org.codehaus.plexus.interpolation.reflection.MethodMap Maven / Gradle / Ivy
Show all versions of virtdata-lib-realer Show documentation
package org.codehaus.plexus.interpolation.reflection;
/* ====================================================================
* Copyright 2001-2004 The Apache Software Foundation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* ====================================================================
*/
import java.lang.reflect.Method;
import java.util.ArrayList;
import java.util.Hashtable;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.List;
import java.util.Map;
/**
* NOTE: This class was copied from plexus-utils, to allow this library
* to stand completely self-contained.
*
* @author Jason van Zyl
* @author Bob McWhirter
* @author Christoph Reck
* @author Geir Magnusson Jr.
* @author Attila Szegedi
* @version $Id: MethodMap.java 7375 2008-06-13 22:16:24Z jdcasey $
*/
public class MethodMap
{
private static final int MORE_SPECIFIC = 0;
private static final int LESS_SPECIFIC = 1;
private static final int INCOMPARABLE = 2;
/**
* Keep track of all methods with the same name.
*/
Map methodByNameMap = new Hashtable();
/**
* Add a method to a list of methods by name.
* For a particular class we are keeping track
* of all the methods with the same name.
*/
public void add(Method method)
{
String methodName = method.getName();
List l = get( methodName );
if ( l == null)
{
l = new ArrayList();
methodByNameMap.put(methodName, l);
}
l.add(method);
return;
}
/**
* Return a list of methods with the same name.
*
* @param String key
* @return List list of methods
*/
public List get(String key)
{
return (List) methodByNameMap.get(key);
}
/**
*
* Find a method. Attempts to find the
* most specific applicable method using the
* algorithm described in the JLS section
* 15.12.2 (with the exception that it can't
* distinguish a primitive type argument from
* an object type argument, since in reflection
* primitive type arguments are represented by
* their object counterparts, so for an argument of
* type (say) java.lang.Integer, it will not be able
* to decide between a method that takes int and a
* method that takes java.lang.Integer as a parameter.
*
*
*
* This turns out to be a relatively rare case
* where this is needed - however, functionality
* like this is needed.
*
*
* @param methodName name of method
* @param args the actual arguments with which the method is called
* @return the most specific applicable method, or null if no
* method is applicable.
* @throws AmbiguousException if there is more than one maximally
* specific applicable method
*/
public Method find(String methodName, Object[] args)
throws AmbiguousException
{
List methodList = get(methodName);
if (methodList == null)
{
return null;
}
int l = args.length;
Class[] classes = new Class[l];
for(int i = 0; i < l; ++i)
{
Object arg = args[i];
/*
* if we are careful down below, a null argument goes in there
* so we can know that the null was passed to the method
*/
classes[i] =
arg == null ? null : arg.getClass();
}
return getMostSpecific(methodList, classes);
}
/**
* simple distinguishable exception, used when
* we run across ambiguous overloading
*/
public static class AmbiguousException extends Exception
{
}
private static Method getMostSpecific(List methods, Class[] classes)
throws AmbiguousException
{
LinkedList applicables = getApplicables(methods, classes);
if(applicables.isEmpty())
{
return null;
}
if(applicables.size() == 1)
{
return (Method)applicables.getFirst();
}
/*
* This list will contain the maximally specific methods. Hopefully at
* the end of the below loop, the list will contain exactly one method,
* (the most specific method) otherwise we have ambiguity.
*/
LinkedList maximals = new LinkedList();
for (Iterator applicable = applicables.iterator();
applicable.hasNext();)
{
Method app = (Method) applicable.next();
Class[] appArgs = app.getParameterTypes();
boolean lessSpecific = false;
for (Iterator maximal = maximals.iterator();
!lessSpecific && maximal.hasNext();)
{
Method max = (Method) maximal.next();
switch(moreSpecific(appArgs, max.getParameterTypes()))
{
case MORE_SPECIFIC:
{
/*
* This method is more specific than the previously
* known maximally specific, so remove the old maximum.
*/
maximal.remove();
break;
}
case LESS_SPECIFIC:
{
/*
* This method is less specific than some of the
* currently known maximally specific methods, so we
* won't add it into the set of maximally specific
* methods
*/
lessSpecific = true;
break;
}
}
}
if(!lessSpecific)
{
maximals.addLast(app);
}
}
if(maximals.size() > 1)
{
// We have more than one maximally specific method
throw new AmbiguousException();
}
return (Method)maximals.getFirst();
}
/**
* Determines which method signature (represented by a class array) is more
* specific. This defines a partial ordering on the method signatures.
* @param c1 first signature to compare
* @param c2 second signature to compare
* @return MORE_SPECIFIC if c1 is more specific than c2, LESS_SPECIFIC if
* c1 is less specific than c2, INCOMPARABLE if they are incomparable.
*/
private static int moreSpecific(Class[] c1, Class[] c2)
{
boolean c1MoreSpecific = false;
boolean c2MoreSpecific = false;
for(int i = 0; i < c1.length; ++i)
{
if(c1[i] != c2[i])
{
c1MoreSpecific =
c1MoreSpecific ||
isStrictMethodInvocationConvertible(c2[i], c1[i]);
c2MoreSpecific =
c2MoreSpecific ||
isStrictMethodInvocationConvertible(c1[i], c2[i]);
}
}
if(c1MoreSpecific)
{
if(c2MoreSpecific)
{
/*
* Incomparable due to cross-assignable arguments (i.e.
* foo(String, Object) vs. foo(Object, String))
*/
return INCOMPARABLE;
}
return MORE_SPECIFIC;
}
if(c2MoreSpecific)
{
return LESS_SPECIFIC;
}
/*
* Incomparable due to non-related arguments (i.e.
* foo(Runnable) vs. foo(Serializable))
*/
return INCOMPARABLE;
}
/**
* Returns all methods that are applicable to actual argument types.
* @param methods list of all candidate methods
* @param classes the actual types of the arguments
* @return a list that contains only applicable methods (number of
* formal and actual arguments matches, and argument types are assignable
* to formal types through a method invocation conversion).
*/
private static LinkedList getApplicables(List methods, Class[] classes)
{
LinkedList list = new LinkedList();
for (Iterator imethod = methods.iterator(); imethod.hasNext();)
{
Method method = (Method) imethod.next();
if(isApplicable(method, classes))
{
list.add(method);
}
}
return list;
}
/**
* Returns true if the supplied method is applicable to actual
* argument types.
*/
private static boolean isApplicable(Method method, Class[] classes)
{
Class[] methodArgs = method.getParameterTypes();
if(methodArgs.length != classes.length)
{
return false;
}
for(int i = 0; i < classes.length; ++i)
{
if(!isMethodInvocationConvertible(methodArgs[i], classes[i]))
{
return false;
}
}
return true;
}
/**
* Determines whether a type represented by a class object is
* convertible to another type represented by a class object using a
* method invocation conversion, treating object types of primitive
* types as if they were primitive types (that is, a Boolean actual
* parameter type matches boolean primitive formal type). This behavior
* is because this method is used to determine applicable methods for
* an actual parameter list, and primitive types are represented by
* their object duals in reflective method calls.
*
* @param formal the formal parameter type to which the actual
* parameter type should be convertible
* @param actual the actual parameter type.
* @return true if either formal type is assignable from actual type,
* or formal is a primitive type and actual is its corresponding object
* type or an object type of a primitive type that can be converted to
* the formal type.
*/
private static boolean isMethodInvocationConvertible(Class formal,
Class actual)
{
/*
* if it's a null, it means the arg was null
*/
if (actual == null && !formal.isPrimitive())
{
return true;
}
/*
* Check for identity or widening reference conversion
*/
if (actual != null && formal.isAssignableFrom(actual))
{
return true;
}
/*
* Check for boxing with widening primitive conversion. Note that
* actual parameters are never primitives.
*/
if (formal.isPrimitive())
{
if(formal == Boolean.TYPE && actual == Boolean.class)
{
return true;
}
if(formal == Character.TYPE && actual == Character.class)
{
return true;
}
if(formal == Byte.TYPE && actual == Byte.class)
{
return true;
}
if(formal == Short.TYPE &&
(actual == Short.class || actual == Byte.class))
{
return true;
}
if(formal == Integer.TYPE &&
(actual == Integer.class || actual == Short.class ||
actual == Byte.class))
{
return true;
}
if(formal == Long.TYPE &&
(actual == Long.class || actual == Integer.class ||
actual == Short.class || actual == Byte.class))
{
return true;
}
if(formal == Float.TYPE &&
(actual == Float.class || actual == Long.class ||
actual == Integer.class || actual == Short.class ||
actual == Byte.class))
{
return true;
}
if(formal == Double.TYPE &&
(actual == Double.class || actual == Float.class ||
actual == Long.class || actual == Integer.class ||
actual == Short.class || actual == Byte.class))
{
return true;
}
}
return false;
}
/**
* Determines whether a type represented by a class object is
* convertible to another type represented by a class object using a
* method invocation conversion, without matching object and primitive
* types. This method is used to determine the more specific type when
* comparing signatures of methods.
*
* @param formal the formal parameter type to which the actual
* parameter type should be convertible
* @param actual the actual parameter type.
* @return true if either formal type is assignable from actual type,
* or formal and actual are both primitive types and actual can be
* subject to widening conversion to formal.
*/
private static boolean isStrictMethodInvocationConvertible(Class formal,
Class actual)
{
/*
* we shouldn't get a null into, but if so
*/
if (actual == null && !formal.isPrimitive())
{
return true;
}
/*
* Check for identity or widening reference conversion
*/
if(formal.isAssignableFrom(actual))
{
return true;
}
/*
* Check for widening primitive conversion.
*/
if(formal.isPrimitive())
{
if(formal == Short.TYPE && (actual == Byte.TYPE))
{
return true;
}
if(formal == Integer.TYPE &&
(actual == Short.TYPE || actual == Byte.TYPE))
{
return true;
}
if(formal == Long.TYPE &&
(actual == Integer.TYPE || actual == Short.TYPE ||
actual == Byte.TYPE))
{
return true;
}
if(formal == Float.TYPE &&
(actual == Long.TYPE || actual == Integer.TYPE ||
actual == Short.TYPE || actual == Byte.TYPE))
{
return true;
}
if(formal == Double.TYPE &&
(actual == Float.TYPE || actual == Long.TYPE ||
actual == Integer.TYPE || actual == Short.TYPE ||
actual == Byte.TYPE))
{
return true;
}
}
return false;
}
}