io.prestosql.cost.StatsNormalizer Maven / Gradle / Ivy
/*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package io.prestosql.cost;
import com.google.common.collect.ImmutableSet;
import io.prestosql.spi.type.BigintType;
import io.prestosql.spi.type.BooleanType;
import io.prestosql.spi.type.DateType;
import io.prestosql.spi.type.DecimalType;
import io.prestosql.spi.type.IntegerType;
import io.prestosql.spi.type.SmallintType;
import io.prestosql.spi.type.TinyintType;
import io.prestosql.spi.type.Type;
import io.prestosql.sql.planner.Symbol;
import io.prestosql.sql.planner.TypeProvider;
import java.util.Collection;
import java.util.Objects;
import java.util.Optional;
import java.util.function.Predicate;
import static com.google.common.base.Preconditions.checkArgument;
import static java.lang.Double.NaN;
import static java.lang.Double.isNaN;
import static java.lang.Math.floor;
import static java.lang.Math.pow;
import static java.util.Objects.requireNonNull;
/**
* Makes stats consistent
*/
public class StatsNormalizer
{
public PlanNodeStatsEstimate normalize(PlanNodeStatsEstimate stats, TypeProvider types)
{
return normalize(stats, Optional.empty(), types);
}
public PlanNodeStatsEstimate normalize(PlanNodeStatsEstimate stats, Collection outputSymbols, TypeProvider types)
{
return normalize(stats, Optional.of(outputSymbols), types);
}
private PlanNodeStatsEstimate normalize(PlanNodeStatsEstimate stats, Optional> outputSymbols, TypeProvider types)
{
if (stats.isOutputRowCountUnknown()) {
return PlanNodeStatsEstimate.unknown();
}
PlanNodeStatsEstimate.Builder normalized = PlanNodeStatsEstimate.buildFrom(stats);
Predicate symbolFilter = outputSymbols
.map(ImmutableSet::copyOf)
.map(set -> (Predicate) set::contains)
.orElse(symbol -> true);
for (Symbol symbol : stats.getSymbolsWithKnownStatistics()) {
if (!symbolFilter.test(symbol)) {
normalized.removeSymbolStatistics(symbol);
continue;
}
SymbolStatsEstimate symbolStats = stats.getSymbolStatistics(symbol);
SymbolStatsEstimate normalizedSymbolStats = stats.getOutputRowCount() == 0 ? SymbolStatsEstimate.zero() : normalizeSymbolStats(symbol, symbolStats, stats, types);
if (normalizedSymbolStats.isUnknown()) {
normalized.removeSymbolStatistics(symbol);
continue;
}
if (!Objects.equals(normalizedSymbolStats, symbolStats)) {
normalized.addSymbolStatistics(symbol, normalizedSymbolStats);
}
}
return normalized.build();
}
/**
* Calculates consistent stats for a symbol.
*/
private SymbolStatsEstimate normalizeSymbolStats(Symbol symbol, SymbolStatsEstimate symbolStats, PlanNodeStatsEstimate stats, TypeProvider types)
{
if (symbolStats.isUnknown()) {
return SymbolStatsEstimate.unknown();
}
double outputRowCount = stats.getOutputRowCount();
checkArgument(outputRowCount > 0, "outputRowCount must be greater than zero: %s", outputRowCount);
double distinctValuesCount = symbolStats.getDistinctValuesCount();
double nullsFraction = symbolStats.getNullsFraction();
if (!isNaN(distinctValuesCount)) {
Type type = requireNonNull(types.get(symbol), () -> "type is missing for symbol " + symbol);
double maxDistinctValuesByLowHigh = maxDistinctValuesByLowHigh(symbolStats, type);
if (distinctValuesCount > maxDistinctValuesByLowHigh) {
distinctValuesCount = maxDistinctValuesByLowHigh;
}
if (distinctValuesCount > outputRowCount) {
distinctValuesCount = outputRowCount;
}
double nonNullValues = outputRowCount * (1 - nullsFraction);
if (distinctValuesCount > nonNullValues) {
double difference = distinctValuesCount - nonNullValues;
distinctValuesCount -= difference / 2;
nonNullValues += difference / 2;
nullsFraction = 1 - nonNullValues / outputRowCount;
}
}
if (distinctValuesCount == 0.0) {
return SymbolStatsEstimate.zero();
}
return SymbolStatsEstimate.buildFrom(symbolStats)
.setDistinctValuesCount(distinctValuesCount)
.setNullsFraction(nullsFraction)
.build();
}
private double maxDistinctValuesByLowHigh(SymbolStatsEstimate symbolStats, Type type)
{
if (symbolStats.statisticRange().length() == 0.0) {
return 1;
}
if (!isDiscrete(type)) {
return NaN;
}
double length = symbolStats.getHighValue() - symbolStats.getLowValue();
if (isNaN(length)) {
return NaN;
}
if (type instanceof DecimalType) {
length *= pow(10, ((DecimalType) type).getScale());
}
return floor(length + 1);
}
private static boolean isDiscrete(Type type)
{
return type.equals(IntegerType.INTEGER) ||
type.equals(BigintType.BIGINT) ||
type.equals(SmallintType.SMALLINT) ||
type.equals(TinyintType.TINYINT) ||
type.equals(BooleanType.BOOLEAN) ||
type.equals(DateType.DATE) ||
type instanceof DecimalType;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy