All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.ode.nonstiff.HighamHall54FieldIntegrator Maven / Gradle / Ivy

There is a newer version: 5.17.0
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math3.ode.nonstiff;

import org.apache.commons.math3.Field;
import org.apache.commons.math3.RealFieldElement;
import org.apache.commons.math3.ode.FieldEquationsMapper;
import org.apache.commons.math3.ode.FieldODEStateAndDerivative;
import org.apache.commons.math3.util.MathArrays;
import org.apache.commons.math3.util.MathUtils;


/**
 * This class implements the 5(4) Higham and Hall integrator for
 * Ordinary Differential Equations.
 *
 * 

This integrator is an embedded Runge-Kutta integrator * of order 5(4) used in local extrapolation mode (i.e. the solution * is computed using the high order formula) with stepsize control * (and automatic step initialization) and continuous output. This * method uses 7 functions evaluations per step.

* * @param the type of the field elements * @since 3.6 */ public class HighamHall54FieldIntegrator> extends EmbeddedRungeKuttaFieldIntegrator { /** Integrator method name. */ private static final String METHOD_NAME = "Higham-Hall 5(4)"; /** Error weights Butcher array. */ private final T[] e ; /** Simple constructor. * Build a fifth order Higham and Hall integrator with the given step bounds * @param field field to which the time and state vector elements belong * @param minStep minimal step (sign is irrelevant, regardless of * integration direction, forward or backward), the last step can * be smaller than this * @param maxStep maximal step (sign is irrelevant, regardless of * integration direction, forward or backward), the last step can * be smaller than this * @param scalAbsoluteTolerance allowed absolute error * @param scalRelativeTolerance allowed relative error */ public HighamHall54FieldIntegrator(final Field field, final double minStep, final double maxStep, final double scalAbsoluteTolerance, final double scalRelativeTolerance) { super(field, METHOD_NAME, -1, minStep, maxStep, scalAbsoluteTolerance, scalRelativeTolerance); e = MathArrays.buildArray(field, 7); e[0] = fraction(-1, 20); e[1] = field.getZero(); e[2] = fraction(81, 160); e[3] = fraction(-6, 5); e[4] = fraction(25, 32); e[5] = fraction( 1, 16); e[6] = fraction(-1, 10); } /** Simple constructor. * Build a fifth order Higham and Hall integrator with the given step bounds * @param field field to which the time and state vector elements belong * @param minStep minimal step (sign is irrelevant, regardless of * integration direction, forward or backward), the last step can * be smaller than this * @param maxStep maximal step (sign is irrelevant, regardless of * integration direction, forward or backward), the last step can * be smaller than this * @param vecAbsoluteTolerance allowed absolute error * @param vecRelativeTolerance allowed relative error */ public HighamHall54FieldIntegrator(final Field field, final double minStep, final double maxStep, final double[] vecAbsoluteTolerance, final double[] vecRelativeTolerance) { super(field, METHOD_NAME, -1, minStep, maxStep, vecAbsoluteTolerance, vecRelativeTolerance); e = MathArrays.buildArray(field, 7); e[0] = fraction(-1, 20); e[1] = field.getZero(); e[2] = fraction(81, 160); e[3] = fraction(-6, 5); e[4] = fraction(25, 32); e[5] = fraction( 1, 16); e[6] = fraction(-1, 10); } /** {@inheritDoc} */ public T[] getC() { final T[] c = MathArrays.buildArray(getField(), 6); c[0] = fraction(2, 9); c[1] = fraction(1, 3); c[2] = fraction(1, 2); c[3] = fraction(3, 5); c[4] = getField().getOne(); c[5] = getField().getOne(); return c; } /** {@inheritDoc} */ public T[][] getA() { final T[][] a = MathArrays.buildArray(getField(), 6, -1); for (int i = 0; i < a.length; ++i) { a[i] = MathArrays.buildArray(getField(), i + 1); } a[0][0] = fraction( 2, 9); a[1][0] = fraction( 1, 12); a[1][1] = fraction( 1, 4); a[2][0] = fraction( 1, 8); a[2][1] = getField().getZero(); a[2][2] = fraction( 3, 8); a[3][0] = fraction( 91, 500); a[3][1] = fraction( -27, 100); a[3][2] = fraction( 78, 125); a[3][3] = fraction( 8, 125); a[4][0] = fraction( -11, 20); a[4][1] = fraction( 27, 20); a[4][2] = fraction( 12, 5); a[4][3] = fraction( -36, 5); a[4][4] = fraction( 5, 1); a[5][0] = fraction( 1, 12); a[5][1] = getField().getZero(); a[5][2] = fraction( 27, 32); a[5][3] = fraction( -4, 3); a[5][4] = fraction( 125, 96); a[5][5] = fraction( 5, 48); return a; } /** {@inheritDoc} */ public T[] getB() { final T[] b = MathArrays.buildArray(getField(), 7); b[0] = fraction( 1, 12); b[1] = getField().getZero(); b[2] = fraction( 27, 32); b[3] = fraction( -4, 3); b[4] = fraction(125, 96); b[5] = fraction( 5, 48); b[6] = getField().getZero(); return b; } /** {@inheritDoc} */ @Override protected HighamHall54FieldStepInterpolator createInterpolator(final boolean forward, T[][] yDotK, final FieldODEStateAndDerivative globalPreviousState, final FieldODEStateAndDerivative globalCurrentState, final FieldEquationsMapper mapper) { return new HighamHall54FieldStepInterpolator(getField(), forward, yDotK, globalPreviousState, globalCurrentState, globalPreviousState, globalCurrentState, mapper); } /** {@inheritDoc} */ @Override public int getOrder() { return 5; } /** {@inheritDoc} */ @Override protected T estimateError(final T[][] yDotK, final T[] y0, final T[] y1, final T h) { T error = getField().getZero(); for (int j = 0; j < mainSetDimension; ++j) { T errSum = yDotK[0][j].multiply(e[0]); for (int l = 1; l < e.length; ++l) { errSum = errSum.add(yDotK[l][j].multiply(e[l])); } final T yScale = MathUtils.max(y0[j].abs(), y1[j].abs()); final T tol = (vecAbsoluteTolerance == null) ? yScale.multiply(scalRelativeTolerance).add(scalAbsoluteTolerance) : yScale.multiply(vecRelativeTolerance[j]).add(vecAbsoluteTolerance[j]); final T ratio = h.multiply(errSum).divide(tol); error = error.add(ratio.multiply(ratio)); } return error.divide(mainSetDimension).sqrt(); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy