org.geotools.geometry.jts.PackedLineIterator Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of gt-main Show documentation
Show all versions of gt-main Show documentation
The main module contains the GeoTools public interfaces that are used by
other GeoTools modules (and GeoTools applications). Where possible we make
use industry standard terms as provided by OGC and ISO standards.
The formal GeoTools public api consists of gt-metadata, jts and the gt-main module.
The main module contains the default implementations that are available provided
to other GeoTools modules using our factory system. Factories are obtained from
an appropriate FactoryFinder, giving applications a chance configure the factory
used using the Factory Hints facilities.
FilterFactory ff = CommonFactoryFinder.getFilterFactory();
Expression expr = ff.add( expression1, expression2 );
If you find yourself using implementation specific classes chances are you doing it wrong:
Expression expr = new AddImpl( expression1, expressiom2 );
The newest version!
/*
* GeoTools - The Open Source Java GIS Toolkit
* http://geotools.org
*
* (C) 2004-2008, Open Source Geospatial Foundation (OSGeo)
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*/
package org.geotools.geometry.jts;
import java.awt.geom.AffineTransform;
import org.locationtech.jts.geom.LineString;
import org.locationtech.jts.geom.LinearRing;
import org.locationtech.jts.geom.impl.PackedCoordinateSequence;
import org.locationtech.jts.geom.impl.PackedCoordinateSequence.Double;
/**
* A path iterator for the LiteShape class, specialized to iterate over LineString object.
*
* @author Andrea Aime
* @version $Id$
*/
public final class PackedLineIterator extends AbstractLiteIterator {
/** Transform applied on the coordinates during iteration */
private AffineTransform at;
/** The array of coordinates that represents the line geometry */
private PackedCoordinateSequence.Double coordinates = null;
/** Current line coordinate */
private int currentCoord = 0;
/** The previous coordinate (during iteration) */
private float oldX = Float.NaN;
private float oldY = Float.NaN;
/** True when the iteration is terminated */
private boolean done = false;
/** True if the line is a ring */
private boolean isClosed;
/** If true, apply simple distance based generalization */
private boolean generalize = false;
/** Maximum distance for point elision when generalizing */
private float maxDistance = 1.0f;
/** Horizontal scale, got from the affine transform and cached */
private float xScale;
/** Vertical scale, got from the affine transform and cached */
private float yScale;
private int coordinateCount;
/**
* Creates a new instance of LineIterator
*
* @param ls The line string the iterator will use
* @param at The affine transform applied to coordinates during iteration
*/
public PackedLineIterator(
LineString ls, AffineTransform at, boolean generalize, float maxDistance) {
if (at == null) {
at = new AffineTransform();
}
this.at = at;
xScale =
(float)
Math.sqrt(
(at.getScaleX() * at.getScaleX())
+ (at.getShearX() * at.getShearX()));
yScale =
(float)
Math.sqrt(
(at.getScaleY() * at.getScaleY())
+ (at.getShearY() * at.getShearY()));
coordinates = (Double) ls.getCoordinateSequence();
coordinateCount = coordinates.size();
isClosed = ls instanceof LinearRing;
this.generalize = generalize;
this.maxDistance = maxDistance;
}
/**
* Creates a new instance of LineIterator
*
* @param ls The line string the iterator will use
* @param at The affine transform applied to coordinates during iteration
* @param generalize if true apply simple distance based generalization
*/
// public LineIterator(LineString ls, AffineTransform at, boolean generalize) {
// this(ls, at);
//
// }
/**
* Creates a new instance of LineIterator
*
* @param ls The line string the iterator will use
* @param at The affine transform applied to coordinates during iteration
* @param generalize if true apply simple distance based generalization
* @param maxDistance during iteration, a point will be skipped if it's distance from the
* previous is less than maxDistance
*/
// public LineIterator(
// LineString ls, AffineTransform at, boolean generalize,
// double maxDistance) {
// this(ls, at, generalize);
//
// }
/**
* Sets the distance limit for point skipping during distance based generalization
*
* @param distance the maximum distance for point skipping
*/
public void setMaxDistance(float distance) {
maxDistance = distance;
}
/**
* Returns the distance limit for point skipping during distance based generalization
*
* @return the maximum distance for distance based generalization
*/
public double getMaxDistance() {
return maxDistance;
}
/**
* Returns the coordinates and type of the current path segment in the iteration. The return
* value is the path-segment type: SEG_MOVETO, SEG_LINETO, SEG_QUADTO, SEG_CUBICTO, or
* SEG_CLOSE. A double array of length 6 must be passed in and can be used to store the
* coordinates of the point(s). Each point is stored as a pair of double x,y coordinates.
* SEG_MOVETO and SEG_LINETO types returns one point, SEG_QUADTO returns two points, SEG_CUBICTO
* returns 3 points and SEG_CLOSE does not return any points.
*
* @param coords an array that holds the data returned from this method
* @return the path-segment type of the current path segment.
* @see #SEG_MOVETO
* @see #SEG_LINETO
* @see #SEG_QUADTO
* @see #SEG_CUBICTO
* @see #SEG_CLOSE
*/
public int currentSegment(float[] coords) {
if (currentCoord == 0) {
coords[0] = (float) coordinates.getX(0);
coords[1] = (float) coordinates.getY(0);
at.transform(coords, 0, coords, 0, 1);
return SEG_MOVETO;
} else if ((currentCoord == coordinateCount) && isClosed) {
return SEG_CLOSE;
} else {
coords[0] = (float) coordinates.getX(currentCoord);
coords[1] = (float) coordinates.getY(currentCoord);
at.transform(coords, 0, coords, 0, 1);
return SEG_LINETO;
}
}
// /**
// * Returns the coordinates and type of the current path segment in the
// * iteration. The return value is the path-segment type: SEG_MOVETO,
// * SEG_LINETO, SEG_QUADTO, SEG_CUBICTO, or SEG_CLOSE. A float array of
// * length 6 must be passed in and can be used to store the coordinates of
// * the point(s). Each point is stored as a pair of float x,y coordinates.
// * SEG_MOVETO and SEG_LINETO types returns one point, SEG_QUADTO returns
// * two points, SEG_CUBICTO returns 3 points and SEG_CLOSE does not return
// * any points.
// *
// * @param coords an array that holds the data returned from this method
// *
// * @return the path-segment type of the current path segment.
// *
// * @see #SEG_MOVETO
// * @see #SEG_LINETO
// * @see #SEG_QUADTO
// * @see #SEG_CUBICTO
// * @see #SEG_CLOSE
// */
// public int currentSegment(float[] coords) {
// double[] dcoords = new double[2];
// int result = currentSegment(dcoords);
// coords[0] = (float) dcoords[0];
// coords[1] = (float) dcoords[1];
//
// return result;
// }
/**
* Returns the winding rule for determining the interior of the path.
*
* @return the winding rule.
* @see #WIND_EVEN_ODD
* @see #WIND_NON_ZERO
*/
public int getWindingRule() {
return WIND_NON_ZERO;
}
/**
* Tests if the iteration is complete.
*
* @return true
if all the segments have been read; false
otherwise.
*/
public boolean isDone() {
return done;
}
/**
* Moves the iterator to the next segment of the path forwards along the primary direction of
* traversal as long as there are more points in that direction.
*/
public void next() {
if (((currentCoord == (coordinateCount - 1)) && !isClosed)
|| ((currentCoord == coordinateCount) && isClosed)) {
done = true;
} else {
if (generalize) {
if (Float.isNaN(oldX)) {
currentCoord++;
oldX = (float) coordinates.getX(currentCoord);
oldY = (float) coordinates.getY(currentCoord);
} else {
float distx = 0;
float disty = 0;
float x = 0;
float y = 0;
do {
currentCoord++;
x = (float) coordinates.getX(currentCoord);
y = (float) coordinates.getY(currentCoord);
if (currentCoord < coordinateCount) {
distx = Math.abs(x - oldX);
disty = Math.abs(y - oldY);
}
} while (((distx * xScale) < maxDistance)
&& ((disty * yScale) < maxDistance)
&& ((!isClosed && (currentCoord < (coordinateCount - 1)))
|| (isClosed && (currentCoord < coordinateCount))));
if (currentCoord < coordinateCount) {
oldX = x;
oldY = y;
} else {
oldX = Float.NaN;
oldY = Float.NaN;
}
}
} else {
currentCoord++;
}
}
}
/** @see java.awt.geom.PathIterator#currentSegment(double[]) */
public int currentSegment(double[] coords) {
return 0;
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy