All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.ode.nonstiff.ClassicalRungeKuttaFieldStepInterpolator Maven / Gradle / Ivy

There is a newer version: 5.17.0
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math3.ode.nonstiff;

import org.apache.commons.math3.Field;
import org.apache.commons.math3.RealFieldElement;
import org.apache.commons.math3.ode.FieldEquationsMapper;
import org.apache.commons.math3.ode.FieldODEStateAndDerivative;

/**
 * This class implements a step interpolator for the classical fourth
 * order Runge-Kutta integrator.
 *
 * 

This interpolator allows to compute dense output inside the last * step computed. The interpolation equation is consistent with the * integration scheme : *

    *
  • Using reference point at step start:
    * y(tn + θ h) = y (tn) * + θ (h/6) [ (6 - 9 θ + 4 θ2) y'1 * + ( 6 θ - 4 θ2) (y'2 + y'3) * + ( -3 θ + 4 θ2) y'4 * ] *
  • *
  • Using reference point at step end:
    * y(tn + θ h) = y (tn + h) * + (1 - θ) (h/6) [ (-4 θ^2 + 5 θ - 1) y'1 * +(4 θ^2 - 2 θ - 2) (y'2 + y'3) * -(4 θ^2 + θ + 1) y'4 * ] *
  • *
*

* * where θ belongs to [0 ; 1] and where y'1 to y'4 are the four * evaluations of the derivatives already computed during the * step.

* * @see ClassicalRungeKuttaFieldIntegrator * @param the type of the field elements * @since 3.6 */ class ClassicalRungeKuttaFieldStepInterpolator> extends RungeKuttaFieldStepInterpolator { /** Simple constructor. * @param field field to which the time and state vector elements belong * @param forward integration direction indicator * @param yDotK slopes at the intermediate points * @param globalPreviousState start of the global step * @param globalCurrentState end of the global step * @param softPreviousState start of the restricted step * @param softCurrentState end of the restricted step * @param mapper equations mapper for the all equations */ ClassicalRungeKuttaFieldStepInterpolator(final Field field, final boolean forward, final T[][] yDotK, final FieldODEStateAndDerivative globalPreviousState, final FieldODEStateAndDerivative globalCurrentState, final FieldODEStateAndDerivative softPreviousState, final FieldODEStateAndDerivative softCurrentState, final FieldEquationsMapper mapper) { super(field, forward, yDotK, globalPreviousState, globalCurrentState, softPreviousState, softCurrentState, mapper); } /** {@inheritDoc} */ @Override protected ClassicalRungeKuttaFieldStepInterpolator create(final Field newField, final boolean newForward, final T[][] newYDotK, final FieldODEStateAndDerivative newGlobalPreviousState, final FieldODEStateAndDerivative newGlobalCurrentState, final FieldODEStateAndDerivative newSoftPreviousState, final FieldODEStateAndDerivative newSoftCurrentState, final FieldEquationsMapper newMapper) { return new ClassicalRungeKuttaFieldStepInterpolator(newField, newForward, newYDotK, newGlobalPreviousState, newGlobalCurrentState, newSoftPreviousState, newSoftCurrentState, newMapper); } /** {@inheritDoc} */ @SuppressWarnings("unchecked") @Override protected FieldODEStateAndDerivative computeInterpolatedStateAndDerivatives(final FieldEquationsMapper mapper, final T time, final T theta, final T thetaH, final T oneMinusThetaH) { final T one = time.getField().getOne(); final T oneMinusTheta = one.subtract(theta); final T oneMinus2Theta = one.subtract(theta.multiply(2)); final T coeffDot1 = oneMinusTheta.multiply(oneMinus2Theta); final T coeffDot23 = theta.multiply(oneMinusTheta).multiply(2); final T coeffDot4 = theta.multiply(oneMinus2Theta).negate(); final T[] interpolatedState; final T[] interpolatedDerivatives; if (getGlobalPreviousState() != null && theta.getReal() <= 0.5) { final T fourTheta2 = theta.multiply(theta).multiply(4); final T s = thetaH.divide(6.0); final T coeff1 = s.multiply(fourTheta2.subtract(theta.multiply(9)).add(6)); final T coeff23 = s.multiply(theta.multiply(6).subtract(fourTheta2)); final T coeff4 = s.multiply(fourTheta2.subtract(theta.multiply(3))); interpolatedState = previousStateLinearCombination(coeff1, coeff23, coeff23, coeff4); interpolatedDerivatives = derivativeLinearCombination(coeffDot1, coeffDot23, coeffDot23, coeffDot4); } else { final T fourTheta = theta.multiply(4); final T s = oneMinusThetaH.divide(6); final T coeff1 = s.multiply(theta.multiply(fourTheta.negate().add(5)).subtract(1)); final T coeff23 = s.multiply(theta.multiply(fourTheta.subtract(2)).subtract(2)); final T coeff4 = s.multiply(theta.multiply(fourTheta.negate().subtract(1)).subtract(1)); interpolatedState = currentStateLinearCombination(coeff1, coeff23, coeff23, coeff4); interpolatedDerivatives = derivativeLinearCombination(coeffDot1, coeffDot23, coeffDot23, coeffDot4); } return new FieldODEStateAndDerivative(time, interpolatedState, interpolatedDerivatives); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy