io.quarkiverse.langchain4j.ollama.runtime.config.ChatModelConfig Maven / Gradle / Ivy
package io.quarkiverse.langchain4j.ollama.runtime.config;
import java.util.List;
import java.util.Optional;
import java.util.OptionalInt;
import io.quarkus.runtime.annotations.ConfigDocDefault;
import io.quarkus.runtime.annotations.ConfigGroup;
import io.smallrye.config.WithDefault;
@ConfigGroup
public interface ChatModelConfig {
/**
* The temperature of the model. Increasing the temperature will make the model answer with
* more variability. A lower temperature will make the model answer more conservatively.
*/
@WithDefault("0.8")
Double temperature();
/**
* Maximum number of tokens to predict when generating text
*/
OptionalInt numPredict();
/**
* Sets the stop sequences to use. When this pattern is encountered the LLM will stop generating text and return
*/
Optional> stop();
/**
* Works together with top-k. A higher value (e.g., 0.95) will lead to more diverse text, while a lower value (e.g., 0.5)
* will generate more focused and conservative text
*/
@WithDefault("0.9")
Double topP();
/**
* Reduces the probability of generating nonsense. A higher value (e.g. 100) will give more diverse answers, while a lower
* value (e.g. 10) will be more conservative
*/
@WithDefault("40")
Integer topK();
/**
* With a static number the result is always the same. With a random number the result varies
* Example:
*
*
* {@code
* Random random = new Random();
* int x = random.nextInt(Integer.MAX_VALUE);
* }
*
*/
Optional seed();
/**
* the format to return a response in. Currently, the only accepted value is {@code json}
*/
Optional format();
/**
* Whether chat model requests should be logged
*/
@ConfigDocDefault("false")
@WithDefault("${quarkus.langchain4j.ollama.log-requests}")
Optional logRequests();
/**
* Whether chat model responses should be logged
*/
@ConfigDocDefault("false")
@WithDefault("${quarkus.langchain4j.ollama.log-responses}")
Optional logResponses();
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy