All Downloads are FREE. Search and download functionalities are using the official Maven repository.

io.quarkiverse.langchain4j.watsonx.deployment.WatsonxProcessor Maven / Gradle / Ivy

The newest version!
package io.quarkiverse.langchain4j.watsonx.deployment;

import static io.quarkiverse.langchain4j.deployment.LangChain4jDotNames.CHAT_MODEL;
import static io.quarkiverse.langchain4j.deployment.LangChain4jDotNames.EMBEDDING_MODEL;
import static io.quarkiverse.langchain4j.deployment.LangChain4jDotNames.SCORING_MODEL;
import static io.quarkiverse.langchain4j.deployment.LangChain4jDotNames.STREAMING_CHAT_MODEL;
import static io.quarkiverse.langchain4j.deployment.LangChain4jDotNames.TOKEN_COUNT_ESTIMATOR;

import java.util.List;
import java.util.function.Function;

import jakarta.enterprise.context.ApplicationScoped;

import org.jboss.jandex.AnnotationInstance;
import org.jboss.jandex.ClassType;
import org.jboss.jandex.ParameterizedType;
import org.jboss.jandex.Type;

import dev.langchain4j.model.chat.ChatLanguageModel;
import dev.langchain4j.model.chat.StreamingChatLanguageModel;
import io.quarkiverse.langchain4j.ModelName;
import io.quarkiverse.langchain4j.deployment.DotNames;
import io.quarkiverse.langchain4j.deployment.items.ChatModelProviderCandidateBuildItem;
import io.quarkiverse.langchain4j.deployment.items.EmbeddingModelProviderCandidateBuildItem;
import io.quarkiverse.langchain4j.deployment.items.ScoringModelProviderCandidateBuildItem;
import io.quarkiverse.langchain4j.deployment.items.SelectedChatModelProviderBuildItem;
import io.quarkiverse.langchain4j.deployment.items.SelectedEmbeddingModelCandidateBuildItem;
import io.quarkiverse.langchain4j.deployment.items.SelectedScoringModelProviderBuildItem;
import io.quarkiverse.langchain4j.runtime.NamedConfigUtil;
import io.quarkiverse.langchain4j.watsonx.runtime.WatsonxRecorder;
import io.quarkiverse.langchain4j.watsonx.runtime.config.LangChain4jWatsonxConfig;
import io.quarkiverse.langchain4j.watsonx.runtime.config.LangChain4jWatsonxFixedRuntimeConfig;
import io.quarkus.arc.SyntheticCreationalContext;
import io.quarkus.arc.deployment.SyntheticBeanBuildItem;
import io.quarkus.deployment.Capabilities;
import io.quarkus.deployment.Capability;
import io.quarkus.deployment.annotations.BuildProducer;
import io.quarkus.deployment.annotations.BuildStep;
import io.quarkus.deployment.annotations.ExecutionTime;
import io.quarkus.deployment.annotations.Record;
import io.quarkus.deployment.builditem.FeatureBuildItem;
import io.quarkus.resteasy.reactive.spi.MessageBodyReaderOverrideBuildItem;
import io.quarkus.resteasy.reactive.spi.MessageBodyWriterOverrideBuildItem;
import io.smallrye.config.Priorities;

public class WatsonxProcessor {

    private static final String FEATURE = "langchain4j-watsonx";
    private static final String PROVIDER = "watsonx";

    @BuildStep
    FeatureBuildItem feature() {
        return new FeatureBuildItem(FEATURE);
    }

    @BuildStep
    public void providerCandidates(BuildProducer chatProducer,
            BuildProducer embeddingProducer,
            BuildProducer scoringProducer,
            LangChain4jWatsonBuildConfig config) {

        if (config.chatModel().enabled().isEmpty() || config.chatModel().enabled().get()) {
            chatProducer.produce(new ChatModelProviderCandidateBuildItem(PROVIDER));
        }

        if (config.embeddingModel().enabled().isEmpty() || config.embeddingModel().enabled().get()) {
            embeddingProducer.produce(new EmbeddingModelProviderCandidateBuildItem(PROVIDER));
        }

        if (config.scoringModel().enabled().isEmpty() || config.scoringModel().enabled().get()) {
            scoringProducer.produce(new ScoringModelProviderCandidateBuildItem(PROVIDER));
        }
    }

    @BuildStep
    @Record(ExecutionTime.RUNTIME_INIT)
    void generateBeans(WatsonxRecorder recorder, LangChain4jWatsonxConfig runtimeConfig,
            LangChain4jWatsonxFixedRuntimeConfig fixedRuntimeConfig,
            List selectedChatItem,
            List selectedEmbedding,
            List selectedScoring,
            BuildProducer beanProducer) {

        for (var selected : selectedChatItem) {

            if (!PROVIDER.equals(selected.getProvider()))
                continue;

            String configName = selected.getConfigName();
            String mode = NamedConfigUtil.isDefault(configName)
                    ? fixedRuntimeConfig.defaultConfig().mode()
                    : fixedRuntimeConfig.namedConfig().get(configName).mode();

            Function, ChatLanguageModel> chatLanguageModel;
            Function, StreamingChatLanguageModel> streamingChatLanguageModel;

            if (mode.equalsIgnoreCase("chat")) {
                chatLanguageModel = recorder.chatModel(runtimeConfig, configName);
                streamingChatLanguageModel = recorder.streamingChatModel(runtimeConfig, configName);
            } else if (mode.equalsIgnoreCase("generation")) {
                chatLanguageModel = recorder.generationModel(runtimeConfig, configName);
                streamingChatLanguageModel = recorder.generationStreamingModel(runtimeConfig, configName);
            } else {
                throw new RuntimeException(
                        "The \"mode\" value for the model \"%s\" is not valid. Choose one between [\"chat\", \"generation\"]"
                                .formatted(mode, configName));
            }

            var chatBuilder = SyntheticBeanBuildItem
                    .configure(CHAT_MODEL)
                    .setRuntimeInit()
                    .defaultBean()
                    .scope(ApplicationScoped.class)
                    .addInjectionPoint(ParameterizedType.create(DotNames.CDI_INSTANCE,
                            new Type[] { ClassType.create(DotNames.CHAT_MODEL_LISTENER) }, null))
                    .createWith(chatLanguageModel);

            addQualifierIfNecessary(chatBuilder, configName);
            beanProducer.produce(chatBuilder.done());

            var tokenizerBuilder = SyntheticBeanBuildItem
                    .configure(TOKEN_COUNT_ESTIMATOR)
                    .setRuntimeInit()
                    .defaultBean()
                    .scope(ApplicationScoped.class)
                    .addInjectionPoint(ParameterizedType.create(DotNames.CDI_INSTANCE,
                            new Type[] { ClassType.create(DotNames.CHAT_MODEL_LISTENER) }, null))
                    .createWith(chatLanguageModel);

            addQualifierIfNecessary(tokenizerBuilder, configName);
            beanProducer.produce(tokenizerBuilder.done());

            var streamingBuilder = SyntheticBeanBuildItem
                    .configure(STREAMING_CHAT_MODEL)
                    .setRuntimeInit()
                    .defaultBean()
                    .scope(ApplicationScoped.class)
                    .addInjectionPoint(ParameterizedType.create(DotNames.CDI_INSTANCE,
                            new Type[] { ClassType.create(DotNames.CHAT_MODEL_LISTENER) }, null))
                    .createWith(streamingChatLanguageModel);

            addQualifierIfNecessary(streamingBuilder, configName);
            beanProducer.produce(streamingBuilder.done());
        }

        for (var selected : selectedEmbedding) {
            if (PROVIDER.equals(selected.getProvider())) {
                String configName = selected.getConfigName();
                var builder = SyntheticBeanBuildItem
                        .configure(EMBEDDING_MODEL)
                        .setRuntimeInit()
                        .defaultBean()
                        .unremovable()
                        .scope(ApplicationScoped.class)
                        .supplier(recorder.embeddingModel(runtimeConfig, configName));
                addQualifierIfNecessary(builder, configName);
                beanProducer.produce(builder.done());
            }
        }

        for (var selected : selectedScoring) {
            if (PROVIDER.equals(selected.getProvider())) {
                String configName = selected.getConfigName();
                var builder = SyntheticBeanBuildItem
                        .configure(SCORING_MODEL)
                        .setRuntimeInit()
                        .defaultBean()
                        .unremovable()
                        .scope(ApplicationScoped.class)
                        .supplier(recorder.scoringModel(runtimeConfig, configName));
                addQualifierIfNecessary(builder, configName);
                beanProducer.produce(builder.done());
            }
        }
    }

    private void addQualifierIfNecessary(SyntheticBeanBuildItem.ExtendedBeanConfigurator builder, String configName) {
        if (!NamedConfigUtil.isDefault(configName)) {
            builder.addQualifier(AnnotationInstance.builder(ModelName.class).add("value", configName).build());
        }
    }

    /**
     * When both {@code rest-client-jackson} and {@code rest-client-jsonb} are present on the classpath we need to make sure
     * that Jackson is used. This is not a proper solution as it affects all clients, but it's better than the having the
     * reader/writers be selected at random.
     */
    @BuildStep
    public void deprioritizeJsonb(Capabilities capabilities,
            BuildProducer readerOverrideProducer,
            BuildProducer writerOverrideProducer) {
        if (capabilities.isPresent(Capability.REST_CLIENT_REACTIVE_JSONB)) {
            readerOverrideProducer.produce(
                    new MessageBodyReaderOverrideBuildItem("org.jboss.resteasy.reactive.server.jsonb.JsonbMessageBodyReader",
                            Priorities.APPLICATION + 1, true));
            writerOverrideProducer.produce(new MessageBodyWriterOverrideBuildItem(
                    "org.jboss.resteasy.reactive.server.jsonb.JsonbMessageBodyWriter", Priorities.APPLICATION + 1, true));
        }
    }
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy