All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.ode.nonstiff.AdamsMoultonIntegrator Maven / Gradle / Ivy

There is a newer version: 5.17.0
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math3.ode.nonstiff;

import java.util.Arrays;

import org.apache.commons.math3.exception.DimensionMismatchException;
import org.apache.commons.math3.exception.MaxCountExceededException;
import org.apache.commons.math3.exception.NoBracketingException;
import org.apache.commons.math3.exception.NumberIsTooSmallException;
import org.apache.commons.math3.linear.Array2DRowRealMatrix;
import org.apache.commons.math3.linear.RealMatrixPreservingVisitor;
import org.apache.commons.math3.ode.EquationsMapper;
import org.apache.commons.math3.ode.ExpandableStatefulODE;
import org.apache.commons.math3.ode.sampling.NordsieckStepInterpolator;
import org.apache.commons.math3.util.FastMath;


/**
 * This class implements implicit Adams-Moulton integrators for Ordinary
 * Differential Equations.
 *
 * 

Adams-Moulton methods (in fact due to Adams alone) are implicit * multistep ODE solvers. This implementation is a variation of the classical * one: it uses adaptive stepsize to implement error control, whereas * classical implementations are fixed step size. The value of state vector * at step n+1 is a simple combination of the value at step n and of the * derivatives at steps n+1, n, n-1 ... Since y'n+1 is needed to * compute yn+1, another method must be used to compute a first * estimate of yn+1, then compute y'n+1, then compute * a final estimate of yn+1 using the following formulas. Depending * on the number k of previous steps one wants to use for computing the next * value, different formulas are available for the final estimate:

*
    *
  • k = 1: yn+1 = yn + h y'n+1
  • *
  • k = 2: yn+1 = yn + h (y'n+1+y'n)/2
  • *
  • k = 3: yn+1 = yn + h (5y'n+1+8y'n-y'n-1)/12
  • *
  • k = 4: yn+1 = yn + h (9y'n+1+19y'n-5y'n-1+y'n-2)/24
  • *
  • ...
  • *
* *

A k-steps Adams-Moulton method is of order k+1.

* *

Implementation details

* *

We define scaled derivatives si(n) at step n as: *

 * s1(n) = h y'n for first derivative
 * s2(n) = h2/2 y''n for second derivative
 * s3(n) = h3/6 y'''n for third derivative
 * ...
 * sk(n) = hk/k! y(k)n for kth derivative
 * 

* *

The definitions above use the classical representation with several previous first * derivatives. Lets define *

 *   qn = [ s1(n-1) s1(n-2) ... s1(n-(k-1)) ]T
 * 
* (we omit the k index in the notation for clarity). With these definitions, * Adams-Moulton methods can be written: *
    *
  • k = 1: yn+1 = yn + s1(n+1)
  • *
  • k = 2: yn+1 = yn + 1/2 s1(n+1) + [ 1/2 ] qn+1
  • *
  • k = 3: yn+1 = yn + 5/12 s1(n+1) + [ 8/12 -1/12 ] qn+1
  • *
  • k = 4: yn+1 = yn + 9/24 s1(n+1) + [ 19/24 -5/24 1/24 ] qn+1
  • *
  • ...
  • *

* *

Instead of using the classical representation with first derivatives only (yn, * s1(n+1) and qn+1), our implementation uses the Nordsieck vector with * higher degrees scaled derivatives all taken at the same step (yn, s1(n) * and rn) where rn is defined as: *

 * rn = [ s2(n), s3(n) ... sk(n) ]T
 * 
* (here again we omit the k index in the notation for clarity) *

* *

Taylor series formulas show that for any index offset i, s1(n-i) can be * computed from s1(n), s2(n) ... sk(n), the formula being exact * for degree k polynomials. *

 * s1(n-i) = s1(n) + ∑j>0 (j+1) (-i)j sj+1(n)
 * 
* The previous formula can be used with several values for i to compute the transform between * classical representation and Nordsieck vector. The transform between rn * and qn resulting from the Taylor series formulas above is: *
 * qn = s1(n) u + P rn
 * 
* where u is the [ 1 1 ... 1 ]T vector and P is the (k-1)×(k-1) matrix built * with the (j+1) (-i)j terms with i being the row number starting from 1 and j being * the column number starting from 1: *
 *        [  -2   3   -4    5  ... ]
 *        [  -4  12  -32   80  ... ]
 *   P =  [  -6  27 -108  405  ... ]
 *        [  -8  48 -256 1280  ... ]
 *        [          ...           ]
 * 

* *

Using the Nordsieck vector has several advantages: *

    *
  • it greatly simplifies step interpolation as the interpolator mainly applies * Taylor series formulas,
  • *
  • it simplifies step changes that occur when discrete events that truncate * the step are triggered,
  • *
  • it allows to extend the methods in order to support adaptive stepsize.
  • *

* *

The predicted Nordsieck vector at step n+1 is computed from the Nordsieck vector at step * n as follows: *

    *
  • Yn+1 = yn + s1(n) + uT rn
  • *
  • S1(n+1) = h f(tn+1, Yn+1)
  • *
  • Rn+1 = (s1(n) - S1(n+1)) P-1 u + P-1 A P rn
  • *
* where A is a rows shifting matrix (the lower left part is an identity matrix): *
 *        [ 0 0   ...  0 0 | 0 ]
 *        [ ---------------+---]
 *        [ 1 0   ...  0 0 | 0 ]
 *    A = [ 0 1   ...  0 0 | 0 ]
 *        [       ...      | 0 ]
 *        [ 0 0   ...  1 0 | 0 ]
 *        [ 0 0   ...  0 1 | 0 ]
 * 
* From this predicted vector, the corrected vector is computed as follows: *
    *
  • yn+1 = yn + S1(n+1) + [ -1 +1 -1 +1 ... ±1 ] rn+1
  • *
  • s1(n+1) = h f(tn+1, yn+1)
  • *
  • rn+1 = Rn+1 + (s1(n+1) - S1(n+1)) P-1 u
  • *
* where the upper case Yn+1, S1(n+1) and Rn+1 represent the * predicted states whereas the lower case yn+1, sn+1 and rn+1 * represent the corrected states.

* *

The P-1u vector and the P-1 A P matrix do not depend on the state, * they only depend on k and therefore are precomputed once for all.

* * @since 2.0 */ public class AdamsMoultonIntegrator extends AdamsIntegrator { /** Integrator method name. */ private static final String METHOD_NAME = "Adams-Moulton"; /** * Build an Adams-Moulton integrator with the given order and error control parameters. * @param nSteps number of steps of the method excluding the one being computed * @param minStep minimal step (sign is irrelevant, regardless of * integration direction, forward or backward), the last step can * be smaller than this * @param maxStep maximal step (sign is irrelevant, regardless of * integration direction, forward or backward), the last step can * be smaller than this * @param scalAbsoluteTolerance allowed absolute error * @param scalRelativeTolerance allowed relative error * @exception NumberIsTooSmallException if order is 1 or less */ public AdamsMoultonIntegrator(final int nSteps, final double minStep, final double maxStep, final double scalAbsoluteTolerance, final double scalRelativeTolerance) throws NumberIsTooSmallException { super(METHOD_NAME, nSteps, nSteps + 1, minStep, maxStep, scalAbsoluteTolerance, scalRelativeTolerance); } /** * Build an Adams-Moulton integrator with the given order and error control parameters. * @param nSteps number of steps of the method excluding the one being computed * @param minStep minimal step (sign is irrelevant, regardless of * integration direction, forward or backward), the last step can * be smaller than this * @param maxStep maximal step (sign is irrelevant, regardless of * integration direction, forward or backward), the last step can * be smaller than this * @param vecAbsoluteTolerance allowed absolute error * @param vecRelativeTolerance allowed relative error * @exception IllegalArgumentException if order is 1 or less */ public AdamsMoultonIntegrator(final int nSteps, final double minStep, final double maxStep, final double[] vecAbsoluteTolerance, final double[] vecRelativeTolerance) throws IllegalArgumentException { super(METHOD_NAME, nSteps, nSteps + 1, minStep, maxStep, vecAbsoluteTolerance, vecRelativeTolerance); } /** {@inheritDoc} */ @Override public void integrate(final ExpandableStatefulODE equations,final double t) throws NumberIsTooSmallException, DimensionMismatchException, MaxCountExceededException, NoBracketingException { sanityChecks(equations, t); setEquations(equations); final boolean forward = t > equations.getTime(); // initialize working arrays final double[] y0 = equations.getCompleteState(); final double[] y = y0.clone(); final double[] yDot = new double[y.length]; final double[] yTmp = new double[y.length]; final double[] predictedScaled = new double[y.length]; Array2DRowRealMatrix nordsieckTmp = null; // set up two interpolators sharing the integrator arrays final NordsieckStepInterpolator interpolator = new NordsieckStepInterpolator(); interpolator.reinitialize(y, forward, equations.getPrimaryMapper(), equations.getSecondaryMappers()); // set up integration control objects initIntegration(equations.getTime(), y0, t); // compute the initial Nordsieck vector using the configured starter integrator start(equations.getTime(), y, t); interpolator.reinitialize(stepStart, stepSize, scaled, nordsieck); interpolator.storeTime(stepStart); double hNew = stepSize; interpolator.rescale(hNew); isLastStep = false; do { double error = 10; while (error >= 1.0) { stepSize = hNew; // predict a first estimate of the state at step end (P in the PECE sequence) final double stepEnd = stepStart + stepSize; interpolator.setInterpolatedTime(stepEnd); final ExpandableStatefulODE expandable = getExpandable(); final EquationsMapper primary = expandable.getPrimaryMapper(); primary.insertEquationData(interpolator.getInterpolatedState(), yTmp); int index = 0; for (final EquationsMapper secondary : expandable.getSecondaryMappers()) { secondary.insertEquationData(interpolator.getInterpolatedSecondaryState(index), yTmp); ++index; } // evaluate a first estimate of the derivative (first E in the PECE sequence) computeDerivatives(stepEnd, yTmp, yDot); // update Nordsieck vector for (int j = 0; j < y0.length; ++j) { predictedScaled[j] = stepSize * yDot[j]; } nordsieckTmp = updateHighOrderDerivativesPhase1(nordsieck); updateHighOrderDerivativesPhase2(scaled, predictedScaled, nordsieckTmp); // apply correction (C in the PECE sequence) error = nordsieckTmp.walkInOptimizedOrder(new Corrector(y, predictedScaled, yTmp)); if (error >= 1.0) { // reject the step and attempt to reduce error by stepsize control final double factor = computeStepGrowShrinkFactor(error); hNew = filterStep(stepSize * factor, forward, false); interpolator.rescale(hNew); } } // evaluate a final estimate of the derivative (second E in the PECE sequence) final double stepEnd = stepStart + stepSize; computeDerivatives(stepEnd, yTmp, yDot); // update Nordsieck vector final double[] correctedScaled = new double[y0.length]; for (int j = 0; j < y0.length; ++j) { correctedScaled[j] = stepSize * yDot[j]; } updateHighOrderDerivativesPhase2(predictedScaled, correctedScaled, nordsieckTmp); // discrete events handling System.arraycopy(yTmp, 0, y, 0, y.length); interpolator.reinitialize(stepEnd, stepSize, correctedScaled, nordsieckTmp); interpolator.storeTime(stepStart); interpolator.shift(); interpolator.storeTime(stepEnd); stepStart = acceptStep(interpolator, y, yDot, t); scaled = correctedScaled; nordsieck = nordsieckTmp; if (!isLastStep) { // prepare next step interpolator.storeTime(stepStart); if (resetOccurred) { // some events handler has triggered changes that // invalidate the derivatives, we need to restart from scratch start(stepStart, y, t); interpolator.reinitialize(stepStart, stepSize, scaled, nordsieck); } // stepsize control for next step final double factor = computeStepGrowShrinkFactor(error); final double scaledH = stepSize * factor; final double nextT = stepStart + scaledH; final boolean nextIsLast = forward ? (nextT >= t) : (nextT <= t); hNew = filterStep(scaledH, forward, nextIsLast); final double filteredNextT = stepStart + hNew; final boolean filteredNextIsLast = forward ? (filteredNextT >= t) : (filteredNextT <= t); if (filteredNextIsLast) { hNew = t - stepStart; } interpolator.rescale(hNew); } } while (!isLastStep); // dispatch results equations.setTime(stepStart); equations.setCompleteState(y); resetInternalState(); } /** Corrector for current state in Adams-Moulton method. *

* This visitor implements the Taylor series formula: *

     * Yn+1 = yn + s1(n+1) + [ -1 +1 -1 +1 ... ±1 ] rn+1
     * 
*

*/ private class Corrector implements RealMatrixPreservingVisitor { /** Previous state. */ private final double[] previous; /** Current scaled first derivative. */ private final double[] scaled; /** Current state before correction. */ private final double[] before; /** Current state after correction. */ private final double[] after; /** Simple constructor. * @param previous previous state * @param scaled current scaled first derivative * @param state state to correct (will be overwritten after visit) */ Corrector(final double[] previous, final double[] scaled, final double[] state) { this.previous = previous; this.scaled = scaled; this.after = state; this.before = state.clone(); } /** {@inheritDoc} */ public void start(int rows, int columns, int startRow, int endRow, int startColumn, int endColumn) { Arrays.fill(after, 0.0); } /** {@inheritDoc} */ public void visit(int row, int column, double value) { if ((row & 0x1) == 0) { after[column] -= value; } else { after[column] += value; } } /** * End visiting the Nordsieck vector. *

The correction is used to control stepsize. So its amplitude is * considered to be an error, which must be normalized according to * error control settings. If the normalized value is greater than 1, * the correction was too large and the step must be rejected.

* @return the normalized correction, if greater than 1, the step * must be rejected */ public double end() { double error = 0; for (int i = 0; i < after.length; ++i) { after[i] += previous[i] + scaled[i]; if (i < mainSetDimension) { final double yScale = FastMath.max(FastMath.abs(previous[i]), FastMath.abs(after[i])); final double tol = (vecAbsoluteTolerance == null) ? (scalAbsoluteTolerance + scalRelativeTolerance * yScale) : (vecAbsoluteTolerance[i] + vecRelativeTolerance[i] * yScale); final double ratio = (after[i] - before[i]) / tol; // (corrected-predicted)/tol error += ratio * ratio; } } return FastMath.sqrt(error / mainSetDimension); } } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy