplitude * omega * FastMath.sin(alpha); final double mo2 = - omega * omega; for (int i = 2; i < f.length; ++i) { f[i] = mo2 * f[i - 2]; } } return t.compose(f); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy