Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/** Copyright 2014 TappingStone, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package io.prediction.engines.util
import io.prediction.controller.NiceRendering
import org.apache.mahout.cf.taste.model.DataModel
import org.apache.mahout.cf.taste.model.Preference
import org.apache.mahout.cf.taste.model.PreferenceArray
import org.apache.mahout.cf.taste.impl.model.GenericDataModel
import org.apache.mahout.cf.taste.impl.model.GenericBooleanPrefDataModel
import org.apache.mahout.cf.taste.impl.model.GenericPreference
import org.apache.mahout.cf.taste.impl.model.GenericUserPreferenceArray
import org.apache.mahout.cf.taste.impl.common.FastByIDMap
import org.apache.mahout.cf.taste.impl.common.FastIDSet
import scala.collection.JavaConversions._
import scala.collection.JavaConversions.asScalaBuffer
import scala.collection.JavaConversions.asScalaSet
import java.util.{ List => JList }
import java.util.{ Set => JSet }
import java.lang.{ Integer => JInteger }
import java.lang.{ Float => JFloat }
import java.lang.{ Long => JLong }
import grizzled.slf4j.Logger
import java.io.FileOutputStream
import java.io.ObjectOutputStream
import java.io.FileInputStream
import java.io.ObjectInputStream
import scala.io.Source
import java.io.PrintWriter
import java.io.File
/** Mahout Integration helper functions */
object MahoutUtil {
val logger = Logger(MahoutUtil.getClass)
/** Java version of buildDataModel */
def jBuildDataModel(ratingSeq: JList[Tuple4[JInteger, JInteger, JFloat, JLong]]): DataModel = {
buildDataModel(asScalaBuffer(ratingSeq).toList.asInstanceOf[List[(Int, Int, Float, Long)]])
}
def jBuildBooleanPrefDataModel(ratingSeq: JList[Tuple3[JInteger, JInteger, JLong]]): DataModel = {
buildBooleanPrefDataModel(asScalaBuffer(ratingSeq).toList.asInstanceOf[List[(Int, Int, Long)]])
}
/** Build DataModel with Seq of (uid, iid, rating, timestamp)
* NOTE: assume no duplicated rating on same iid by the same user
*/
def buildDataModel(
ratingSeq: Seq[(Int, Int, Float, Long)]): DataModel = {
val allPrefs = new FastByIDMap[PreferenceArray]()
val allTimestamps = new FastByIDMap[FastByIDMap[java.lang.Long]]()
ratingSeq.groupBy(_._1)
.foreach { case (uid, ratingList) =>
val userID = uid.toLong
// preference of items for this user
val userPrefs = new GenericUserPreferenceArray(ratingList.size)
// timestamp of items for this user
val userTimestamps = new FastByIDMap[java.lang.Long]()
ratingList.zipWithIndex
.foreach { case (r, i) =>
val itemID = r._2.toLong
val pref = new GenericPreference(userID, itemID, r._3)
userPrefs.set(i, pref)
userTimestamps.put(itemID, r._4)
}
allPrefs.put(userID, userPrefs)
allTimestamps.put(userID, userTimestamps)
}
new GenericDataModel(allPrefs, allTimestamps)
}
/** Build DataModel with Seq of (uid, iid, timestamp)
* NOTE: assume no duplicated iid by the same user
*/
def buildBooleanPrefDataModel(
ratingSeq: Seq[(Int, Int, Long)]): DataModel = {
val allPrefs = new FastByIDMap[FastIDSet]()
val allTimestamps = new FastByIDMap[FastByIDMap[java.lang.Long]]()
ratingSeq.foreach { case (uid, iid, t) =>
val userID = uid.toLong
val itemID = iid.toLong
// item
val idSet = allPrefs.get(userID)
if (idSet == null) {
val newIdSet = new FastIDSet()
newIdSet.add(itemID)
allPrefs.put(userID, newIdSet)
} else {
idSet.add(itemID)
}
// timestamp
val timestamps = allTimestamps.get(userID)
if (timestamps == null) {
val newTimestamps = new FastByIDMap[java.lang.Long]
newTimestamps.put(itemID, t)
allTimestamps.put(userID, newTimestamps)
} else {
timestamps.put(itemID, t)
}
}
new GenericBooleanPrefDataModel(allPrefs, allTimestamps)
}
}
/** Math helper functions */
object MathUtil {
/** Average precision at k */
def averagePrecisionAtK[T](k: Int, p: Seq[T], r: Set[T]): Double = {
// supposedly the predictedItems.size should match k
// NOTE: what if predictedItems is less than k? use the avaiable items as k.
val n = scala.math.min(p.size, k)
// find if each element in the predictedItems is one of the relevant items
// if so, map to 1. else map to 0
// (0, 1, 0, 1, 1, 0, 0)
val rBin: Seq[Int] = p.take(n).map { x => if (r(x)) 1 else 0 }
val pAtKNom = rBin.scanLeft(0)(_ + _)
.drop(1) // drop 1st one which is initial 0
.zip(rBin)
.map(t => if (t._2 != 0) t._1.toDouble else 0.0)
// ( number of hits at this position if hit or 0 if miss )
val pAtKDenom = 1 to rBin.size
val pAtK = pAtKNom.zip(pAtKDenom).map { t => t._1 / t._2 }
val apAtKDenom = scala.math.min(n, r.size)
if (apAtKDenom == 0) 0 else pAtK.sum / apAtKDenom
}
/** Java's Average precision at k */
def jAveragePrecisionAtK[T](k: Integer, p: JList[T], r: JSet[T]): Double = {
averagePrecisionAtK(k, asScalaBuffer[T](p).toList, asScalaSet[T](r).toSet)
}
}
object EvaluatorVisualization {
class ObjectInputStreamWithCustomClassLoader(
fileInputStream: FileInputStream
) extends ObjectInputStream(fileInputStream) {
override def resolveClass(desc: java.io.ObjectStreamClass): Class[_] = {
try { Class.forName(desc.getName, false, getClass.getClassLoader) }
catch { case ex: ClassNotFoundException => super.resolveClass(desc) }
}
}
def save[T](data: T, path: String) {
println(s"Output to: $path")
val oos = new ObjectOutputStream(new FileOutputStream(path))
oos.writeObject(data)
oos.close()
}
def load[T](path: String): T = {
val ois = new ObjectInputStreamWithCustomClassLoader(new FileInputStream(path))
val obj = ois.readObject().asInstanceOf[T]
ois.close
return obj
}
def render[T <: NiceRendering](data: NiceRendering, path: String) {
val htmlPath = s"${path}.html"
println(s"OutputPath: $htmlPath")
val dataClass = data.getClass
val htmlWriter = new PrintWriter(new File(htmlPath))
val html = dataClass.getMethod("toHTML").invoke(data).asInstanceOf[String]
htmlWriter.write(html)
htmlWriter.close()
val jsonPath = s"${path}.json"
val jsonWriter = new PrintWriter(new File(jsonPath))
val json = dataClass.getMethod("toJSON").invoke(data).asInstanceOf[String]
jsonWriter.write(json)
jsonWriter.close()
}
}