All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.ml.neuralnet.Neuron Maven / Gradle / Ivy

There is a newer version: 5.17.0
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math3.ml.neuralnet;

import java.io.Serializable;
import java.io.ObjectInputStream;
import java.util.concurrent.atomic.AtomicReference;
import java.util.concurrent.atomic.AtomicLong;

import org.apache.commons.math3.exception.DimensionMismatchException;
import org.apache.commons.math3.util.Precision;


/**
 * Describes a neuron element of a neural network.
 *
 * This class aims to be thread-safe.
 *
 * @since 3.3
 */
public class Neuron implements Serializable {
    /** Serializable. */
    private static final long serialVersionUID = 20130207L;
    /** Identifier. */
    private final long identifier;
    /** Length of the feature set. */
    private final int size;
    /** Neuron data. */
    private final AtomicReference features;
    /** Number of attempts to update a neuron. */
    private final AtomicLong numberOfAttemptedUpdates = new AtomicLong(0);
    /** Number of successful updates  of a neuron. */
    private final AtomicLong numberOfSuccessfulUpdates = new AtomicLong(0);

    /**
     * Creates a neuron.
     * The size of the feature set is fixed to the length of the given
     * argument.
     * 
* Constructor is package-private: Neurons must be * {@link Network#createNeuron(double[]) created} by the network * instance to which they will belong. * * @param identifier Identifier (assigned by the {@link Network}). * @param features Initial values of the feature set. */ Neuron(long identifier, double[] features) { this.identifier = identifier; this.size = features.length; this.features = new AtomicReference(features.clone()); } /** * Performs a deep copy of this instance. * Upon return, the copied and original instances will be independent: * Updating one will not affect the other. * * @return a new instance with the same state as this instance. * @since 3.6 */ public synchronized Neuron copy() { final Neuron copy = new Neuron(getIdentifier(), getFeatures()); copy.numberOfAttemptedUpdates.set(numberOfAttemptedUpdates.get()); copy.numberOfSuccessfulUpdates.set(numberOfSuccessfulUpdates.get()); return copy; } /** * Gets the neuron's identifier. * * @return the identifier. */ public long getIdentifier() { return identifier; } /** * Gets the length of the feature set. * * @return the number of features. */ public int getSize() { return size; } /** * Gets the neuron's features. * * @return a copy of the neuron's features. */ public double[] getFeatures() { return features.get().clone(); } /** * Tries to atomically update the neuron's features. * Update will be performed only if the expected values match the * current values.
* In effect, when concurrent threads call this method, the state * could be modified by one, so that it does not correspond to the * the state assumed by another. * Typically, a caller {@link #getFeatures() retrieves the current state}, * and uses it to compute the new state. * During this computation, another thread might have done the same * thing, and updated the state: If the current thread were to proceed * with its own update, it would overwrite the new state (which might * already have been used by yet other threads). * To prevent this, the method does not perform the update when a * concurrent modification has been detected, and returns {@code false}. * When this happens, the caller should fetch the new current state, * redo its computation, and call this method again. * * @param expect Current values of the features, as assumed by the caller. * Update will never succeed if the contents of this array does not match * the values returned by {@link #getFeatures()}. * @param update Features's new values. * @return {@code true} if the update was successful, {@code false} * otherwise. * @throws DimensionMismatchException if the length of {@code update} is * not the same as specified in the {@link #Neuron(long,double[]) * constructor}. */ public boolean compareAndSetFeatures(double[] expect, double[] update) { if (update.length != size) { throw new DimensionMismatchException(update.length, size); } // Get the internal reference. Note that this must not be a copy; // otherwise the "compareAndSet" below will always fail. final double[] current = features.get(); if (!containSameValues(current, expect)) { // Some other thread already modified the state. return false; } // Increment attempt counter. numberOfAttemptedUpdates.incrementAndGet(); if (features.compareAndSet(current, update.clone())) { // The current thread could atomically update the state (attempt succeeded). numberOfSuccessfulUpdates.incrementAndGet(); return true; } else { // Some other thread came first (attempt failed). return false; } } /** * Retrieves the number of calls to the * {@link #compareAndSetFeatures(double[],double[]) compareAndSetFeatures} * method. * Note that if the caller wants to use this method in combination with * {@link #getNumberOfSuccessfulUpdates()}, additional synchronization * may be required to ensure consistency. * * @return the number of update attempts. * @since 3.6 */ public long getNumberOfAttemptedUpdates() { return numberOfAttemptedUpdates.get(); } /** * Retrieves the number of successful calls to the * {@link #compareAndSetFeatures(double[],double[]) compareAndSetFeatures} * method. * Note that if the caller wants to use this method in combination with * {@link #getNumberOfAttemptedUpdates()}, additional synchronization * may be required to ensure consistency. * * @return the number of successful updates. * @since 3.6 */ public long getNumberOfSuccessfulUpdates() { return numberOfSuccessfulUpdates.get(); } /** * Checks whether the contents of both arrays is the same. * * @param current Current values. * @param expect Expected values. * @throws DimensionMismatchException if the length of {@code expected} * is not the same as specified in the {@link #Neuron(long,double[]) * constructor}. * @return {@code true} if the arrays contain the same values. */ private boolean containSameValues(double[] current, double[] expect) { if (expect.length != size) { throw new DimensionMismatchException(expect.length, size); } for (int i = 0; i < size; i++) { if (!Precision.equals(current[i], expect[i])) { return false; } } return true; } /** * Prevents proxy bypass. * * @param in Input stream. */ private void readObject(ObjectInputStream in) { throw new IllegalStateException(); } /** * Custom serialization. * * @return the proxy instance that will be actually serialized. */ private Object writeReplace() { return new SerializationProxy(identifier, features.get()); } /** * Serialization. */ private static class SerializationProxy implements Serializable { /** Serializable. */ private static final long serialVersionUID = 20130207L; /** Features. */ private final double[] features; /** Identifier. */ private final long identifier; /** * @param identifier Identifier. * @param features Features. */ SerializationProxy(long identifier, double[] features) { this.identifier = identifier; this.features = features; } /** * Custom serialization. * * @return the {@link Neuron} for which this instance is the proxy. */ private Object readResolve() { return new Neuron(identifier, features); } } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy