All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.analysis.solvers.MullerSolver2 Maven / Gradle / Ivy

There is a newer version: 5.17.0
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.analysis.solvers;

import org.apache.commons.math3.exception.NoBracketingException;
import org.apache.commons.math3.exception.NumberIsTooLargeException;
import org.apache.commons.math3.exception.TooManyEvaluationsException;
import org.apache.commons.math3.util.FastMath;

/**
 * This class implements the 
 * Muller's Method for root finding of real univariate functions. For
 * reference, see Elementary Numerical Analysis, ISBN 0070124477,
 * chapter 3.
 * 

* Muller's method applies to both real and complex functions, but here we * restrict ourselves to real functions. * This class differs from {@link MullerSolver} in the way it avoids complex * operations.

* Except for the initial [min, max], it does not require bracketing * condition, e.g. f(x0), f(x1), f(x2) can have the same sign. If a complex * number arises in the computation, we simply use its modulus as a real * approximation.

*

* Because the interval may not be bracketing, the bisection alternative is * not applicable here. However in practice our treatment usually works * well, especially near real zeroes where the imaginary part of the complex * approximation is often negligible.

*

* The formulas here do not use divided differences directly.

* * @since 1.2 * @see MullerSolver */ public class MullerSolver2 extends AbstractUnivariateSolver { /** Default absolute accuracy. */ private static final double DEFAULT_ABSOLUTE_ACCURACY = 1e-6; /** * Construct a solver with default accuracy (1e-6). */ public MullerSolver2() { this(DEFAULT_ABSOLUTE_ACCURACY); } /** * Construct a solver. * * @param absoluteAccuracy Absolute accuracy. */ public MullerSolver2(double absoluteAccuracy) { super(absoluteAccuracy); } /** * Construct a solver. * * @param relativeAccuracy Relative accuracy. * @param absoluteAccuracy Absolute accuracy. */ public MullerSolver2(double relativeAccuracy, double absoluteAccuracy) { super(relativeAccuracy, absoluteAccuracy); } /** * {@inheritDoc} */ @Override protected double doSolve() throws TooManyEvaluationsException, NumberIsTooLargeException, NoBracketingException { final double min = getMin(); final double max = getMax(); verifyInterval(min, max); final double relativeAccuracy = getRelativeAccuracy(); final double absoluteAccuracy = getAbsoluteAccuracy(); final double functionValueAccuracy = getFunctionValueAccuracy(); // x2 is the last root approximation // x is the new approximation and new x2 for next round // x0 < x1 < x2 does not hold here double x0 = min; double y0 = computeObjectiveValue(x0); if (FastMath.abs(y0) < functionValueAccuracy) { return x0; } double x1 = max; double y1 = computeObjectiveValue(x1); if (FastMath.abs(y1) < functionValueAccuracy) { return x1; } if(y0 * y1 > 0) { throw new NoBracketingException(x0, x1, y0, y1); } double x2 = 0.5 * (x0 + x1); double y2 = computeObjectiveValue(x2); double oldx = Double.POSITIVE_INFINITY; while (true) { // quadratic interpolation through x0, x1, x2 final double q = (x2 - x1) / (x1 - x0); final double a = q * (y2 - (1 + q) * y1 + q * y0); final double b = (2 * q + 1) * y2 - (1 + q) * (1 + q) * y1 + q * q * y0; final double c = (1 + q) * y2; final double delta = b * b - 4 * a * c; double x; final double denominator; if (delta >= 0.0) { // choose a denominator larger in magnitude double dplus = b + FastMath.sqrt(delta); double dminus = b - FastMath.sqrt(delta); denominator = FastMath.abs(dplus) > FastMath.abs(dminus) ? dplus : dminus; } else { // take the modulus of (B +/- FastMath.sqrt(delta)) denominator = FastMath.sqrt(b * b - delta); } if (denominator != 0) { x = x2 - 2.0 * c * (x2 - x1) / denominator; // perturb x if it exactly coincides with x1 or x2 // the equality tests here are intentional while (x == x1 || x == x2) { x += absoluteAccuracy; } } else { // extremely rare case, get a random number to skip it x = min + FastMath.random() * (max - min); oldx = Double.POSITIVE_INFINITY; } final double y = computeObjectiveValue(x); // check for convergence final double tolerance = FastMath.max(relativeAccuracy * FastMath.abs(x), absoluteAccuracy); if (FastMath.abs(x - oldx) <= tolerance || FastMath.abs(y) <= functionValueAccuracy) { return x; } // prepare the next iteration x0 = x1; y0 = y1; x1 = x2; y1 = y2; x2 = x; y2 = y; oldx = x; } } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy