All Downloads are FREE. Search and download functionalities are using the official Maven repository.

io.prestosql.util.Long2LongOpenBigHashMap Maven / Gradle / Ivy

/*
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package io.prestosql.util;

import io.prestosql.array.BigArrays;
import io.prestosql.array.LongBigArray;
import it.unimi.dsi.fastutil.Hash;
import it.unimi.dsi.fastutil.longs.AbstractLong2LongMap;
import it.unimi.dsi.fastutil.longs.AbstractLongCollection;
import it.unimi.dsi.fastutil.longs.AbstractLongSet;
import it.unimi.dsi.fastutil.longs.Long2LongMap;
import it.unimi.dsi.fastutil.longs.LongBigArrayBigList;
import it.unimi.dsi.fastutil.longs.LongCollection;
import it.unimi.dsi.fastutil.longs.LongIterator;
import it.unimi.dsi.fastutil.longs.LongSet;
import it.unimi.dsi.fastutil.objects.AbstractObjectSet;
import it.unimi.dsi.fastutil.objects.ObjectIterator;
import org.openjdk.jol.info.ClassLayout;

import java.util.Map;
import java.util.NoSuchElementException;
import java.util.function.Consumer;

import static it.unimi.dsi.fastutil.HashCommon.bigArraySize;
import static it.unimi.dsi.fastutil.HashCommon.maxFill;
import static java.lang.Math.toIntExact;
import static java.util.Objects.requireNonNull;

// Note: this code was forked from fastutil (http://fastutil.di.unimi.it/) Long2LongOpenHashMap
// and mimics that code style.
// Copyright (C) 2002-2019 Sebastiano Vigna
public class Long2LongOpenBigHashMap
        extends AbstractLong2LongMap
        implements Hash
{
    private static final long INSTANCE_SIZE = ClassLayout.parseClass(Long2LongOpenBigHashMap.class).instanceSize();
    private static final boolean ASSERTS = false;
    /**
     * The array of keys.
     */
    protected LongBigArray key;
    /**
     * The array of values.
     */
    protected LongBigArray value;
    /**
     * The mask for wrapping a position counter.
     */
    protected long mask;
    /**
     * Whether this map contains the key zero.
     */
    protected boolean containsNullKey;
    /**
     * The current table size.
     */
    protected long n;
    /**
     * Threshold after which we rehash. It must be the table size times {@link #f}.
     */
    protected long maxFill;
    /**
     * We never resize below this threshold, which is the construction-time {#n}.
     */
    protected final long minN;
    /**
     * Number of entries in the set (including the key zero, if present).
     */
    protected long size;
    /**
     * The acceptable load factor.
     */
    protected final float f;
    /**
     * Cached set of entries.
     */
    protected FastEntrySet entries;
    /**
     * Cached set of keys.
     */
    protected LongSet keys;
    /**
     * Cached collection of values.
     */
    protected LongCollection values;

    /**
     * Creates a new hash map.
     *
     * 

* The actual table size will be the least power of two greater than * {@code expected}/{@code f}. * * @param expected the expected number of elements in the hash map. * @param f the load factor. */ public Long2LongOpenBigHashMap(final long expected, final float f) { if (f <= 0 || f > 1) { throw new IllegalArgumentException("Load factor must be greater than 0 and smaller than or equal to 1"); } if (expected < 0) { throw new IllegalArgumentException("The expected number of elements must be nonnegative"); } this.f = f; n = bigArraySize(expected, f); minN = n; mask = n - 1; maxFill = maxFill(n, f); key = new LongBigArray(); key.ensureCapacity(n + 1); value = new LongBigArray(); value.ensureCapacity(n + 1); } /** * Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor. * * @param expected the expected number of elements in the hash map. */ public Long2LongOpenBigHashMap(final long expected) { this(expected, DEFAULT_LOAD_FACTOR); } /** * Creates a new hash map with initial expected * {@link BigArrays#SEGMENT_SIZE} entries and * {@link Hash#DEFAULT_LOAD_FACTOR} as load factor. */ public Long2LongOpenBigHashMap() { this(BigArrays.SEGMENT_SIZE, DEFAULT_LOAD_FACTOR); } /** * Creates a new hash map copying a given one. * * @param m a {@link Map} to be copied into the new hash map. * @param f the load factor. */ public Long2LongOpenBigHashMap(final Map m, final float f) { this(m.size(), f); putAll(m); } /** * Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor * copying a given one. * * @param m a {@link Map} to be copied into the new hash map. */ public Long2LongOpenBigHashMap(final Map m) { this(m, DEFAULT_LOAD_FACTOR); } /** * Creates a new hash map copying a given type-specific one. * * @param m a type-specific map to be copied into the new hash map. * @param f the load factor. */ public Long2LongOpenBigHashMap(final Long2LongMap m, final float f) { this(m.size(), f); putAll(m); } /** * Creates a new hash map with {@link Hash#DEFAULT_LOAD_FACTOR} as load factor * copying a given type-specific one. * * @param m a type-specific map to be copied into the new hash map. */ public Long2LongOpenBigHashMap(final Long2LongMap m) { this(m, DEFAULT_LOAD_FACTOR); } /** * Returns the size of this hash map in bytes. */ public long sizeOf() { return INSTANCE_SIZE + key.sizeOf() + value.sizeOf(); } private long realSize() { return containsNullKey ? size - 1 : size; } private void ensureCapacity(final long capacity) { final long needed = bigArraySize(capacity, f); if (needed > n) { rehash(needed); } } private void tryCapacity(final long capacity) { final long needed = Math.max(2, bigArraySize(capacity, f)); if (needed > n) { rehash(needed); } } private long removeEntry(final long pos) { final long oldValue = value.get(pos); size--; shiftKeys(pos); if (n > minN && size < maxFill / 4 && n > BigArrays.SEGMENT_SIZE) { rehash(n / 2); } return oldValue; } private long removeNullEntry() { containsNullKey = false; final long oldValue = value.get(n); size--; if (n > minN && size < maxFill / 4 && n > BigArrays.SEGMENT_SIZE) { rehash(n / 2); } return oldValue; } @Override public void putAll(Map m) { if (f <= .5) { ensureCapacity(m.size()); // The resulting map will be sized for m.size() elements } else { tryCapacity(size() + m.size()); // The resulting map will be tentatively sized for size() + m.size() } // elements super.putAll(m); } private long find(final long k) { if (((k) == (0))) { return containsNullKey ? n : -(n + 1); } final LongBigArray key = this.key; // The starting point. long pos = it.unimi.dsi.fastutil.HashCommon.mix((k)) & mask; long curr = key.get(pos); if (((curr) == (0))) { return -(pos + 1); } if (((k) == (curr))) { return pos; } // There's always an unused entry. while (true) { pos = (pos + 1) & mask; curr = key.get(pos); if (((curr) == (0))) { return -(pos + 1); } if (((k) == (curr))) { return pos; } } } private void insert(final long pos, final long k, final long v) { if (pos == n) { containsNullKey = true; } key.set(pos, k); value.set(pos, v); if (size++ >= maxFill) { rehash(bigArraySize(size + 1, f)); } if (ASSERTS) { checkTable(); } } @Override public long put(final long k, final long v) { final long pos = find(k); if (pos < 0) { insert(-pos - 1, k, v); return defRetValue; } final long oldValue = value.get(pos); value.set(pos, v); return oldValue; } private long addToValue(final long pos, final long incr) { final long oldValue = value.get(pos); value.set(pos, oldValue + incr); return oldValue; } /** * Adds an increment to value currently associated with a key. * *

* Note that this method respects the {@linkplain #defaultReturnValue() default * return value} semantics: when called with a key that does not currently * appears in the map, the key will be associated with the default return value * plus the given increment. * * @param k the key. * @param incr the increment. * @return the old value, or the {@linkplain #defaultReturnValue() default * return value} if no value was present for the given key. */ public long addTo(final long k, final long incr) { long pos; if (((k) == (0))) { if (containsNullKey) { return addToValue(n, incr); } pos = n; containsNullKey = true; } else { final LongBigArray key = this.key; // The starting point. pos = it.unimi.dsi.fastutil.HashCommon.mix((k)) & mask; long curr = key.get(pos); if (!((curr) == (0))) { if (((curr) == (k))) { return addToValue(pos, incr); } pos = (pos + 1) & mask; curr = key.get(pos); while (!((curr) == (0))) { if (((curr) == (k))) { return addToValue(pos, incr); } pos = (pos + 1) & mask; curr = key.get(pos); } } } key.set(pos, k); value.set(pos, defRetValue + incr); if (size++ >= maxFill) { rehash(bigArraySize(size + 1, f)); } if (ASSERTS) { checkTable(); } return defRetValue; } /** * Shifts left entries with the specified hash code, starting at the specified * position, and empties the resulting free entry. * * @param pos a starting position. */ protected final void shiftKeys(long pos) { // Shift entries with the same hash. long last; long slot; long curr; final LongBigArray key = this.key; for (; ; ) { last = pos; pos = (pos + 1) & mask; for (; ; ) { curr = key.get(pos); if (((curr) == (0))) { key.set(last, (0)); return; } slot = it.unimi.dsi.fastutil.HashCommon.mix((curr)) & mask; if (last <= pos ? last >= slot || slot > pos : last >= slot && slot > pos) { break; } pos = (pos + 1) & mask; } key.set(last, curr); value.set(last, value.get(pos)); } } @Override public long remove(final long k) { if (((k) == (0))) { if (containsNullKey) { return removeNullEntry(); } return defRetValue; } final LongBigArray key = this.key; // The starting point. long pos = it.unimi.dsi.fastutil.HashCommon.mix((k)) & mask; long curr = key.get(pos); if (((curr) == (0))) { return defRetValue; } if (((k) == (curr))) { return removeEntry(pos); } while (true) { pos = (pos + 1) & mask; curr = key.get(pos); if (((curr) == (0))) { return defRetValue; } if (((k) == (curr))) { return removeEntry(pos); } } } @Override public long get(final long k) { if (((k) == (0))) { return containsNullKey ? value.get(n) : defRetValue; } final LongBigArray key = this.key; // The starting point. long pos = it.unimi.dsi.fastutil.HashCommon.mix((k)) & mask; long curr = key.get(pos); if (((curr) == (0))) { return defRetValue; } if (((k) == (curr))) { return value.get(pos); } // There's always an unused entry. while (true) { pos = (pos + 1) & mask; curr = key.get(pos); if (((curr) == (0))) { return defRetValue; } if (((k) == (curr))) { return value.get(pos); } } } @Override public boolean containsKey(final long k) { if (((k) == (0))) { return containsNullKey; } final LongBigArray key = this.key; // The starting point. long pos = it.unimi.dsi.fastutil.HashCommon.mix((k)) & mask; long curr = key.get(pos); if (((curr) == (0))) { return false; } if (((k) == (curr))) { return true; } // There's always an unused entry. while (true) { pos = (pos + 1) & mask; curr = key.get(pos); if (((curr) == (0))) { return false; } if (((k) == (curr))) { return true; } } } @Override public boolean containsValue(final long v) { final LongBigArray value = this.value; final LongBigArray key = this.key; if (containsNullKey && ((value.get(n)) == (v))) { return true; } for (long i = n; i-- != 0; ) { if (!((key.get(i)) == (0)) && ((value.get(i)) == (v))) { return true; } } return false; } /** * {@inheritDoc} */ @Override public long getOrDefault(final long k, final long defaultValue) { if (((k) == (0))) { return containsNullKey ? value.get(n) : defaultValue; } final LongBigArray key = this.key; // The starting point. long pos = it.unimi.dsi.fastutil.HashCommon.mix((k)) & mask; long curr = key.get(pos); if (((curr) == (0))) { return defaultValue; } if (((k) == (curr))) { return value.get(pos); } // There's always an unused entry. while (true) { pos = (pos + 1) & mask; curr = key.get(pos); if (((curr) == (0))) { return defaultValue; } if (((k) == (curr))) { return value.get(pos); } } } /** * {@inheritDoc} */ @Override public long putIfAbsent(final long k, final long v) { final long pos = find(k); if (pos >= 0) { return value.get(pos); } insert(-pos - 1, k, v); return defRetValue; } /** * {@inheritDoc} */ @Override public boolean remove(final long k, final long v) { if (((k) == (0))) { if (containsNullKey && ((v) == (value.get(n)))) { removeNullEntry(); return true; } return false; } final LongBigArray key = this.key; // The starting point. long pos = it.unimi.dsi.fastutil.HashCommon.mix((k)) & mask; long curr = key.get(pos); if (((curr) == (0))) { return false; } if (((k) == (curr)) && ((v) == (value.get(pos)))) { removeEntry(pos); return true; } while (true) { pos = (pos + 1) & mask; curr = key.get(pos); if (((curr) == (0))) { return false; } if (((k) == (curr)) && ((v) == (value.get(pos)))) { removeEntry(pos); return true; } } } /** * {@inheritDoc} */ @Override public boolean replace(final long k, final long oldValue, final long v) { final long pos = find(k); if (pos < 0 || !((oldValue) == (value.get(pos)))) { return false; } value.set(pos, v); return true; } /** * {@inheritDoc} */ @Override public long replace(final long k, final long v) { final long pos = find(k); if (pos < 0) { return defRetValue; } final long oldValue = value.get(pos); value.set(pos, v); return oldValue; } /** * {@inheritDoc} */ @Override public long computeIfAbsent(final long k, final java.util.function.LongUnaryOperator mappingFunction) { requireNonNull(mappingFunction); final long pos = find(k); if (pos >= 0) { return value.get(pos); } final long newValue = mappingFunction.applyAsLong(k); insert(-pos - 1, k, newValue); return newValue; } /** * {@inheritDoc} */ @Override public long computeIfAbsentNullable(final long k, final java.util.function.LongFunction mappingFunction) { requireNonNull(mappingFunction); final long pos = find(k); if (pos >= 0) { return value.get(pos); } final Long newValue = mappingFunction.apply(k); if (newValue == null) { return defRetValue; } final long v = (newValue).longValue(); insert(-pos - 1, k, v); return v; } /** * {@inheritDoc} */ @Override public long computeIfPresent(final long k, final java.util.function.BiFunction remappingFunction) { requireNonNull(remappingFunction); final long pos = find(k); if (pos < 0) { return defRetValue; } final Long newValue = remappingFunction.apply(Long.valueOf(k), Long.valueOf(value.get(pos))); if (newValue == null) { if (((k) == (0))) { removeNullEntry(); } else { removeEntry(pos); } return defRetValue; } value.set(pos, (newValue).longValue()); return (newValue).longValue(); } /** * {@inheritDoc} */ @Override public long compute(final long k, final java.util.function.BiFunction remappingFunction) { requireNonNull(remappingFunction); final long pos = find(k); final Long newValue = remappingFunction.apply(Long.valueOf(k), pos >= 0 ? Long.valueOf(value.get(pos)) : null); if (newValue == null) { if (pos >= 0) { if (((k) == (0))) { removeNullEntry(); } else { removeEntry(pos); } } return defRetValue; } long newVal = (newValue).longValue(); if (pos < 0) { insert(-pos - 1, k, newVal); return newVal; } value.set(pos, newVal); return newVal; } /** * {@inheritDoc} */ @Override public long merge(final long k, final long v, final java.util.function.BiFunction remappingFunction) { requireNonNull(remappingFunction); final long pos = find(k); if (pos < 0) { insert(-pos - 1, k, v); return v; } final Long newValue = remappingFunction.apply(Long.valueOf(value.get(pos)), Long.valueOf(v)); if (newValue == null) { if (((k) == (0))) { removeNullEntry(); } else { removeEntry(pos); } return defRetValue; } value.set(pos, (newValue).longValue()); return (newValue).longValue(); } /* * Removes all elements from this map. * *

To increase object reuse, this method does not change the table size. If * you want to reduce the table size, you must use {@link #trim()}. * */ @Override public void clear() { if (size == 0) { return; } size = 0; containsNullKey = false; key.fill(0); } @Override public int size() { return toIntExact(size); } @Override public boolean isEmpty() { return size == 0; } /** * The entry class for a hash map does not record key and value, but rather the * position in the hash table of the corresponding entry. This is necessary so * that calls to {@link java.util.Map.Entry#setValue(Object)} are reflected in * the map */ final class MapEntry implements Long2LongMap.Entry, Map.Entry { // The table index this entry refers to, or -1 if this entry has been deleted. long index; MapEntry(final long index) { this.index = index; } MapEntry() { } @Override public long getLongKey() { return key.get(index); } @Override public long getLongValue() { return value.get(index); } @Override public long setValue(final long v) { final long oldValue = value.get(index); value.set(index, v); return oldValue; } /** * {@inheritDoc} * * @deprecated Please use the corresponding type-specific method instead. */ @Deprecated @Override public Long getKey() { return Long.valueOf(key.get(index)); } /** * {@inheritDoc} * * @deprecated Please use the corresponding type-specific method instead. */ @Deprecated @Override public Long getValue() { return Long.valueOf(value.get(index)); } /** * {@inheritDoc} * * @deprecated Please use the corresponding type-specific method instead. */ @Deprecated @Override public Long setValue(final Long v) { return Long.valueOf(setValue((v).longValue())); } @SuppressWarnings("unchecked") @Override public boolean equals(final Object o) { if (!(o instanceof Map.Entry)) { return false; } Map.Entry e = (Map.Entry) o; return ((key.get(index)) == ((e.getKey()).longValue())) && ((value.get(index)) == ((e.getValue()).longValue())); } @Override public int hashCode() { return it.unimi.dsi.fastutil.HashCommon.long2int(key.get(index)) ^ it.unimi.dsi.fastutil.HashCommon.long2int(value.get(index)); } @Override public String toString() { return key.get(index) + "=>" + value.get(index); } } /** * An iterator over a hash map. */ private class MapIterator { /** * The index of the last entry returned, if positive or zero; initially, * {@link #n}. If negative, the last entry returned was that of the key of index * {@code - pos - 1} from the {@link #wrapped} list. */ long pos = n; /** * The index of the last entry that has been returned (more precisely, the value * of {@link #pos} if {@link #pos} is positive, or {@link Long#MIN_VALUE} if * {@link #pos} is negative). It is -1 if either we did not return an entry yet, * or the last returned entry has been removed. */ long last = -1; /** * A downward counter measuring how many entries must still be returned. */ long c = size; /** * A boolean telling us whether we should return the entry with the null key. */ boolean mustReturnNullKey = Long2LongOpenBigHashMap.this.containsNullKey; /** * A lazily allocated list containing keys of entries that have wrapped around * the table because of removals. */ LongBigArrayBigList wrapped; public boolean hasNext() { return c != 0; } public long nextEntry() { if (!hasNext()) { throw new NoSuchElementException(); } c--; if (mustReturnNullKey) { mustReturnNullKey = false; last = n; return n; } final LongBigArray key = Long2LongOpenBigHashMap.this.key; for (; ; ) { if (--pos < 0) { // We are just enumerating elements from the wrapped list. last = Long.MIN_VALUE; final long k = wrapped.getLong(-pos - 1); long p = it.unimi.dsi.fastutil.HashCommon.mix((k)) & mask; while (!((k) == (key.get(p)))) { p = (p + 1) & mask; } return p; } if (!((key.get(pos)) == (0))) { last = pos; return pos; } } } /** * Shifts left entries with the specified hash code, starting at the specified * position, and empties the resulting free entry. * * @param pos a starting position. */ private void shiftKeys(long pos) { // Shift entries with the same hash. long last; long slot; long curr; final LongBigArray key = Long2LongOpenBigHashMap.this.key; for (; ; ) { last = pos; pos = (pos + 1) & mask; for (; ; ) { curr = key.get(pos); if (((curr) == (0))) { key.set(last, (0)); return; } slot = it.unimi.dsi.fastutil.HashCommon.mix((curr)) & mask; if (last <= pos ? last >= slot || slot > pos : last >= slot && slot > pos) { break; } pos = (pos + 1) & mask; } if (pos < last) { // Wrapped entry. if (wrapped == null) { wrapped = new LongBigArrayBigList(2); } wrapped.add(key.get(pos)); } key.set(last, curr); value.set(last, value.get(pos)); } } public void remove() { if (last == -1) { throw new IllegalStateException(); } if (last == n) { containsNullKey = false; } else if (pos >= 0) { shiftKeys(last); } else { // We're removing wrapped entries. Long2LongOpenBigHashMap.this.remove(wrapped.getLong(-pos - 1)); last = -1; // Note that we must not decrement size return; } size--; last = -1; // You can no longer remove this entry. if (ASSERTS) { checkTable(); } } public long skip(final long n) { long i = n; while (i-- != 0 && hasNext()) { nextEntry(); } return n - i - 1; } } private class EntryIterator extends MapIterator implements ObjectIterator { private MapEntry entry; @Override public MapEntry next() { entry = new MapEntry(nextEntry()); return entry; } @Override public void remove() { super.remove(); entry.index = -1; // You cannot use a deleted entry. } } private class FastEntryIterator extends MapIterator implements ObjectIterator { private final MapEntry entry = new MapEntry(); @Override public MapEntry next() { entry.index = nextEntry(); return entry; } } private final class MapEntrySet extends AbstractObjectSet implements FastEntrySet { @Override public ObjectIterator iterator() { return new EntryIterator(); } @Override public ObjectIterator fastIterator() { return new FastEntryIterator(); } @Override public boolean contains(final Object o) { if (!(o instanceof Map.Entry)) { return false; } final Map.Entry e = (Map.Entry) o; if (e.getKey() == null || !(e.getKey() instanceof Long)) { return false; } if (e.getValue() == null || !(e.getValue() instanceof Long)) { return false; } final long k = ((Long) (e.getKey())).longValue(); final long v = ((Long) (e.getValue())).longValue(); if (((k) == (0))) { return Long2LongOpenBigHashMap.this.containsNullKey && ((value.get(n)) == (v)); } final LongBigArray key = Long2LongOpenBigHashMap.this.key; // The starting point. long pos = it.unimi.dsi.fastutil.HashCommon.mix((k)) & mask; long curr = key.get(pos); if (((curr) == (0))) { return false; } if (((k) == (curr))) { return ((value.get(pos)) == (v)); } // There's always an unused entry. while (true) { pos = (pos + 1) & mask; curr = key.get(pos); if (((curr) == (0))) { return false; } if (((k) == (curr))) { return ((value.get(pos)) == (v)); } } } @Override public boolean remove(final Object o) { if (!(o instanceof Map.Entry)) { return false; } final Map.Entry e = (Map.Entry) o; if (e.getKey() == null || !(e.getKey() instanceof Long)) { return false; } if (e.getValue() == null || !(e.getValue() instanceof Long)) { return false; } final long k = ((Long) (e.getKey())).longValue(); final long v = ((Long) (e.getValue())).longValue(); if (((k) == (0))) { if (containsNullKey && ((value.get(n)) == (v))) { removeNullEntry(); return true; } return false; } final LongBigArray key = Long2LongOpenBigHashMap.this.key; // The starting point. long pos = it.unimi.dsi.fastutil.HashCommon.mix((k)) & mask; long curr = key.get(pos); if (((curr) == (0))) { return false; } if (((curr) == (k))) { if (((value.get(pos)) == (v))) { removeEntry(pos); return true; } return false; } while (true) { pos = (pos + 1) & mask; curr = key.get(pos); if (((curr) == (0))) { return false; } if (((curr) == (k))) { if (((value.get(pos)) == (v))) { removeEntry(pos); return true; } } } } @Override public int size() { return toIntExact(size); } @Override public void clear() { Long2LongOpenBigHashMap.this.clear(); } /** * {@inheritDoc} */ @Override public void forEach(final Consumer consumer) { if (containsNullKey) { consumer.accept(new AbstractLong2LongMap.BasicEntry(key.get(n), value.get(n))); } for (long pos = n; pos-- != 0; ) { if (!((key.get(pos)) == (0))) { consumer.accept(new AbstractLong2LongMap.BasicEntry(key.get(pos), value.get(pos))); } } } /** * {@inheritDoc} */ @Override public void fastForEach(final Consumer consumer) { if (containsNullKey) { consumer.accept(new AbstractLong2LongMap.BasicEntry(key.get(n), value.get(n))); } for (long pos = n; pos-- != 0; ) { if (!((key.get(pos)) == (0))) { consumer.accept(new AbstractLong2LongMap.BasicEntry(key.get(pos), value.get(pos))); } } } } @Override public FastEntrySet long2LongEntrySet() { if (entries == null) { entries = new MapEntrySet(); } return entries; } /** * An iterator on keys. * *

* We simply override the * {@link java.util.ListIterator#next()}/{@link java.util.ListIterator#previous()} * methods (and possibly their type-specific counterparts) so that they return * keys instead of entries. */ private final class KeyIterator extends MapIterator implements LongIterator { public KeyIterator() { super(); } @Override public long nextLong() { return key.get(nextEntry()); } } private final class KeySet extends AbstractLongSet { @Override public LongIterator iterator() { return new KeyIterator(); } /** * {@inheritDoc} */ @Override public void forEach(final java.util.function.LongConsumer consumer) { if (containsNullKey) { consumer.accept(key.get(n)); } for (long pos = n; pos-- != 0; ) { final long k = key.get(pos); if (!((k) == (0))) { consumer.accept(k); } } } @Override public int size() { return toIntExact(size); } @Override public boolean contains(long k) { return containsKey(k); } @Override public boolean remove(long k) { final long oldSize = size; Long2LongOpenBigHashMap.this.remove(k); return size != oldSize; } @Override public void clear() { Long2LongOpenBigHashMap.this.clear(); } } @Override public LongSet keySet() { if (keys == null) { keys = new KeySet(); } return keys; } /** * An iterator on values. * *

* We simply override the * {@link java.util.ListIterator#next()}/{@link java.util.ListIterator#previous()} * methods (and possibly their type-specific counterparts) so that they return * values instead of entries. */ private final class ValueIterator extends MapIterator implements LongIterator { public ValueIterator() { super(); } @Override public long nextLong() { return value.get(nextEntry()); } } @Override public LongCollection values() { if (values == null) { values = new AbstractLongCollection() { @Override public LongIterator iterator() { return new ValueIterator(); } @Override public int size() { return toIntExact(size); } @Override public boolean contains(long v) { return containsValue(v); } @Override public void clear() { Long2LongOpenBigHashMap.this.clear(); } /** {@inheritDoc} */ @Override public void forEach(final java.util.function.LongConsumer consumer) { if (containsNullKey) { consumer.accept(value.get(n)); } for (long pos = n; pos-- != 0; ) { if (!((key.get(pos)) == (0))) { consumer.accept(value.get(pos)); } } } }; } return values; } /** * Rehashes the map, making the table as small as possible. * *

* This method rehashes the table to the smallest size satisfying the load * factor. It can be used when the set will not be changed anymore, so to * optimize access speed and size. * *

* If the table size is already the minimum possible, this method does nothing. * * @return true if there was enough memory to trim the map. * @see #trim(long) */ public boolean trim() { return trim(size); } /** * Rehashes this map if the table is too large. * *

* Let N be the smallest table size that can hold * max(n,{@link #size()}) entries, still satisfying the load * factor. If the current table size is smaller than or equal to N, * this method does nothing. Otherwise, it rehashes this map in a table of size * N. * *

* This method is useful when reusing maps. {@linkplain #clear() Clearing a map} * leaves the table size untouched. If you are reusing a map many times, you can * call this method with a typical size to avoid keeping around a very large * table just because of a few large transient maps. * * @param n the threshold for the trimming. * @return true if there was enough memory to trim the map. * @see #trim() */ public boolean trim(final long n) { final long l = bigArraySize(n, f); if (l >= this.n || size > maxFill(l, f)) { return true; } try { rehash(l); } catch (OutOfMemoryError cantDoIt) { return false; } return true; } /** * Rehashes the map. * *

* This method implements the basic rehashing strategy, and may be overridden by * subclasses implementing different rehashing strategies (e.g., disk-based * rehashing). However, you should not override this method unless you * understand the internal workings of this class. * * @param newN the new size */ protected void rehash(final long newN) { final LongBigArray key = this.key; final LongBigArray value = this.value; final long mask = newN - 1; // Note that this is used by the hashing macro final LongBigArray newKey = new LongBigArray(); newKey.ensureCapacity(newN + 1); final LongBigArray newValue = new LongBigArray(); newValue.ensureCapacity(newN + 1); long i = n; long pos; for (long j = realSize(); j-- != 0; ) { while (((key.get(--i)) == (0))) { // Skip } pos = it.unimi.dsi.fastutil.HashCommon.mix((key.get(i))) & mask; if (!((newKey.get(pos)) == (0))) { pos = (pos + 1) & mask; while (!((newKey.get(pos)) == (0))) { pos = (pos + 1) & mask; } } newKey.set(pos, key.get(i)); newValue.set(pos, value.get(i)); } newValue.set(newN, value.get(n)); n = newN; this.mask = mask; maxFill = maxFill(n, f); this.key = newKey; this.value = newValue; } private void checkTable() { } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy