All Downloads are FREE. Search and download functionalities are using the official Maven repository.

io.reactivex.parallel.ParallelFlowable Maven / Gradle / Ivy

There is a newer version: 2.2.21
Show newest version
/**
 * Copyright (c) 2016-present, RxJava Contributors.
 *
 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in
 * compliance with the License. You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software distributed under the License is
 * distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See
 * the License for the specific language governing permissions and limitations under the License.
 */

package io.reactivex.parallel;

import java.util.*;
import java.util.concurrent.Callable;

import io.reactivex.*;
import io.reactivex.annotations.*;
import io.reactivex.exceptions.Exceptions;
import io.reactivex.functions.*;
import io.reactivex.internal.functions.*;
import io.reactivex.internal.operators.parallel.*;
import io.reactivex.internal.subscriptions.EmptySubscription;
import io.reactivex.internal.util.*;
import io.reactivex.plugins.RxJavaPlugins;
import org.reactivestreams.*;

/**
 * Abstract base class for Parallel publishers that take an array of Subscribers.
 * 

* Use {@code from()} to start processing a regular Publisher in 'rails'. * Use {@code runOn()} to introduce where each 'rail' should run on thread-vise. * Use {@code sequential()} to merge the sources back into a single Flowable. * *

History: 2.0.5 - experimental * @param the value type * @since 2.1 - beta */ @Beta public abstract class ParallelFlowable { /** * Subscribes an array of Subscribers to this ParallelFlowable and triggers * the execution chain for all 'rails'. * * @param subscribers the subscribers array to run in parallel, the number * of items must be equal to the parallelism level of this ParallelFlowable * @see #parallelism() */ public abstract void subscribe(@NonNull Subscriber[] subscribers); /** * Returns the number of expected parallel Subscribers. * @return the number of expected parallel Subscribers */ public abstract int parallelism(); /** * Validates the number of subscribers and returns true if their number * matches the parallelism level of this ParallelFlowable. * * @param subscribers the array of Subscribers * @return true if the number of subscribers equals to the parallelism level */ protected final boolean validate(@NonNull Subscriber[] subscribers) { int p = parallelism(); if (subscribers.length != p) { Throwable iae = new IllegalArgumentException("parallelism = " + p + ", subscribers = " + subscribers.length); for (Subscriber s : subscribers) { EmptySubscription.error(iae, s); } return false; } return true; } /** * Take a Publisher and prepare to consume it on multiple 'rails' (number of CPUs) * in a round-robin fashion. * @param the value type * @param source the source Publisher * @return the ParallelFlowable instance */ @CheckReturnValue public static ParallelFlowable from(@NonNull Publisher source) { return from(source, Runtime.getRuntime().availableProcessors(), Flowable.bufferSize()); } /** * Take a Publisher and prepare to consume it on parallelism number of 'rails' in a round-robin fashion. * @param the value type * @param source the source Publisher * @param parallelism the number of parallel rails * @return the new ParallelFlowable instance */ @CheckReturnValue public static ParallelFlowable from(@NonNull Publisher source, int parallelism) { return from(source, parallelism, Flowable.bufferSize()); } /** * Take a Publisher and prepare to consume it on parallelism number of 'rails' , * possibly ordered and round-robin fashion and use custom prefetch amount and queue * for dealing with the source Publisher's values. * @param the value type * @param source the source Publisher * @param parallelism the number of parallel rails * @param prefetch the number of values to prefetch from the source * the source until there is a rail ready to process it. * @return the new ParallelFlowable instance */ @CheckReturnValue @NonNull public static ParallelFlowable from(@NonNull Publisher source, int parallelism, int prefetch) { ObjectHelper.requireNonNull(source, "source"); ObjectHelper.verifyPositive(parallelism, "parallelism"); ObjectHelper.verifyPositive(prefetch, "prefetch"); return RxJavaPlugins.onAssembly(new ParallelFromPublisher(source, parallelism, prefetch)); } /** * Calls the specified converter function during assembly time and returns its resulting value. *

* This allows fluent conversion to any other type. * * @param the resulting object type * @param converter the function that receives the current ParallelFlowable instance and returns a value * @return the converted value * @throws NullPointerException if converter is null * @since 2.1.7 - experimental */ @Experimental @CheckReturnValue @NonNull public final R as(@NonNull ParallelFlowableConverter converter) { return ObjectHelper.requireNonNull(converter, "converter is null").apply(this); } /** * Maps the source values on each 'rail' to another value. *

* Note that the same mapper function may be called from multiple threads concurrently. * @param the output value type * @param mapper the mapper function turning Ts into Us. * @return the new ParallelFlowable instance */ @CheckReturnValue @NonNull public final ParallelFlowable map(@NonNull Function mapper) { ObjectHelper.requireNonNull(mapper, "mapper"); return RxJavaPlugins.onAssembly(new ParallelMap(this, mapper)); } /** * Maps the source values on each 'rail' to another value and * handles errors based on the given {@link ParallelFailureHandling} enumeration value. *

* Note that the same mapper function may be called from multiple threads concurrently. * @param the output value type * @param mapper the mapper function turning Ts into Us. * @param errorHandler the enumeration that defines how to handle errors thrown * from the mapper function * @return the new ParallelFlowable instance * @since 2.0.8 - experimental */ @CheckReturnValue @Experimental @NonNull public final ParallelFlowable map(@NonNull Function mapper, @NonNull ParallelFailureHandling errorHandler) { ObjectHelper.requireNonNull(mapper, "mapper"); ObjectHelper.requireNonNull(errorHandler, "errorHandler is null"); return RxJavaPlugins.onAssembly(new ParallelMapTry(this, mapper, errorHandler)); } /** * Maps the source values on each 'rail' to another value and * handles errors based on the returned value by the handler function. *

* Note that the same mapper function may be called from multiple threads concurrently. * @param the output value type * @param mapper the mapper function turning Ts into Us. * @param errorHandler the function called with the current repeat count and * failure Throwable and should return one of the {@link ParallelFailureHandling} * enumeration values to indicate how to proceed. * @return the new ParallelFlowable instance * @since 2.0.8 - experimental */ @CheckReturnValue @Experimental @NonNull public final ParallelFlowable map(@NonNull Function mapper, @NonNull BiFunction errorHandler) { ObjectHelper.requireNonNull(mapper, "mapper"); ObjectHelper.requireNonNull(errorHandler, "errorHandler is null"); return RxJavaPlugins.onAssembly(new ParallelMapTry(this, mapper, errorHandler)); } /** * Filters the source values on each 'rail'. *

* Note that the same predicate may be called from multiple threads concurrently. * @param predicate the function returning true to keep a value or false to drop a value * @return the new ParallelFlowable instance */ @CheckReturnValue public final ParallelFlowable filter(@NonNull Predicate predicate) { ObjectHelper.requireNonNull(predicate, "predicate"); return RxJavaPlugins.onAssembly(new ParallelFilter(this, predicate)); } /** * Filters the source values on each 'rail' and * handles errors based on the given {@link ParallelFailureHandling} enumeration value. *

* Note that the same predicate may be called from multiple threads concurrently. * @param predicate the function returning true to keep a value or false to drop a value * @param errorHandler the enumeration that defines how to handle errors thrown * from the predicate * @return the new ParallelFlowable instance * @since 2.0.8 - experimental */ @CheckReturnValue @Experimental public final ParallelFlowable filter(@NonNull Predicate predicate, @NonNull ParallelFailureHandling errorHandler) { ObjectHelper.requireNonNull(predicate, "predicate"); ObjectHelper.requireNonNull(errorHandler, "errorHandler is null"); return RxJavaPlugins.onAssembly(new ParallelFilterTry(this, predicate, errorHandler)); } /** * Filters the source values on each 'rail' and * handles errors based on the returned value by the handler function. *

* Note that the same predicate may be called from multiple threads concurrently. * @param predicate the function returning true to keep a value or false to drop a value * @param errorHandler the function called with the current repeat count and * failure Throwable and should return one of the {@link ParallelFailureHandling} * enumeration values to indicate how to proceed. * @return the new ParallelFlowable instance * @since 2.0.8 - experimental */ @CheckReturnValue @Experimental public final ParallelFlowable filter(@NonNull Predicate predicate, @NonNull BiFunction errorHandler) { ObjectHelper.requireNonNull(predicate, "predicate"); ObjectHelper.requireNonNull(errorHandler, "errorHandler is null"); return RxJavaPlugins.onAssembly(new ParallelFilterTry(this, predicate, errorHandler)); } /** * Specifies where each 'rail' will observe its incoming values with * no work-stealing and default prefetch amount. *

* This operator uses the default prefetch size returned by {@code Flowable.bufferSize()}. *

* The operator will call {@code Scheduler.createWorker()} as many * times as this ParallelFlowable's parallelism level is. *

* No assumptions are made about the Scheduler's parallelism level, * if the Scheduler's parallelism level is lower than the ParallelFlowable's, * some rails may end up on the same thread/worker. *

* This operator doesn't require the Scheduler to be trampolining as it * does its own built-in trampolining logic. * * @param scheduler the scheduler to use * @return the new ParallelFlowable instance */ @CheckReturnValue @NonNull public final ParallelFlowable runOn(@NonNull Scheduler scheduler) { return runOn(scheduler, Flowable.bufferSize()); } /** * Specifies where each 'rail' will observe its incoming values with * possibly work-stealing and a given prefetch amount. *

* This operator uses the default prefetch size returned by {@code Flowable.bufferSize()}. *

* The operator will call {@code Scheduler.createWorker()} as many * times as this ParallelFlowable's parallelism level is. *

* No assumptions are made about the Scheduler's parallelism level, * if the Scheduler's parallelism level is lower than the ParallelFlowable's, * some rails may end up on the same thread/worker. *

* This operator doesn't require the Scheduler to be trampolining as it * does its own built-in trampolining logic. * * @param scheduler the scheduler to use * that rail's worker has run out of work. * @param prefetch the number of values to request on each 'rail' from the source * @return the new ParallelFlowable instance */ @CheckReturnValue @NonNull public final ParallelFlowable runOn(@NonNull Scheduler scheduler, int prefetch) { ObjectHelper.requireNonNull(scheduler, "scheduler"); ObjectHelper.verifyPositive(prefetch, "prefetch"); return RxJavaPlugins.onAssembly(new ParallelRunOn(this, scheduler, prefetch)); } /** * Reduces all values within a 'rail' and across 'rails' with a reducer function into a single * sequential value. *

* Note that the same reducer function may be called from multiple threads concurrently. * @param reducer the function to reduce two values into one. * @return the new Flowable instance emitting the reduced value or empty if the ParallelFlowable was empty */ @CheckReturnValue @NonNull public final Flowable reduce(@NonNull BiFunction reducer) { ObjectHelper.requireNonNull(reducer, "reducer"); return RxJavaPlugins.onAssembly(new ParallelReduceFull(this, reducer)); } /** * Reduces all values within a 'rail' to a single value (with a possibly different type) via * a reducer function that is initialized on each rail from an initialSupplier value. *

* Note that the same mapper function may be called from multiple threads concurrently. * @param the reduced output type * @param initialSupplier the supplier for the initial value * @param reducer the function to reduce a previous output of reduce (or the initial value supplied) * with a current source value. * @return the new ParallelFlowable instance */ @CheckReturnValue @NonNull public final ParallelFlowable reduce(@NonNull Callable initialSupplier, @NonNull BiFunction reducer) { ObjectHelper.requireNonNull(initialSupplier, "initialSupplier"); ObjectHelper.requireNonNull(reducer, "reducer"); return RxJavaPlugins.onAssembly(new ParallelReduce(this, initialSupplier, reducer)); } /** * Merges the values from each 'rail' in a round-robin or same-order fashion and * exposes it as a regular Publisher sequence, running with a default prefetch value * for the rails. *

* This operator uses the default prefetch size returned by {@code Flowable.bufferSize()}. * *

*
Backpressure:
*
The operator honors backpressure.
*
Scheduler:
*
{@code sequential} does not operate by default on a particular {@link Scheduler}.
*
* @return the new Flowable instance * @see ParallelFlowable#sequential(int) * @see ParallelFlowable#sequentialDelayError() */ @BackpressureSupport(BackpressureKind.FULL) @SchedulerSupport(SchedulerSupport.NONE) @CheckReturnValue public final Flowable sequential() { return sequential(Flowable.bufferSize()); } /** * Merges the values from each 'rail' in a round-robin or same-order fashion and * exposes it as a regular Publisher sequence, running with a give prefetch value * for the rails. * *
*
Backpressure:
*
The operator honors backpressure.
*
Scheduler:
*
{@code sequential} does not operate by default on a particular {@link Scheduler}.
*
* @param prefetch the prefetch amount to use for each rail * @return the new Flowable instance * @see ParallelFlowable#sequential() * @see ParallelFlowable#sequentialDelayError(int) */ @BackpressureSupport(BackpressureKind.FULL) @SchedulerSupport(SchedulerSupport.NONE) @CheckReturnValue @NonNull public final Flowable sequential(int prefetch) { ObjectHelper.verifyPositive(prefetch, "prefetch"); return RxJavaPlugins.onAssembly(new ParallelJoin(this, prefetch, false)); } /** * Merges the values from each 'rail' in a round-robin or same-order fashion and * exposes it as a regular Flowable sequence, running with a default prefetch value * for the rails and delaying errors from all rails till all terminate. *

* This operator uses the default prefetch size returned by {@code Flowable.bufferSize()}. * *

*
Backpressure:
*
The operator honors backpressure.
*
Scheduler:
*
{@code sequentialDelayError} does not operate by default on a particular {@link Scheduler}.
*
* @return the new Flowable instance * @see ParallelFlowable#sequentialDelayError(int) * @see ParallelFlowable#sequential() * @since 2.0.7 - experimental */ @BackpressureSupport(BackpressureKind.FULL) @SchedulerSupport(SchedulerSupport.NONE) @CheckReturnValue @Experimental @NonNull public final Flowable sequentialDelayError() { return sequentialDelayError(Flowable.bufferSize()); } /** * Merges the values from each 'rail' in a round-robin or same-order fashion and * exposes it as a regular Publisher sequence, running with a give prefetch value * for the rails and delaying errors from all rails till all terminate. * *
*
Backpressure:
*
The operator honors backpressure.
*
Scheduler:
*
{@code sequentialDelayError} does not operate by default on a particular {@link Scheduler}.
*
* @param prefetch the prefetch amount to use for each rail * @return the new Flowable instance * @see ParallelFlowable#sequential() * @see ParallelFlowable#sequentialDelayError() * @since 2.0.7 - experimental */ @BackpressureSupport(BackpressureKind.FULL) @SchedulerSupport(SchedulerSupport.NONE) @CheckReturnValue @NonNull public final Flowable sequentialDelayError(int prefetch) { ObjectHelper.verifyPositive(prefetch, "prefetch"); return RxJavaPlugins.onAssembly(new ParallelJoin(this, prefetch, true)); } /** * Sorts the 'rails' of this ParallelFlowable and returns a Publisher that sequentially * picks the smallest next value from the rails. *

* This operator requires a finite source ParallelFlowable. * * @param comparator the comparator to use * @return the new Flowable instance */ @CheckReturnValue @NonNull public final Flowable sorted(@NonNull Comparator comparator) { return sorted(comparator, 16); } /** * Sorts the 'rails' of this ParallelFlowable and returns a Publisher that sequentially * picks the smallest next value from the rails. *

* This operator requires a finite source ParallelFlowable. * * @param comparator the comparator to use * @param capacityHint the expected number of total elements * @return the new Flowable instance */ @CheckReturnValue @NonNull public final Flowable sorted(@NonNull Comparator comparator, int capacityHint) { ObjectHelper.requireNonNull(comparator, "comparator is null"); ObjectHelper.verifyPositive(capacityHint, "capacityHint"); int ch = capacityHint / parallelism() + 1; ParallelFlowable> railReduced = reduce(Functions.createArrayList(ch), ListAddBiConsumer.instance()); ParallelFlowable> railSorted = railReduced.map(new SorterFunction(comparator)); return RxJavaPlugins.onAssembly(new ParallelSortedJoin(railSorted, comparator)); } /** * Sorts the 'rails' according to the comparator and returns a full sorted list as a Publisher. *

* This operator requires a finite source ParallelFlowable. * * @param comparator the comparator to compare elements * @return the new Flowable instance */ @CheckReturnValue @NonNull public final Flowable> toSortedList(@NonNull Comparator comparator) { return toSortedList(comparator, 16); } /** * Sorts the 'rails' according to the comparator and returns a full sorted list as a Publisher. *

* This operator requires a finite source ParallelFlowable. * * @param comparator the comparator to compare elements * @param capacityHint the expected number of total elements * @return the new Flowable instance */ @CheckReturnValue @NonNull public final Flowable> toSortedList(@NonNull Comparator comparator, int capacityHint) { ObjectHelper.requireNonNull(comparator, "comparator is null"); ObjectHelper.verifyPositive(capacityHint, "capacityHint"); int ch = capacityHint / parallelism() + 1; ParallelFlowable> railReduced = reduce(Functions.createArrayList(ch), ListAddBiConsumer.instance()); ParallelFlowable> railSorted = railReduced.map(new SorterFunction(comparator)); Flowable> merged = railSorted.reduce(new MergerBiFunction(comparator)); return RxJavaPlugins.onAssembly(merged); } /** * Call the specified consumer with the current element passing through any 'rail'. * * @param onNext the callback * @return the new ParallelFlowable instance */ @CheckReturnValue @NonNull public final ParallelFlowable doOnNext(@NonNull Consumer onNext) { ObjectHelper.requireNonNull(onNext, "onNext is null"); return RxJavaPlugins.onAssembly(new ParallelPeek(this, onNext, Functions.emptyConsumer(), Functions.emptyConsumer(), Functions.EMPTY_ACTION, Functions.EMPTY_ACTION, Functions.emptyConsumer(), Functions.EMPTY_LONG_CONSUMER, Functions.EMPTY_ACTION )); } /** * Call the specified consumer with the current element passing through any 'rail' and * handles errors based on the given {@link ParallelFailureHandling} enumeration value. * * @param onNext the callback * @param errorHandler the enumeration that defines how to handle errors thrown * from the onNext consumer * @return the new ParallelFlowable instance * @since 2.0.8 - experimental */ @CheckReturnValue @Experimental @NonNull public final ParallelFlowable doOnNext(@NonNull Consumer onNext, @NonNull ParallelFailureHandling errorHandler) { ObjectHelper.requireNonNull(onNext, "onNext is null"); ObjectHelper.requireNonNull(errorHandler, "errorHandler is null"); return RxJavaPlugins.onAssembly(new ParallelDoOnNextTry(this, onNext, errorHandler)); } /** * Call the specified consumer with the current element passing through any 'rail' and * handles errors based on the returned value by the handler function. * * @param onNext the callback * @param errorHandler the function called with the current repeat count and * failure Throwable and should return one of the {@link ParallelFailureHandling} * enumeration values to indicate how to proceed. * @return the new ParallelFlowable instance * @since 2.0.8 - experimental */ @CheckReturnValue @Experimental @NonNull public final ParallelFlowable doOnNext(@NonNull Consumer onNext, @NonNull BiFunction errorHandler) { ObjectHelper.requireNonNull(onNext, "onNext is null"); ObjectHelper.requireNonNull(errorHandler, "errorHandler is null"); return RxJavaPlugins.onAssembly(new ParallelDoOnNextTry(this, onNext, errorHandler)); } /** * Call the specified consumer with the current element passing through any 'rail' * after it has been delivered to downstream within the rail. * * @param onAfterNext the callback * @return the new ParallelFlowable instance */ @CheckReturnValue @NonNull public final ParallelFlowable doAfterNext(@NonNull Consumer onAfterNext) { ObjectHelper.requireNonNull(onAfterNext, "onAfterNext is null"); return RxJavaPlugins.onAssembly(new ParallelPeek(this, Functions.emptyConsumer(), onAfterNext, Functions.emptyConsumer(), Functions.EMPTY_ACTION, Functions.EMPTY_ACTION, Functions.emptyConsumer(), Functions.EMPTY_LONG_CONSUMER, Functions.EMPTY_ACTION )); } /** * Call the specified consumer with the exception passing through any 'rail'. * * @param onError the callback * @return the new ParallelFlowable instance */ @CheckReturnValue @NonNull public final ParallelFlowable doOnError(@NonNull Consumer onError) { ObjectHelper.requireNonNull(onError, "onError is null"); return RxJavaPlugins.onAssembly(new ParallelPeek(this, Functions.emptyConsumer(), Functions.emptyConsumer(), onError, Functions.EMPTY_ACTION, Functions.EMPTY_ACTION, Functions.emptyConsumer(), Functions.EMPTY_LONG_CONSUMER, Functions.EMPTY_ACTION )); } /** * Run the specified Action when a 'rail' completes. * * @param onComplete the callback * @return the new ParallelFlowable instance */ @CheckReturnValue @NonNull public final ParallelFlowable doOnComplete(@NonNull Action onComplete) { ObjectHelper.requireNonNull(onComplete, "onComplete is null"); return RxJavaPlugins.onAssembly(new ParallelPeek(this, Functions.emptyConsumer(), Functions.emptyConsumer(), Functions.emptyConsumer(), onComplete, Functions.EMPTY_ACTION, Functions.emptyConsumer(), Functions.EMPTY_LONG_CONSUMER, Functions.EMPTY_ACTION )); } /** * Run the specified Action when a 'rail' completes or signals an error. * * @param onAfterTerminate the callback * @return the new ParallelFlowable instance */ @CheckReturnValue @NonNull public final ParallelFlowable doAfterTerminated(@NonNull Action onAfterTerminate) { ObjectHelper.requireNonNull(onAfterTerminate, "onAfterTerminate is null"); return RxJavaPlugins.onAssembly(new ParallelPeek(this, Functions.emptyConsumer(), Functions.emptyConsumer(), Functions.emptyConsumer(), Functions.EMPTY_ACTION, onAfterTerminate, Functions.emptyConsumer(), Functions.EMPTY_LONG_CONSUMER, Functions.EMPTY_ACTION )); } /** * Call the specified callback when a 'rail' receives a Subscription from its upstream. * * @param onSubscribe the callback * @return the new ParallelFlowable instance */ @CheckReturnValue @NonNull public final ParallelFlowable doOnSubscribe(@NonNull Consumer onSubscribe) { ObjectHelper.requireNonNull(onSubscribe, "onSubscribe is null"); return RxJavaPlugins.onAssembly(new ParallelPeek(this, Functions.emptyConsumer(), Functions.emptyConsumer(), Functions.emptyConsumer(), Functions.EMPTY_ACTION, Functions.EMPTY_ACTION, onSubscribe, Functions.EMPTY_LONG_CONSUMER, Functions.EMPTY_ACTION )); } /** * Call the specified consumer with the request amount if any rail receives a request. * * @param onRequest the callback * @return the new ParallelFlowable instance */ @CheckReturnValue @NonNull public final ParallelFlowable doOnRequest(@NonNull LongConsumer onRequest) { ObjectHelper.requireNonNull(onRequest, "onRequest is null"); return RxJavaPlugins.onAssembly(new ParallelPeek(this, Functions.emptyConsumer(), Functions.emptyConsumer(), Functions.emptyConsumer(), Functions.EMPTY_ACTION, Functions.EMPTY_ACTION, Functions.emptyConsumer(), onRequest, Functions.EMPTY_ACTION )); } /** * Run the specified Action when a 'rail' receives a cancellation. * * @param onCancel the callback * @return the new ParallelFlowable instance */ @CheckReturnValue @NonNull public final ParallelFlowable doOnCancel(@NonNull Action onCancel) { ObjectHelper.requireNonNull(onCancel, "onCancel is null"); return RxJavaPlugins.onAssembly(new ParallelPeek(this, Functions.emptyConsumer(), Functions.emptyConsumer(), Functions.emptyConsumer(), Functions.EMPTY_ACTION, Functions.EMPTY_ACTION, Functions.emptyConsumer(), Functions.EMPTY_LONG_CONSUMER, onCancel )); } /** * Collect the elements in each rail into a collection supplied via a collectionSupplier * and collected into with a collector action, emitting the collection at the end. * * @param the collection type * @param collectionSupplier the supplier of the collection in each rail * @param collector the collector, taking the per-rail collection and the current item * @return the new ParallelFlowable instance */ @CheckReturnValue @NonNull public final ParallelFlowable collect(@NonNull Callable collectionSupplier, @NonNull BiConsumer collector) { ObjectHelper.requireNonNull(collectionSupplier, "collectionSupplier is null"); ObjectHelper.requireNonNull(collector, "collector is null"); return RxJavaPlugins.onAssembly(new ParallelCollect(this, collectionSupplier, collector)); } /** * Wraps multiple Publishers into a ParallelFlowable which runs them * in parallel and unordered. * * @param the value type * @param publishers the array of publishers * @return the new ParallelFlowable instance */ @CheckReturnValue @NonNull public static ParallelFlowable fromArray(@NonNull Publisher... publishers) { if (publishers.length == 0) { throw new IllegalArgumentException("Zero publishers not supported"); } return RxJavaPlugins.onAssembly(new ParallelFromArray(publishers)); } /** * Perform a fluent transformation to a value via a converter function which * receives this ParallelFlowable. * * @param the output value type * @param converter the converter function from ParallelFlowable to some type * @return the value returned by the converter function */ @CheckReturnValue @NonNull public final U to(@NonNull Function, U> converter) { try { return ObjectHelper.requireNonNull(converter, "converter is null").apply(this); } catch (Throwable ex) { Exceptions.throwIfFatal(ex); throw ExceptionHelper.wrapOrThrow(ex); } } /** * Allows composing operators, in assembly time, on top of this ParallelFlowable * and returns another ParallelFlowable with composed features. * * @param the output value type * @param composer the composer function from ParallelFlowable (this) to another ParallelFlowable * @return the ParallelFlowable returned by the function */ @CheckReturnValue @NonNull public final ParallelFlowable compose(@NonNull ParallelTransformer composer) { return RxJavaPlugins.onAssembly(ObjectHelper.requireNonNull(composer, "composer is null").apply(this)); } /** * Generates and flattens Publishers on each 'rail'. *

* Errors are not delayed and uses unbounded concurrency along with default inner prefetch. * * @param the result type * @param mapper the function to map each rail's value into a Publisher * @return the new ParallelFlowable instance */ @CheckReturnValue @NonNull public final ParallelFlowable flatMap(@NonNull Function> mapper) { return flatMap(mapper, false, Integer.MAX_VALUE, Flowable.bufferSize()); } /** * Generates and flattens Publishers on each 'rail', optionally delaying errors. *

* It uses unbounded concurrency along with default inner prefetch. * * @param the result type * @param mapper the function to map each rail's value into a Publisher * @param delayError should the errors from the main and the inner sources delayed till everybody terminates? * @return the new ParallelFlowable instance */ @CheckReturnValue @NonNull public final ParallelFlowable flatMap( @NonNull Function> mapper, boolean delayError) { return flatMap(mapper, delayError, Integer.MAX_VALUE, Flowable.bufferSize()); } /** * Generates and flattens Publishers on each 'rail', optionally delaying errors * and having a total number of simultaneous subscriptions to the inner Publishers. *

* It uses a default inner prefetch. * * @param the result type * @param mapper the function to map each rail's value into a Publisher * @param delayError should the errors from the main and the inner sources delayed till everybody terminates? * @param maxConcurrency the maximum number of simultaneous subscriptions to the generated inner Publishers * @return the new ParallelFlowable instance */ @CheckReturnValue @NonNull public final ParallelFlowable flatMap( @NonNull Function> mapper, boolean delayError, int maxConcurrency) { return flatMap(mapper, delayError, maxConcurrency, Flowable.bufferSize()); } /** * Generates and flattens Publishers on each 'rail', optionally delaying errors, * having a total number of simultaneous subscriptions to the inner Publishers * and using the given prefetch amount for the inner Publishers. * * @param the result type * @param mapper the function to map each rail's value into a Publisher * @param delayError should the errors from the main and the inner sources delayed till everybody terminates? * @param maxConcurrency the maximum number of simultaneous subscriptions to the generated inner Publishers * @param prefetch the number of items to prefetch from each inner Publisher * @return the new ParallelFlowable instance */ @CheckReturnValue @NonNull public final ParallelFlowable flatMap( @NonNull Function> mapper, boolean delayError, int maxConcurrency, int prefetch) { ObjectHelper.requireNonNull(mapper, "mapper is null"); ObjectHelper.verifyPositive(maxConcurrency, "maxConcurrency"); ObjectHelper.verifyPositive(prefetch, "prefetch"); return RxJavaPlugins.onAssembly(new ParallelFlatMap(this, mapper, delayError, maxConcurrency, prefetch)); } /** * Generates and concatenates Publishers on each 'rail', signalling errors immediately * and generating 2 publishers upfront. * * @param the result type * @param mapper the function to map each rail's value into a Publisher * source and the inner Publishers (immediate, boundary, end) * @return the new ParallelFlowable instance */ @CheckReturnValue @NonNull public final ParallelFlowable concatMap( @NonNull Function> mapper) { return concatMap(mapper, 2); } /** * Generates and concatenates Publishers on each 'rail', signalling errors immediately * and using the given prefetch amount for generating Publishers upfront. * * @param the result type * @param mapper the function to map each rail's value into a Publisher * @param prefetch the number of items to prefetch from each inner Publisher * source and the inner Publishers (immediate, boundary, end) * @return the new ParallelFlowable instance */ @CheckReturnValue @NonNull public final ParallelFlowable concatMap( @NonNull Function> mapper, int prefetch) { ObjectHelper.requireNonNull(mapper, "mapper is null"); ObjectHelper.verifyPositive(prefetch, "prefetch"); return RxJavaPlugins.onAssembly(new ParallelConcatMap(this, mapper, prefetch, ErrorMode.IMMEDIATE)); } /** * Generates and concatenates Publishers on each 'rail', optionally delaying errors * and generating 2 publishers upfront. * * @param the result type * @param mapper the function to map each rail's value into a Publisher * @param tillTheEnd if true all errors from the upstream and inner Publishers are delayed * till all of them terminate, if false, the error is emitted when an inner Publisher terminates. * source and the inner Publishers (immediate, boundary, end) * @return the new ParallelFlowable instance */ @CheckReturnValue @NonNull public final ParallelFlowable concatMapDelayError( @NonNull Function> mapper, boolean tillTheEnd) { return concatMapDelayError(mapper, 2, tillTheEnd); } /** * Generates and concatenates Publishers on each 'rail', optionally delaying errors * and using the given prefetch amount for generating Publishers upfront. * * @param the result type * @param mapper the function to map each rail's value into a Publisher * @param prefetch the number of items to prefetch from each inner Publisher * @param tillTheEnd if true all errors from the upstream and inner Publishers are delayed * till all of them terminate, if false, the error is emitted when an inner Publisher terminates. * @return the new ParallelFlowable instance */ @CheckReturnValue @NonNull public final ParallelFlowable concatMapDelayError( @NonNull Function> mapper, int prefetch, boolean tillTheEnd) { ObjectHelper.requireNonNull(mapper, "mapper is null"); ObjectHelper.verifyPositive(prefetch, "prefetch"); return RxJavaPlugins.onAssembly(new ParallelConcatMap( this, mapper, prefetch, tillTheEnd ? ErrorMode.END : ErrorMode.BOUNDARY)); } }