io.nosqlbench.virtdata.library.basics.shared.distributions.DelimFrequencySampler Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of virtdata-lib-realer Show documentation
Show all versions of virtdata-lib-realer Show documentation
With inspiration from other libraries
package io.nosqlbench.virtdata.library.basics.shared.distributions;
/*
*
* @author Sebastián Estévez on 10/30/19.
*
*/
import io.nosqlbench.virtdata.annotations.Categories;
import io.nosqlbench.virtdata.annotations.Category;
import io.nosqlbench.virtdata.annotations.Example;
import io.nosqlbench.virtdata.annotations.ThreadSafeMapper;
import io.nosqlbench.virtdata.library.basics.core.stathelpers.AliasSamplerDoubleInt;
import io.nosqlbench.virtdata.library.basics.core.stathelpers.EvProbD;
import io.nosqlbench.virtdata.library.basics.shared.from_long.to_long.Hash;
import io.nosqlbench.virtdata.api.VirtDataResources;
import org.apache.commons.csv.CSVParser;
import org.apache.commons.csv.CSVRecord;
import org.apache.commons.math3.stat.Frequency;
import java.util.ArrayList;
import java.util.HashSet;
import java.util.List;
import java.util.Set;
import java.util.function.LongFunction;
/**
* Takes a CSV with sample data and generates random values based on the
* relative frequencies of the values in the file.
* The CSV file must have headers which can
* be used to find the named columns.
*
* I.E. take the following imaginary `animals.csv` file:
* animal,count,country
* puppy,1,usa
* puppy,2,colombia
* puppy,3,senegal
* kitten,2,colombia
*
* `CSVFrequencySampler('animals.csv', animal)` will return `puppy` or `kitten` randomly. `puppy` will be 3x more frequent than `kitten`.
*
* `CSVFrequencySampler('animals.csv', country)` will return `usa`, `colombia`, or `senegal` randomly. `colombia` will be 2x more frequent than `usa` or `senegal`.
*
* Use this function to infer frequencies of categorical values from CSVs.
*/
@Categories(Category.general)
@ThreadSafeMapper
public class DelimFrequencySampler implements LongFunction {
private final String filename;
private final String columnName;
private final String[] lines;
private final AliasSamplerDoubleInt sampler;
private final char delimiter;
private Hash hash;
/**
* Create a sampler of strings from the given delimited file. The delimited file must have plain headers
* as its first line.
* @param filename The name of the file to be read into the sampler buffer
* @param columnName The name of the column to be sampled
* @param delimiter delimmiter
*/
@Example({"DelimFrequencySampler('values.csv','modelno', '|')","Read values.csv, count the frequency of values in 'modelno' column, and sample from this column proportionally"})
public DelimFrequencySampler(String filename, String columnName, char delimiter) {
this.filename = filename;
this.columnName = columnName;
this.delimiter = delimiter;
this.hash=new Hash();
Set values = new HashSet<>();
List frequencies = new ArrayList<>();
CSVParser csvdata = VirtDataResources.readDelimFile(filename, delimiter);
Frequency freq = new Frequency();
for (CSVRecord csvdatum : csvdata) {
String value = csvdatum.get(columnName);
freq.addValue(value);
values.add(value);
}
int i = 0;
for (String value : values) {
frequencies.add(new EvProbD(i++,Double.valueOf(freq.getCount(value))));
}
sampler = new AliasSamplerDoubleInt(frequencies);
lines = values.toArray(new String[0]);
}
@Override
public String apply(long value) {
if (hash!=null) {
value = hash.applyAsLong(value);
}
double unitValue = (double) value / (double) Long.MAX_VALUE;
int idx = sampler.applyAsInt(unitValue);
return lines[idx];
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy