org.apache.commons.math3.ode.nonstiff.ThreeEighthesFieldIntegrator Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math3.ode.nonstiff;
import org.apache.commons.math3.Field;
import org.apache.commons.math3.RealFieldElement;
import org.apache.commons.math3.ode.FieldEquationsMapper;
import org.apache.commons.math3.ode.FieldODEStateAndDerivative;
import org.apache.commons.math3.util.MathArrays;
/**
* This class implements the 3/8 fourth order Runge-Kutta
* integrator for Ordinary Differential Equations.
*
* This method is an explicit Runge-Kutta method, its Butcher-array
* is the following one :
*
* 0 | 0 0 0 0
* 1/3 | 1/3 0 0 0
* 2/3 |-1/3 1 0 0
* 1 | 1 -1 1 0
* |--------------------
* | 1/8 3/8 3/8 1/8
*
*
*
* @see EulerFieldIntegrator
* @see ClassicalRungeKuttaFieldIntegrator
* @see GillFieldIntegrator
* @see MidpointFieldIntegrator
* @see LutherFieldIntegrator
* @param the type of the field elements
* @since 3.6
*/
public class ThreeEighthesFieldIntegrator>
extends RungeKuttaFieldIntegrator {
/** Simple constructor.
* Build a 3/8 integrator with the given step.
* @param field field to which the time and state vector elements belong
* @param step integration step
*/
public ThreeEighthesFieldIntegrator(final Field field, final T step) {
super(field, "3/8", step);
}
/** {@inheritDoc} */
public T[] getC() {
final T[] c = MathArrays.buildArray(getField(), 3);
c[0] = fraction(1, 3);
c[1] = c[0].add(c[0]);
c[2] = getField().getOne();
return c;
}
/** {@inheritDoc} */
public T[][] getA() {
final T[][] a = MathArrays.buildArray(getField(), 3, -1);
for (int i = 0; i < a.length; ++i) {
a[i] = MathArrays.buildArray(getField(), i + 1);
}
a[0][0] = fraction(1, 3);
a[1][0] = a[0][0].negate();
a[1][1] = getField().getOne();
a[2][0] = getField().getOne();
a[2][1] = getField().getOne().negate();
a[2][2] = getField().getOne();
return a;
}
/** {@inheritDoc} */
public T[] getB() {
final T[] b = MathArrays.buildArray(getField(), 4);
b[0] = fraction(1, 8);
b[1] = fraction(3, 8);
b[2] = b[1];
b[3] = b[0];
return b;
}
/** {@inheritDoc} */
@Override
protected ThreeEighthesFieldStepInterpolator
createInterpolator(final boolean forward, T[][] yDotK,
final FieldODEStateAndDerivative globalPreviousState,
final FieldODEStateAndDerivative globalCurrentState,
final FieldEquationsMapper mapper) {
return new ThreeEighthesFieldStepInterpolator(getField(), forward, yDotK,
globalPreviousState, globalCurrentState,
globalPreviousState, globalCurrentState,
mapper);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy