org.apache.commons.math3.ml.neuralnet.sofm.KohonenUpdateAction Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math3.ml.neuralnet.sofm;
import java.util.Collection;
import java.util.HashSet;
import java.util.concurrent.atomic.AtomicLong;
import org.apache.commons.math3.analysis.function.Gaussian;
import org.apache.commons.math3.linear.ArrayRealVector;
import org.apache.commons.math3.ml.distance.DistanceMeasure;
import org.apache.commons.math3.ml.neuralnet.MapUtils;
import org.apache.commons.math3.ml.neuralnet.Network;
import org.apache.commons.math3.ml.neuralnet.Neuron;
import org.apache.commons.math3.ml.neuralnet.UpdateAction;
/**
* Update formula for
* Kohonen's Self-Organizing Map.
*
* The {@link #update(Network,double[]) update} method modifies the
* features {@code w} of the "winning" neuron and its neighbours
* according to the following rule:
*
* wnew = wold + α e(-d / σ) * (sample - wold)
*
* where
*
* - α is the current learning rate,
* - σ is the current neighbourhood size, and
* - {@code d} is the number of links to traverse in order to reach
* the neuron from the winning neuron.
*
*
* This class is thread-safe as long as the arguments passed to the
* {@link #KohonenUpdateAction(DistanceMeasure,LearningFactorFunction,
* NeighbourhoodSizeFunction) constructor} are instances of thread-safe
* classes.
*
* Each call to the {@link #update(Network,double[]) update} method
* will increment the internal counter used to compute the current
* values for
*
* - the learning rate, and
* - the neighbourhood size.
*
* Consequently, the function instances that compute those values (passed
* to the constructor of this class) must take into account whether this
* class's instance will be shared by multiple threads, as this will impact
* the training process.
*
* @since 3.3
*/
public class KohonenUpdateAction implements UpdateAction {
/** Distance function. */
private final DistanceMeasure distance;
/** Learning factor update function. */
private final LearningFactorFunction learningFactor;
/** Neighbourhood size update function. */
private final NeighbourhoodSizeFunction neighbourhoodSize;
/** Number of calls to {@link #update(Network,double[])}. */
private final AtomicLong numberOfCalls = new AtomicLong(0);
/**
* @param distance Distance function.
* @param learningFactor Learning factor update function.
* @param neighbourhoodSize Neighbourhood size update function.
*/
public KohonenUpdateAction(DistanceMeasure distance,
LearningFactorFunction learningFactor,
NeighbourhoodSizeFunction neighbourhoodSize) {
this.distance = distance;
this.learningFactor = learningFactor;
this.neighbourhoodSize = neighbourhoodSize;
}
/**
* {@inheritDoc}
*/
public void update(Network net,
double[] features) {
final long numCalls = numberOfCalls.incrementAndGet() - 1;
final double currentLearning = learningFactor.value(numCalls);
final Neuron best = findAndUpdateBestNeuron(net,
features,
currentLearning);
final int currentNeighbourhood = neighbourhoodSize.value(numCalls);
// The farther away the neighbour is from the winning neuron, the
// smaller the learning rate will become.
final Gaussian neighbourhoodDecay
= new Gaussian(currentLearning,
0,
currentNeighbourhood);
if (currentNeighbourhood > 0) {
// Initial set of neurons only contains the winning neuron.
Collection neighbours = new HashSet();
neighbours.add(best);
// Winning neuron must be excluded from the neighbours.
final HashSet exclude = new HashSet();
exclude.add(best);
int radius = 1;
do {
// Retrieve immediate neighbours of the current set of neurons.
neighbours = net.getNeighbours(neighbours, exclude);
// Update all the neighbours.
for (Neuron n : neighbours) {
updateNeighbouringNeuron(n, features, neighbourhoodDecay.value(radius));
}
// Add the neighbours to the exclude list so that they will
// not be update more than once per training step.
exclude.addAll(neighbours);
++radius;
} while (radius <= currentNeighbourhood);
}
}
/**
* Retrieves the number of calls to the {@link #update(Network,double[]) update}
* method.
*
* @return the current number of calls.
*/
public long getNumberOfCalls() {
return numberOfCalls.get();
}
/**
* Tries to update a neuron.
*
* @param n Neuron to be updated.
* @param features Training data.
* @param learningRate Learning factor.
* @return {@code true} if the update succeeded, {@code true} if a
* concurrent update has been detected.
*/
private boolean attemptNeuronUpdate(Neuron n,
double[] features,
double learningRate) {
final double[] expect = n.getFeatures();
final double[] update = computeFeatures(expect,
features,
learningRate);
return n.compareAndSetFeatures(expect, update);
}
/**
* Atomically updates the given neuron.
*
* @param n Neuron to be updated.
* @param features Training data.
* @param learningRate Learning factor.
*/
private void updateNeighbouringNeuron(Neuron n,
double[] features,
double learningRate) {
while (true) {
if (attemptNeuronUpdate(n, features, learningRate)) {
break;
}
}
}
/**
* Searches for the neuron whose features are closest to the given
* sample, and atomically updates its features.
*
* @param net Network.
* @param features Sample data.
* @param learningRate Current learning factor.
* @return the winning neuron.
*/
private Neuron findAndUpdateBestNeuron(Network net,
double[] features,
double learningRate) {
while (true) {
final Neuron best = MapUtils.findBest(features, net, distance);
if (attemptNeuronUpdate(best, features, learningRate)) {
return best;
}
// If another thread modified the state of the winning neuron,
// it may not be the best match anymore for the given training
// sample: Hence, the winner search is performed again.
}
}
/**
* Computes the new value of the features set.
*
* @param current Current values of the features.
* @param sample Training data.
* @param learningRate Learning factor.
* @return the new values for the features.
*/
private double[] computeFeatures(double[] current,
double[] sample,
double learningRate) {
final ArrayRealVector c = new ArrayRealVector(current, false);
final ArrayRealVector s = new ArrayRealVector(sample, false);
// c + learningRate * (s - c)
return s.subtract(c).mapMultiplyToSelf(learningRate).add(c).toArray();
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy