All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.ode.nonstiff.GraggBulirschStoerIntegrator Maven / Gradle / Ivy

There is a newer version: 5.17.0
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math3.ode.nonstiff;

import org.apache.commons.math3.analysis.solvers.UnivariateSolver;
import org.apache.commons.math3.exception.DimensionMismatchException;
import org.apache.commons.math3.exception.MaxCountExceededException;
import org.apache.commons.math3.exception.NoBracketingException;
import org.apache.commons.math3.exception.NumberIsTooSmallException;
import org.apache.commons.math3.ode.ExpandableStatefulODE;
import org.apache.commons.math3.ode.events.EventHandler;
import org.apache.commons.math3.ode.sampling.AbstractStepInterpolator;
import org.apache.commons.math3.ode.sampling.StepHandler;
import org.apache.commons.math3.util.FastMath;

/**
 * This class implements a Gragg-Bulirsch-Stoer integrator for
 * Ordinary Differential Equations.
 *
 * 

The Gragg-Bulirsch-Stoer algorithm is one of the most efficient * ones currently available for smooth problems. It uses Richardson * extrapolation to estimate what would be the solution if the step * size could be decreased down to zero.

* *

* This method changes both the step size and the order during * integration, in order to minimize computation cost. It is * particularly well suited when a very high precision is needed. The * limit where this method becomes more efficient than high-order * embedded Runge-Kutta methods like {@link DormandPrince853Integrator * Dormand-Prince 8(5,3)} depends on the problem. Results given in the * Hairer, Norsett and Wanner book show for example that this limit * occurs for accuracy around 1e-6 when integrating Saltzam-Lorenz * equations (the authors note this problem is extremely sensitive * to the errors in the first integration steps), and around 1e-11 * for a two dimensional celestial mechanics problems with seven * bodies (pleiades problem, involving quasi-collisions for which * automatic step size control is essential). *

* *

* This implementation is basically a reimplementation in Java of the * odex * fortran code by E. Hairer and G. Wanner. The redistribution policy * for this code is available here, for * convenience, it is reproduced below.

*

* * * * * * * *
Copyright (c) 2004, Ernst Hairer
Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: *
    *
  • Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer.
  • *
  • Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution.
  • *
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND * CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, * BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
* * @since 1.2 */ public class GraggBulirschStoerIntegrator extends AdaptiveStepsizeIntegrator { /** Integrator method name. */ private static final String METHOD_NAME = "Gragg-Bulirsch-Stoer"; /** maximal order. */ private int maxOrder; /** step size sequence. */ private int[] sequence; /** overall cost of applying step reduction up to iteration k+1, in number of calls. */ private int[] costPerStep; /** cost per unit step. */ private double[] costPerTimeUnit; /** optimal steps for each order. */ private double[] optimalStep; /** extrapolation coefficients. */ private double[][] coeff; /** stability check enabling parameter. */ private boolean performTest; /** maximal number of checks for each iteration. */ private int maxChecks; /** maximal number of iterations for which checks are performed. */ private int maxIter; /** stepsize reduction factor in case of stability check failure. */ private double stabilityReduction; /** first stepsize control factor. */ private double stepControl1; /** second stepsize control factor. */ private double stepControl2; /** third stepsize control factor. */ private double stepControl3; /** fourth stepsize control factor. */ private double stepControl4; /** first order control factor. */ private double orderControl1; /** second order control factor. */ private double orderControl2; /** use interpolation error in stepsize control. */ private boolean useInterpolationError; /** interpolation order control parameter. */ private int mudif; /** Simple constructor. * Build a Gragg-Bulirsch-Stoer integrator with the given step * bounds. All tuning parameters are set to their default * values. The default step handler does nothing. * @param minStep minimal step (sign is irrelevant, regardless of * integration direction, forward or backward), the last step can * be smaller than this * @param maxStep maximal step (sign is irrelevant, regardless of * integration direction, forward or backward), the last step can * be smaller than this * @param scalAbsoluteTolerance allowed absolute error * @param scalRelativeTolerance allowed relative error */ public GraggBulirschStoerIntegrator(final double minStep, final double maxStep, final double scalAbsoluteTolerance, final double scalRelativeTolerance) { super(METHOD_NAME, minStep, maxStep, scalAbsoluteTolerance, scalRelativeTolerance); setStabilityCheck(true, -1, -1, -1); setControlFactors(-1, -1, -1, -1); setOrderControl(-1, -1, -1); setInterpolationControl(true, -1); } /** Simple constructor. * Build a Gragg-Bulirsch-Stoer integrator with the given step * bounds. All tuning parameters are set to their default * values. The default step handler does nothing. * @param minStep minimal step (must be positive even for backward * integration), the last step can be smaller than this * @param maxStep maximal step (must be positive even for backward * integration) * @param vecAbsoluteTolerance allowed absolute error * @param vecRelativeTolerance allowed relative error */ public GraggBulirschStoerIntegrator(final double minStep, final double maxStep, final double[] vecAbsoluteTolerance, final double[] vecRelativeTolerance) { super(METHOD_NAME, minStep, maxStep, vecAbsoluteTolerance, vecRelativeTolerance); setStabilityCheck(true, -1, -1, -1); setControlFactors(-1, -1, -1, -1); setOrderControl(-1, -1, -1); setInterpolationControl(true, -1); } /** Set the stability check controls. *

The stability check is performed on the first few iterations of * the extrapolation scheme. If this test fails, the step is rejected * and the stepsize is reduced.

*

By default, the test is performed, at most during two * iterations at each step, and at most once for each of these * iterations. The default stepsize reduction factor is 0.5.

* @param performStabilityCheck if true, stability check will be performed, if false, the check will be skipped * @param maxNumIter maximal number of iterations for which checks are * performed (the number of iterations is reset to default if negative * or null) * @param maxNumChecks maximal number of checks for each iteration * (the number of checks is reset to default if negative or null) * @param stepsizeReductionFactor stepsize reduction factor in case of * failure (the factor is reset to default if lower than 0.0001 or * greater than 0.9999) */ public void setStabilityCheck(final boolean performStabilityCheck, final int maxNumIter, final int maxNumChecks, final double stepsizeReductionFactor) { this.performTest = performStabilityCheck; this.maxIter = (maxNumIter <= 0) ? 2 : maxNumIter; this.maxChecks = (maxNumChecks <= 0) ? 1 : maxNumChecks; if ((stepsizeReductionFactor < 0.0001) || (stepsizeReductionFactor > 0.9999)) { this.stabilityReduction = 0.5; } else { this.stabilityReduction = stepsizeReductionFactor; } } /** Set the step size control factors. *

The new step size hNew is computed from the old one h by: *

   * hNew = h * stepControl2 / (err/stepControl1)^(1/(2k+1))
   * 
* where err is the scaled error and k the iteration number of the * extrapolation scheme (counting from 0). The default values are * 0.65 for stepControl1 and 0.94 for stepControl2.

*

The step size is subject to the restriction: *

   * stepControl3^(1/(2k+1))/stepControl4 <= hNew/h <= 1/stepControl3^(1/(2k+1))
   * 
* The default values are 0.02 for stepControl3 and 4.0 for * stepControl4.

* @param control1 first stepsize control factor (the factor is * reset to default if lower than 0.0001 or greater than 0.9999) * @param control2 second stepsize control factor (the factor * is reset to default if lower than 0.0001 or greater than 0.9999) * @param control3 third stepsize control factor (the factor is * reset to default if lower than 0.0001 or greater than 0.9999) * @param control4 fourth stepsize control factor (the factor * is reset to default if lower than 1.0001 or greater than 999.9) */ public void setControlFactors(final double control1, final double control2, final double control3, final double control4) { if ((control1 < 0.0001) || (control1 > 0.9999)) { this.stepControl1 = 0.65; } else { this.stepControl1 = control1; } if ((control2 < 0.0001) || (control2 > 0.9999)) { this.stepControl2 = 0.94; } else { this.stepControl2 = control2; } if ((control3 < 0.0001) || (control3 > 0.9999)) { this.stepControl3 = 0.02; } else { this.stepControl3 = control3; } if ((control4 < 1.0001) || (control4 > 999.9)) { this.stepControl4 = 4.0; } else { this.stepControl4 = control4; } } /** Set the order control parameters. *

The Gragg-Bulirsch-Stoer method changes both the step size and * the order during integration, in order to minimize computation * cost. Each extrapolation step increases the order by 2, so the * maximal order that will be used is always even, it is twice the * maximal number of columns in the extrapolation table.

*
   * order is decreased if w(k-1) <= w(k)   * orderControl1
   * order is increased if w(k)   <= w(k-1) * orderControl2
   * 
*

where w is the table of work per unit step for each order * (number of function calls divided by the step length), and k is * the current order.

*

The default maximal order after construction is 18 (i.e. the * maximal number of columns is 9). The default values are 0.8 for * orderControl1 and 0.9 for orderControl2.

* @param maximalOrder maximal order in the extrapolation table (the * maximal order is reset to default if order <= 6 or odd) * @param control1 first order control factor (the factor is * reset to default if lower than 0.0001 or greater than 0.9999) * @param control2 second order control factor (the factor * is reset to default if lower than 0.0001 or greater than 0.9999) */ public void setOrderControl(final int maximalOrder, final double control1, final double control2) { if ((maximalOrder <= 6) || (maximalOrder % 2 != 0)) { this.maxOrder = 18; } if ((control1 < 0.0001) || (control1 > 0.9999)) { this.orderControl1 = 0.8; } else { this.orderControl1 = control1; } if ((control2 < 0.0001) || (control2 > 0.9999)) { this.orderControl2 = 0.9; } else { this.orderControl2 = control2; } // reinitialize the arrays initializeArrays(); } /** {@inheritDoc} */ @Override public void addStepHandler (final StepHandler handler) { super.addStepHandler(handler); // reinitialize the arrays initializeArrays(); } /** {@inheritDoc} */ @Override public void addEventHandler(final EventHandler function, final double maxCheckInterval, final double convergence, final int maxIterationCount, final UnivariateSolver solver) { super.addEventHandler(function, maxCheckInterval, convergence, maxIterationCount, solver); // reinitialize the arrays initializeArrays(); } /** Initialize the integrator internal arrays. */ private void initializeArrays() { final int size = maxOrder / 2; if ((sequence == null) || (sequence.length != size)) { // all arrays should be reallocated with the right size sequence = new int[size]; costPerStep = new int[size]; coeff = new double[size][]; costPerTimeUnit = new double[size]; optimalStep = new double[size]; } // step size sequence: 2, 6, 10, 14, ... for (int k = 0; k < size; ++k) { sequence[k] = 4 * k + 2; } // initialize the order selection cost array // (number of function calls for each column of the extrapolation table) costPerStep[0] = sequence[0] + 1; for (int k = 1; k < size; ++k) { costPerStep[k] = costPerStep[k-1] + sequence[k]; } // initialize the extrapolation tables for (int k = 0; k < size; ++k) { coeff[k] = (k > 0) ? new double[k] : null; for (int l = 0; l < k; ++l) { final double ratio = ((double) sequence[k]) / sequence[k-l-1]; coeff[k][l] = 1.0 / (ratio * ratio - 1.0); } } } /** Set the interpolation order control parameter. * The interpolation order for dense output is 2k - mudif + 1. The * default value for mudif is 4 and the interpolation error is used * in stepsize control by default. * @param useInterpolationErrorForControl if true, interpolation error is used * for stepsize control * @param mudifControlParameter interpolation order control parameter (the parameter * is reset to default if <= 0 or >= 7) */ public void setInterpolationControl(final boolean useInterpolationErrorForControl, final int mudifControlParameter) { this.useInterpolationError = useInterpolationErrorForControl; if ((mudifControlParameter <= 0) || (mudifControlParameter >= 7)) { this.mudif = 4; } else { this.mudif = mudifControlParameter; } } /** Update scaling array. * @param y1 first state vector to use for scaling * @param y2 second state vector to use for scaling * @param scale scaling array to update (can be shorter than state) */ private void rescale(final double[] y1, final double[] y2, final double[] scale) { if (vecAbsoluteTolerance == null) { for (int i = 0; i < scale.length; ++i) { final double yi = FastMath.max(FastMath.abs(y1[i]), FastMath.abs(y2[i])); scale[i] = scalAbsoluteTolerance + scalRelativeTolerance * yi; } } else { for (int i = 0; i < scale.length; ++i) { final double yi = FastMath.max(FastMath.abs(y1[i]), FastMath.abs(y2[i])); scale[i] = vecAbsoluteTolerance[i] + vecRelativeTolerance[i] * yi; } } } /** Perform integration over one step using substeps of a modified * midpoint method. * @param t0 initial time * @param y0 initial value of the state vector at t0 * @param step global step * @param k iteration number (from 0 to sequence.length - 1) * @param scale scaling array (can be shorter than state) * @param f placeholder where to put the state vector derivatives at each substep * (element 0 already contains initial derivative) * @param yMiddle placeholder where to put the state vector at the middle of the step * @param yEnd placeholder where to put the state vector at the end * @param yTmp placeholder for one state vector * @return true if computation was done properly, * false if stability check failed before end of computation * @exception MaxCountExceededException if the number of functions evaluations is exceeded * @exception DimensionMismatchException if arrays dimensions do not match equations settings */ private boolean tryStep(final double t0, final double[] y0, final double step, final int k, final double[] scale, final double[][] f, final double[] yMiddle, final double[] yEnd, final double[] yTmp) throws MaxCountExceededException, DimensionMismatchException { final int n = sequence[k]; final double subStep = step / n; final double subStep2 = 2 * subStep; // first substep double t = t0 + subStep; for (int i = 0; i < y0.length; ++i) { yTmp[i] = y0[i]; yEnd[i] = y0[i] + subStep * f[0][i]; } computeDerivatives(t, yEnd, f[1]); // other substeps for (int j = 1; j < n; ++j) { if (2 * j == n) { // save the point at the middle of the step System.arraycopy(yEnd, 0, yMiddle, 0, y0.length); } t += subStep; for (int i = 0; i < y0.length; ++i) { final double middle = yEnd[i]; yEnd[i] = yTmp[i] + subStep2 * f[j][i]; yTmp[i] = middle; } computeDerivatives(t, yEnd, f[j+1]); // stability check if (performTest && (j <= maxChecks) && (k < maxIter)) { double initialNorm = 0.0; for (int l = 0; l < scale.length; ++l) { final double ratio = f[0][l] / scale[l]; initialNorm += ratio * ratio; } double deltaNorm = 0.0; for (int l = 0; l < scale.length; ++l) { final double ratio = (f[j+1][l] - f[0][l]) / scale[l]; deltaNorm += ratio * ratio; } if (deltaNorm > 4 * FastMath.max(1.0e-15, initialNorm)) { return false; } } } // correction of the last substep (at t0 + step) for (int i = 0; i < y0.length; ++i) { yEnd[i] = 0.5 * (yTmp[i] + yEnd[i] + subStep * f[n][i]); } return true; } /** Extrapolate a vector. * @param offset offset to use in the coefficients table * @param k index of the last updated point * @param diag working diagonal of the Aitken-Neville's * triangle, without the last element * @param last last element */ private void extrapolate(final int offset, final int k, final double[][] diag, final double[] last) { // update the diagonal for (int j = 1; j < k; ++j) { for (int i = 0; i < last.length; ++i) { // Aitken-Neville's recursive formula diag[k-j-1][i] = diag[k-j][i] + coeff[k+offset][j-1] * (diag[k-j][i] - diag[k-j-1][i]); } } // update the last element for (int i = 0; i < last.length; ++i) { // Aitken-Neville's recursive formula last[i] = diag[0][i] + coeff[k+offset][k-1] * (diag[0][i] - last[i]); } } /** {@inheritDoc} */ @Override public void integrate(final ExpandableStatefulODE equations, final double t) throws NumberIsTooSmallException, DimensionMismatchException, MaxCountExceededException, NoBracketingException { sanityChecks(equations, t); setEquations(equations); final boolean forward = t > equations.getTime(); // create some internal working arrays final double[] y0 = equations.getCompleteState(); final double[] y = y0.clone(); final double[] yDot0 = new double[y.length]; final double[] y1 = new double[y.length]; final double[] yTmp = new double[y.length]; final double[] yTmpDot = new double[y.length]; final double[][] diagonal = new double[sequence.length-1][]; final double[][] y1Diag = new double[sequence.length-1][]; for (int k = 0; k < sequence.length-1; ++k) { diagonal[k] = new double[y.length]; y1Diag[k] = new double[y.length]; } final double[][][] fk = new double[sequence.length][][]; for (int k = 0; k < sequence.length; ++k) { fk[k] = new double[sequence[k] + 1][]; // all substeps start at the same point, so share the first array fk[k][0] = yDot0; for (int l = 0; l < sequence[k]; ++l) { fk[k][l+1] = new double[y0.length]; } } if (y != y0) { System.arraycopy(y0, 0, y, 0, y0.length); } final double[] yDot1 = new double[y0.length]; final double[][] yMidDots = new double[1 + 2 * sequence.length][y0.length]; // initial scaling final double[] scale = new double[mainSetDimension]; rescale(y, y, scale); // initial order selection final double tol = (vecRelativeTolerance == null) ? scalRelativeTolerance : vecRelativeTolerance[0]; final double log10R = FastMath.log10(FastMath.max(1.0e-10, tol)); int targetIter = FastMath.max(1, FastMath.min(sequence.length - 2, (int) FastMath.floor(0.5 - 0.6 * log10R))); // set up an interpolator sharing the integrator arrays final AbstractStepInterpolator interpolator = new GraggBulirschStoerStepInterpolator(y, yDot0, y1, yDot1, yMidDots, forward, equations.getPrimaryMapper(), equations.getSecondaryMappers()); interpolator.storeTime(equations.getTime()); stepStart = equations.getTime(); double hNew = 0; double maxError = Double.MAX_VALUE; boolean previousRejected = false; boolean firstTime = true; boolean newStep = true; boolean firstStepAlreadyComputed = false; initIntegration(equations.getTime(), y0, t); costPerTimeUnit[0] = 0; isLastStep = false; do { double error; boolean reject = false; if (newStep) { interpolator.shift(); // first evaluation, at the beginning of the step if (! firstStepAlreadyComputed) { computeDerivatives(stepStart, y, yDot0); } if (firstTime) { hNew = initializeStep(forward, 2 * targetIter + 1, scale, stepStart, y, yDot0, yTmp, yTmpDot); } newStep = false; } stepSize = hNew; // step adjustment near bounds if ((forward && (stepStart + stepSize > t)) || ((! forward) && (stepStart + stepSize < t))) { stepSize = t - stepStart; } final double nextT = stepStart + stepSize; isLastStep = forward ? (nextT >= t) : (nextT <= t); // iterate over several substep sizes int k = -1; for (boolean loop = true; loop; ) { ++k; // modified midpoint integration with the current substep if ( ! tryStep(stepStart, y, stepSize, k, scale, fk[k], (k == 0) ? yMidDots[0] : diagonal[k-1], (k == 0) ? y1 : y1Diag[k-1], yTmp)) { // the stability check failed, we reduce the global step hNew = FastMath.abs(filterStep(stepSize * stabilityReduction, forward, false)); reject = true; loop = false; } else { // the substep was computed successfully if (k > 0) { // extrapolate the state at the end of the step // using last iteration data extrapolate(0, k, y1Diag, y1); rescale(y, y1, scale); // estimate the error at the end of the step. error = 0; for (int j = 0; j < mainSetDimension; ++j) { final double e = FastMath.abs(y1[j] - y1Diag[0][j]) / scale[j]; error += e * e; } error = FastMath.sqrt(error / mainSetDimension); if ((error > 1.0e15) || ((k > 1) && (error > maxError))) { // error is too big, we reduce the global step hNew = FastMath.abs(filterStep(stepSize * stabilityReduction, forward, false)); reject = true; loop = false; } else { maxError = FastMath.max(4 * error, 1.0); // compute optimal stepsize for this order final double exp = 1.0 / (2 * k + 1); double fac = stepControl2 / FastMath.pow(error / stepControl1, exp); final double pow = FastMath.pow(stepControl3, exp); fac = FastMath.max(pow / stepControl4, FastMath.min(1 / pow, fac)); optimalStep[k] = FastMath.abs(filterStep(stepSize * fac, forward, true)); costPerTimeUnit[k] = costPerStep[k] / optimalStep[k]; // check convergence switch (k - targetIter) { case -1 : if ((targetIter > 1) && ! previousRejected) { // check if we can stop iterations now if (error <= 1.0) { // convergence have been reached just before targetIter loop = false; } else { // estimate if there is a chance convergence will // be reached on next iteration, using the // asymptotic evolution of error final double ratio = ((double) sequence [targetIter] * sequence[targetIter + 1]) / (sequence[0] * sequence[0]); if (error > ratio * ratio) { // we don't expect to converge on next iteration // we reject the step immediately and reduce order reject = true; loop = false; targetIter = k; if ((targetIter > 1) && (costPerTimeUnit[targetIter-1] < orderControl1 * costPerTimeUnit[targetIter])) { --targetIter; } hNew = optimalStep[targetIter]; } } } break; case 0: if (error <= 1.0) { // convergence has been reached exactly at targetIter loop = false; } else { // estimate if there is a chance convergence will // be reached on next iteration, using the // asymptotic evolution of error final double ratio = ((double) sequence[k+1]) / sequence[0]; if (error > ratio * ratio) { // we don't expect to converge on next iteration // we reject the step immediately reject = true; loop = false; if ((targetIter > 1) && (costPerTimeUnit[targetIter-1] < orderControl1 * costPerTimeUnit[targetIter])) { --targetIter; } hNew = optimalStep[targetIter]; } } break; case 1 : if (error > 1.0) { reject = true; if ((targetIter > 1) && (costPerTimeUnit[targetIter-1] < orderControl1 * costPerTimeUnit[targetIter])) { --targetIter; } hNew = optimalStep[targetIter]; } loop = false; break; default : if ((firstTime || isLastStep) && (error <= 1.0)) { loop = false; } break; } } } } } if (! reject) { // derivatives at end of step computeDerivatives(stepStart + stepSize, y1, yDot1); } // dense output handling double hInt = getMaxStep(); if (! reject) { // extrapolate state at middle point of the step for (int j = 1; j <= k; ++j) { extrapolate(0, j, diagonal, yMidDots[0]); } final int mu = 2 * k - mudif + 3; for (int l = 0; l < mu; ++l) { // derivative at middle point of the step final int l2 = l / 2; double factor = FastMath.pow(0.5 * sequence[l2], l); int middleIndex = fk[l2].length / 2; for (int i = 0; i < y0.length; ++i) { yMidDots[l+1][i] = factor * fk[l2][middleIndex + l][i]; } for (int j = 1; j <= k - l2; ++j) { factor = FastMath.pow(0.5 * sequence[j + l2], l); middleIndex = fk[l2+j].length / 2; for (int i = 0; i < y0.length; ++i) { diagonal[j-1][i] = factor * fk[l2+j][middleIndex+l][i]; } extrapolate(l2, j, diagonal, yMidDots[l+1]); } for (int i = 0; i < y0.length; ++i) { yMidDots[l+1][i] *= stepSize; } // compute centered differences to evaluate next derivatives for (int j = (l + 1) / 2; j <= k; ++j) { for (int m = fk[j].length - 1; m >= 2 * (l + 1); --m) { for (int i = 0; i < y0.length; ++i) { fk[j][m][i] -= fk[j][m-2][i]; } } } } if (mu >= 0) { // estimate the dense output coefficients final GraggBulirschStoerStepInterpolator gbsInterpolator = (GraggBulirschStoerStepInterpolator) interpolator; gbsInterpolator.computeCoefficients(mu, stepSize); if (useInterpolationError) { // use the interpolation error to limit stepsize final double interpError = gbsInterpolator.estimateError(scale); hInt = FastMath.abs(stepSize / FastMath.max(FastMath.pow(interpError, 1.0 / (mu+4)), 0.01)); if (interpError > 10.0) { hNew = hInt; reject = true; } } } } if (! reject) { // Discrete events handling interpolator.storeTime(stepStart + stepSize); stepStart = acceptStep(interpolator, y1, yDot1, t); // prepare next step interpolator.storeTime(stepStart); System.arraycopy(y1, 0, y, 0, y0.length); System.arraycopy(yDot1, 0, yDot0, 0, y0.length); firstStepAlreadyComputed = true; int optimalIter; if (k == 1) { optimalIter = 2; if (previousRejected) { optimalIter = 1; } } else if (k <= targetIter) { optimalIter = k; if (costPerTimeUnit[k-1] < orderControl1 * costPerTimeUnit[k]) { optimalIter = k-1; } else if (costPerTimeUnit[k] < orderControl2 * costPerTimeUnit[k-1]) { optimalIter = FastMath.min(k+1, sequence.length - 2); } } else { optimalIter = k - 1; if ((k > 2) && (costPerTimeUnit[k-2] < orderControl1 * costPerTimeUnit[k-1])) { optimalIter = k - 2; } if (costPerTimeUnit[k] < orderControl2 * costPerTimeUnit[optimalIter]) { optimalIter = FastMath.min(k, sequence.length - 2); } } if (previousRejected) { // after a rejected step neither order nor stepsize // should increase targetIter = FastMath.min(optimalIter, k); hNew = FastMath.min(FastMath.abs(stepSize), optimalStep[targetIter]); } else { // stepsize control if (optimalIter <= k) { hNew = optimalStep[optimalIter]; } else { if ((k < targetIter) && (costPerTimeUnit[k] < orderControl2 * costPerTimeUnit[k-1])) { hNew = filterStep(optimalStep[k] * costPerStep[optimalIter+1] / costPerStep[k], forward, false); } else { hNew = filterStep(optimalStep[k] * costPerStep[optimalIter] / costPerStep[k], forward, false); } } targetIter = optimalIter; } newStep = true; } hNew = FastMath.min(hNew, hInt); if (! forward) { hNew = -hNew; } firstTime = false; if (reject) { isLastStep = false; previousRejected = true; } else { previousRejected = false; } } while (!isLastStep); // dispatch results equations.setTime(stepStart); equations.setCompleteState(y); resetInternalState(); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy