All Downloads are FREE. Search and download functionalities are using the official Maven repository.

io.prestosql.spi.predicate.TupleDomain Maven / Gradle / Ivy

There is a newer version: 350
Show newest version
/*
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package io.prestosql.spi.predicate;

import com.fasterxml.jackson.annotation.JsonCreator;
import com.fasterxml.jackson.annotation.JsonIgnore;
import com.fasterxml.jackson.annotation.JsonProperty;
import io.prestosql.spi.connector.ConnectorSession;
import io.prestosql.spi.type.Type;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Iterator;
import java.util.LinkedHashMap;
import java.util.List;
import java.util.Map;
import java.util.Objects;
import java.util.Optional;
import java.util.Set;
import java.util.function.BiFunction;
import java.util.function.BiPredicate;
import java.util.function.Function;
import java.util.stream.Collector;

import static java.lang.String.format;
import static java.util.Collections.emptyMap;
import static java.util.Collections.unmodifiableList;
import static java.util.Objects.requireNonNull;
import static java.util.stream.Collectors.toList;
import static java.util.stream.Collectors.toMap;

/**
 * Defines a set of valid tuples according to the constraints on each of its constituent columns
 */
public final class TupleDomain
{
    private static final TupleDomain NONE = new TupleDomain<>(Optional.empty());
    private static final TupleDomain ALL = new TupleDomain<>(Optional.of(emptyMap()));

    /**
     * TupleDomain is internally represented as a normalized map of each column to its
     * respective allowable value Domain. Conceptually, these Domains can be thought of
     * as being AND'ed together to form the representative predicate.
     * 

* This map is normalized in the following ways: * 1) The map will not contain Domain.none() as any of its values. If any of the Domain * values are Domain.none(), then the whole map will instead be null. This enforces the fact that * any single Domain.none() value effectively turns this TupleDomain into "none" as well. * 2) The map will not contain Domain.all() as any of its values. Our convention here is that * any unmentioned column is equivalent to having Domain.all(). To normalize this structure, * we remove any Domain.all() values from the map. */ private final Optional> domains; private TupleDomain(Optional> domains) { requireNonNull(domains, "domains is null"); this.domains = domains.flatMap(map -> { if (containsNoneDomain(map)) { return Optional.empty(); } return Optional.of(Collections.unmodifiableMap(normalizeAndCopy(map))); }); } public static TupleDomain withColumnDomains(Map domains) { requireNonNull(domains, "domains is null"); if (domains.isEmpty()) { return all(); } return new TupleDomain<>(Optional.of(domains)); } @SuppressWarnings("unchecked") public static TupleDomain none() { return (TupleDomain) NONE; } @SuppressWarnings("unchecked") public static TupleDomain all() { return (TupleDomain) ALL; } /** * Extract all column constraints that require exactly one value or only null in their respective Domains. * Returns an empty Optional if the Domain is none. */ public static Optional> extractFixedValues(TupleDomain tupleDomain) { if (tupleDomain.getDomains().isEmpty()) { return Optional.empty(); } return Optional.of(tupleDomain.getDomains().get() .entrySet().stream() .filter(entry -> entry.getValue().isNullableSingleValue()) .collect(toLinkedMap(Map.Entry::getKey, entry -> new NullableValue(entry.getValue().getType(), entry.getValue().getNullableSingleValue())))); } /** * Extract all column constraints that define a non-empty set of discrete values allowed for the columns in their respective Domains. * Returns an empty Optional if the Domain is none. */ public static Optional>> extractDiscreteValues(TupleDomain tupleDomain) { if (tupleDomain.getDomains().isEmpty()) { return Optional.empty(); } return Optional.of(tupleDomain.getDomains().get() .entrySet().stream() .filter(entry -> entry.getValue().isNullableDiscreteSet()) .collect(toLinkedMap( Map.Entry::getKey, entry -> { Domain.DiscreteSet discreteValues = entry.getValue().getNullableDiscreteSet(); List nullableValues = new ArrayList<>(); for (Object value : discreteValues.getNonNullValues()) { nullableValues.add(new NullableValue(entry.getValue().getType(), value)); } if (discreteValues.containsNull()) { nullableValues.add(new NullableValue(entry.getValue().getType(), null)); } return unmodifiableList(nullableValues); }))); } /** * Convert a map of columns to values into the TupleDomain which requires * those columns to be fixed to those values. Null is allowed as a fixed value. */ public static TupleDomain fromFixedValues(Map fixedValues) { return TupleDomain.withColumnDomains(fixedValues.entrySet().stream() .collect(toLinkedMap( Map.Entry::getKey, entry -> { Type type = entry.getValue().getType(); Object value = entry.getValue().getValue(); return value == null ? Domain.onlyNull(type) : Domain.singleValue(type, value); }))); } @JsonCreator // Available for Jackson deserialization only! public static TupleDomain fromColumnDomains(@JsonProperty("columnDomains") Optional>> columnDomains) { if (columnDomains.isEmpty()) { return none(); } return withColumnDomains(columnDomains.get().stream() .collect(toLinkedMap(ColumnDomain::getColumn, ColumnDomain::getDomain))); } @JsonProperty // Available for Jackson serialization only! public Optional>> getColumnDomains() { return domains.map(map -> map.entrySet().stream() .map(entry -> new ColumnDomain<>(entry.getKey(), entry.getValue())) .collect(toList())); } private static boolean containsNoneDomain(Map domains) { return domains.values().stream().anyMatch(Domain::isNone); } private static Map normalizeAndCopy(Map domains) { return domains.entrySet().stream() .filter(entry -> !entry.getValue().isAll()) .collect(toLinkedMap(Map.Entry::getKey, Map.Entry::getValue)); } /** * Returns true if any tuples would satisfy this TupleDomain */ public boolean isAll() { return domains.isPresent() && domains.get().isEmpty(); } /** * Returns true if no tuple could ever satisfy this TupleDomain */ public boolean isNone() { return domains.isEmpty(); } /** * Gets the TupleDomain as a map of each column to its respective Domain. * - Will return an Optional.empty() if this is a 'none' TupleDomain. * - Unmentioned columns have an implicit value of Domain.all() * - The column Domains can be thought of as AND'ed to together to form the whole predicate */ @JsonIgnore public Optional> getDomains() { return domains; } /** * Returns the strict intersection of the TupleDomains. * The resulting TupleDomain represents the set of tuples that would be valid * in both TupleDomains. */ public TupleDomain intersect(TupleDomain other) { requireNonNull(other, "other is null"); if (this.isNone() || other.isNone()) { return none(); } if (this == other) { return this; } if (this.isAll()) { return other; } if (other.isAll()) { return this; } Map intersected = new LinkedHashMap<>(this.getDomains().get()); for (Map.Entry entry : other.getDomains().get().entrySet()) { Domain intersectionDomain = intersected.get(entry.getKey()); if (intersectionDomain == null) { intersected.put(entry.getKey(), entry.getValue()); } else { intersected.put(entry.getKey(), intersectionDomain.intersect(entry.getValue())); } } return withColumnDomains(intersected); } @SafeVarargs public static TupleDomain columnWiseUnion(TupleDomain first, TupleDomain second, TupleDomain... rest) { List> domains = new ArrayList<>(rest.length + 2); domains.add(first); domains.add(second); domains.addAll(Arrays.asList(rest)); return columnWiseUnion(domains); } /** * Returns a TupleDomain in which corresponding column Domains are unioned together. *

* Note that this is NOT equivalent to a strict union as the final result may allow tuples * that do not exist in either TupleDomain. * Example 1: *

*

    *
  • TupleDomain X: a => 1, b => 2 *
  • TupleDomain Y: a => 2, b => 3 *
  • Column-wise unioned TupleDomain: a => 1 OR 2, b => 2 OR 3 *
*

* In the above resulting TupleDomain, tuple (a => 1, b => 3) would be considered valid but would * not be valid for either TupleDomain X or TupleDomain Y. * Example 2: *

* Let a be of type DOUBLE *

    *
  • TupleDomain X: (a < 5) *
  • TupleDomain Y: (a > 0) *
  • Column-wise unioned TupleDomain: (a IS NOT NULL) *
*

* In the above resulting TupleDomain, tuple (a => NaN) would be considered valid but would * not be valid for either TupleDomain X or TupleDomain Y. * However, this result is guaranteed to be a superset of the strict union. */ public static TupleDomain columnWiseUnion(List> tupleDomains) { if (tupleDomains.isEmpty()) { throw new IllegalArgumentException("tupleDomains must have at least one element"); } if (tupleDomains.size() == 1) { return tupleDomains.get(0); } // gather all common columns Set commonColumns = new HashSet<>(); // first, find a non-none domain boolean found = false; Iterator> domains = tupleDomains.iterator(); while (domains.hasNext()) { TupleDomain domain = domains.next(); if (!domain.isNone()) { found = true; commonColumns.addAll(domain.getDomains().get().keySet()); break; } } if (!found) { return TupleDomain.none(); } // then, get the common columns while (domains.hasNext()) { TupleDomain domain = domains.next(); if (!domain.isNone()) { commonColumns.retainAll(domain.getDomains().get().keySet()); } } // group domains by column (only for common columns) Map> domainsByColumn = new LinkedHashMap<>(tupleDomains.size()); for (TupleDomain domain : tupleDomains) { if (!domain.isNone()) { for (Map.Entry entry : domain.getDomains().get().entrySet()) { if (commonColumns.contains(entry.getKey())) { List domainForColumn = domainsByColumn.get(entry.getKey()); if (domainForColumn == null) { domainForColumn = new ArrayList<>(); domainsByColumn.put(entry.getKey(), domainForColumn); } domainForColumn.add(entry.getValue()); } } } } // finally, do the column-wise union Map result = new LinkedHashMap<>(domainsByColumn.size()); for (Map.Entry> entry : domainsByColumn.entrySet()) { result.put(entry.getKey(), Domain.union(entry.getValue())); } return withColumnDomains(result); } /** * Returns true only if there exists a strict intersection between the TupleDomains. * i.e. there exists some potential tuple that would be allowable in both TupleDomains. */ public boolean overlaps(TupleDomain other) { return !this.intersect(other).isNone(); } /** * Returns true only if the this TupleDomain contains all possible tuples that would be allowable by * the other TupleDomain. */ public boolean contains(TupleDomain other) { return other.isNone() || columnWiseUnion(this, other).equals(this); } @Override public boolean equals(Object obj) { if (this == obj) { return true; } if (obj == null || getClass() != obj.getClass()) { return false; } TupleDomain other = (TupleDomain) obj; return Objects.equals(this.domains, other.domains); } @Override public int hashCode() { return Objects.hash(domains); } @Override public String toString() { if (isAll()) { return "TupleDomain{ALL}"; } if (isNone()) { return "TupleDomain{NONE}"; } return "TupleDomain{...}"; } public String toString(ConnectorSession session) { StringBuilder buffer = new StringBuilder(); if (isAll()) { buffer.append("ALL"); } else if (isNone()) { buffer.append("NONE"); } else { buffer.append(domains.get().entrySet().stream() .collect(toLinkedMap(Map.Entry::getKey, entry -> entry.getValue().toString(session)))); } return buffer.toString(); } public TupleDomain filter(BiPredicate predicate) { requireNonNull(predicate, "predicate is null"); return transformDomains((key, domain) -> { if (!predicate.test(key, domain)) { return Domain.all(domain.getType()); } return domain; }); } public TupleDomain transform(Function function) { if (isNone()) { return none(); } if (isAll()) { return all(); } Map domains = this.domains.orElseThrow(); HashMap result = new LinkedHashMap<>(domains.size()); for (Map.Entry entry : domains.entrySet()) { U key = function.apply(entry.getKey()); if (key == null) { continue; } Domain previous = result.put(key, entry.getValue()); if (previous != null) { throw new IllegalArgumentException(format("Every argument must have a unique mapping. %s maps to %s and %s", entry.getKey(), entry.getValue(), previous)); } } return TupleDomain.withColumnDomains(result); } public TupleDomain simplify() { return transformDomains((key, domain) -> domain.simplify()); } public TupleDomain simplify(int threshold) { return transformDomains((key, domain) -> domain.simplify(threshold)); } public TupleDomain transformDomains(BiFunction transformation) { requireNonNull(transformation, "transformation is null"); if (isNone() || isAll()) { return this; } return withColumnDomains(domains.get().entrySet().stream() .collect(toLinkedMap( Map.Entry::getKey, entry -> { Domain newDomain = transformation.apply(entry.getKey(), entry.getValue()); return requireNonNull(newDomain, "newDomain is null"); }))); } // Available for Jackson serialization only! public static class ColumnDomain { private final C column; private final Domain domain; @JsonCreator public ColumnDomain( @JsonProperty("column") C column, @JsonProperty("domain") Domain domain) { this.column = requireNonNull(column, "column is null"); this.domain = requireNonNull(domain, "domain is null"); } @JsonProperty public C getColumn() { return column; } @JsonProperty public Domain getDomain() { return domain; } } private static Collector> toLinkedMap(Function keyMapper, Function valueMapper) { return toMap( keyMapper, valueMapper, (u, v) -> { throw new IllegalStateException(format("Duplicate values for a key: %s and %s", u, v)); }, LinkedHashMap::new); } }