io.quarkiverse.langchain4j.infinispan.runtime.InfinispanEmbeddingStoreConfig Maven / Gradle / Ivy
package io.quarkiverse.langchain4j.infinispan.runtime;
import static io.quarkus.runtime.annotations.ConfigPhase.RUN_TIME;
import io.quarkus.runtime.annotations.ConfigRoot;
import io.smallrye.config.ConfigMapping;
import io.smallrye.config.WithDefault;
/**
* Configuration of the Infinispan embedding store.
*/
@ConfigRoot(phase = RUN_TIME)
@ConfigMapping(prefix = "quarkus.langchain4j.infinispan")
public interface InfinispanEmbeddingStoreConfig {
/**
* The dimension of the embedding vectors. This has to be the same as the dimension of vectors produced by
* the embedding model that you use. For example, AllMiniLmL6V2QuantizedEmbeddingModel produces vectors of dimension 384.
* OpenAI's text-embedding-ada-002 produces vectors of dimension 1536.
*/
Long dimension();
/**
* Name of the cache that will be used in Infinispan when searching for related embeddings.
* If this cache doesn't exist, it will be created.
*/
@WithDefault("embeddings-cache")
String cacheName();
/**
* The maximum distance. The most distance between vectors is how close or far apart two embeddings are.
*/
@WithDefault("3")
Integer distance();
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy