All Downloads are FREE. Search and download functionalities are using the official Maven repository.

io.reactivex.rxjava3.core.Observable Maven / Gradle / Ivy

/**
 * Copyright (c) 2016-present, RxJava Contributors.
 *
 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in
 * compliance with the License. You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software distributed under the License is
 * distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See
 * the License for the specific language governing permissions and limitations under the License.
 */

package io.reactivex.rxjava3.core;

import java.util.*;
import java.util.concurrent.*;
import java.util.stream.*;

import org.reactivestreams.Publisher;

import io.reactivex.rxjava3.annotations.*;
import io.reactivex.rxjava3.disposables.Disposable;
import io.reactivex.rxjava3.exceptions.*;
import io.reactivex.rxjava3.functions.*;
import io.reactivex.rxjava3.internal.functions.*;
import io.reactivex.rxjava3.internal.fuseable.ScalarSupplier;
import io.reactivex.rxjava3.internal.jdk8.*;
import io.reactivex.rxjava3.internal.observers.*;
import io.reactivex.rxjava3.internal.operators.flowable.*;
import io.reactivex.rxjava3.internal.operators.maybe.MaybeToObservable;
import io.reactivex.rxjava3.internal.operators.mixed.*;
import io.reactivex.rxjava3.internal.operators.observable.*;
import io.reactivex.rxjava3.internal.operators.single.SingleToObservable;
import io.reactivex.rxjava3.internal.util.*;
import io.reactivex.rxjava3.observables.*;
import io.reactivex.rxjava3.observers.*;
import io.reactivex.rxjava3.plugins.RxJavaPlugins;
import io.reactivex.rxjava3.schedulers.*;

/**
 * The {@code Observable} class is the non-backpressured, optionally multi-valued base reactive class that
 * offers factory methods, intermediate operators and the ability to consume synchronous
 * and/or asynchronous reactive dataflows.
 * 

* Many operators in the class accept {@link ObservableSource}(s), the base reactive interface * for such non-backpressured flows, which {@code Observable} itself implements as well. *

* The {@code Observable}'s operators, by default, run with a buffer size of 128 elements (see {@link Flowable#bufferSize()}), * that can be overridden globally via the system parameter {@code rx3.buffer-size}. Most operators, however, have * overloads that allow setting their internal buffer size explicitly. *

* The documentation for this class makes use of marble diagrams. The following legend explains these diagrams: *

* *

* The design of this class was derived from the * Reactive-Streams design and specification * by removing any backpressure-related infrastructure and implementation detail, replacing the * {@code org.reactivestreams.Subscription} with {@link Disposable} as the primary means to dispose of * a flow. *

* The {@code Observable} follows the protocol *


 *      onSubscribe onNext* (onError | onComplete)?
 * 
* where * the stream can be disposed through the {@code Disposable} instance provided to consumers through * {@code Observer.onSubscribe}. *

* Unlike the {@code Observable} of version 1.x, {@link #subscribe(Observer)} does not allow external disposal * of a subscription and the {@link Observer} instance is expected to expose such capability. *

Example: *


 * Disposable d = Observable.just("Hello world!")
 *     .delay(1, TimeUnit.SECONDS)
 *     .subscribeWith(new DisposableObserver<String>() {
 *         @Override public void onStart() {
 *             System.out.println("Start!");
 *         }
 *         @Override public void onNext(String t) {
 *             System.out.println(t);
 *         }
 *         @Override public void onError(Throwable t) {
 *             t.printStackTrace();
 *         }
 *         @Override public void onComplete() {
 *             System.out.println("Done!");
 *         }
 *     });
 *
 * Thread.sleep(500);
 * // the sequence can now be disposed via dispose()
 * d.dispose();
 * 
* * @param * the type of the items emitted by the {@code Observable} * @see Flowable * @see io.reactivex.rxjava3.observers.DisposableObserver */ public abstract class Observable<@NonNull T> implements ObservableSource { /** * Mirrors the one {@link ObservableSource} in an {@link Iterable} of several {@code ObservableSource}s that first either emits an item or sends * a termination notification. *

* *

* When one of the {@code ObservableSource}s signal an item or terminates first, all subscriptions to the other * {@code ObservableSource}s are disposed. *

*
Scheduler:
*
{@code amb} does not operate by default on a particular {@link Scheduler}.
*
Error handling:
*
* If any of the losing {@code ObservableSource}s signals an error, the error is routed to the global * error handler via {@link RxJavaPlugins#onError(Throwable)}. *
*
* * @param the common element type * @param sources * an {@code Iterable} of {@code ObservableSource} sources competing to react first. A subscription to each source will * occur in the same order as in the {@code Iterable}. * @return the new {@code Observable} instance * @throws NullPointerException if {@code sources} is {@code null} * @see ReactiveX operators documentation: Amb */ @CheckReturnValue @NonNull @SchedulerSupport(SchedulerSupport.NONE) public static Observable amb(@NonNull Iterable<@NonNull ? extends ObservableSource> sources) { Objects.requireNonNull(sources, "sources is null"); return RxJavaPlugins.onAssembly(new ObservableAmb<>(null, sources)); } /** * Mirrors the one {@link ObservableSource} in an array of several {@code ObservableSource}s that first either emits an item or sends * a termination notification. *

* *

* When one of the {@code ObservableSource}s signal an item or terminates first, all subscriptions to the other * {@code ObservableSource}s are disposed. *

*
Scheduler:
*
{@code ambArray} does not operate by default on a particular {@link Scheduler}.
*
Error handling:
*
* If any of the losing {@code ObservableSource}s signals an error, the error is routed to the global * error handler via {@link RxJavaPlugins#onError(Throwable)}. *
*
* * @param the common element type * @param sources * an array of {@code ObservableSource} sources competing to react first. A subscription to each source will * occur in the same order as in the array. * @return the new {@code Observable} instance * @throws NullPointerException if {@code sources} is {@code null} * @see ReactiveX operators documentation: Amb */ @SuppressWarnings("unchecked") @CheckReturnValue @NonNull @SchedulerSupport(SchedulerSupport.NONE) @SafeVarargs public static Observable ambArray(@NonNull ObservableSource... sources) { Objects.requireNonNull(sources, "sources is null"); int len = sources.length; if (len == 0) { return empty(); } if (len == 1) { return (Observable)wrap(sources[0]); } return RxJavaPlugins.onAssembly(new ObservableAmb<>(sources, null)); } /** * Returns the default 'island' size or capacity-increment hint for unbounded buffers. *

Delegates to {@link Flowable#bufferSize} but is public for convenience. *

The value can be overridden via system parameter {@code rx3.buffer-size} * before the {@link Flowable} class is loaded. * @return the default 'island' size or capacity-increment hint */ @CheckReturnValue public static int bufferSize() { return Flowable.bufferSize(); } /** * Combines a collection of source {@link ObservableSource}s by emitting an item that aggregates the latest values of each of * the returned {@code ObservableSource}s each time an item is received from any of the returned {@code ObservableSource}s, where this * aggregation is defined by a specified function. *

* Note on method signature: since Java doesn't allow creating a generic array with {@code new T[]}, the * implementation of this operator has to create an {@code Object[]} instead. Unfortunately, a * {@code Function} passed to the method would trigger a {@link ClassCastException}. *

* If any of the sources never produces an item but only terminates (normally or with an error), the * resulting sequence terminates immediately (normally or with all the errors accumulated till that point). * If that input source is also synchronous, other sources after it will not be subscribed to. *

* If the provided iterable of {@code ObservableSource}s is empty, the resulting sequence completes immediately without emitting * any items and without any calls to the combiner function. * *

* *

*
Scheduler:
*
{@code combineLatest} does not operate by default on a particular {@link Scheduler}.
*
* * @param * the common base type of source values * @param * the result type * @param sources * the collection of source {@code ObservableSource}s * @param combiner * the aggregation function used to combine the items emitted by the returned {@code ObservableSource}s * @return the new {@code Observable} instance * @throws NullPointerException if {@code sources} or {@code combiner} is {@code null} * @see ReactiveX operators documentation: CombineLatest */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public static Observable combineLatest( @NonNull Iterable<@NonNull ? extends ObservableSource> sources, @NonNull Function combiner) { return combineLatest(sources, combiner, bufferSize()); } /** * Combines an {@link Iterable} of source {@link ObservableSource}s by emitting an item that aggregates the latest values of each of * the returned {@code ObservableSource}s each time an item is received from any of the returned {@code ObservableSource}s, where this * aggregation is defined by a specified function. *

* Note on method signature: since Java doesn't allow creating a generic array with {@code new T[]}, the * implementation of this operator has to create an {@code Object[]} instead. Unfortunately, a * {@code Function} passed to the method would trigger a {@link ClassCastException}. *

* If any of the sources never produces an item but only terminates (normally or with an error), the * resulting sequence terminates immediately (normally or with all the errors accumulated till that point). * If that input source is also synchronous, other sources after it will not be subscribed to. *

* If the provided {@code Iterable} of {@code ObservableSource}s is empty, the resulting sequence completes immediately without emitting * any items and without any calls to the combiner function. * *

* *

*
Scheduler:
*
{@code combineLatest} does not operate by default on a particular {@link Scheduler}.
*
* * @param * the common base type of source values * @param * the result type * @param sources * the collection of source {@code ObservableSource}s * @param combiner * the aggregation function used to combine the items emitted by the returned {@code ObservableSource}s * @param bufferSize * the expected number of row combination items to be buffered internally * @return the new {@code Observable} instance * @throws NullPointerException if {@code sources} or {@code combiner} is {@code null} * @throws IllegalArgumentException if {@code bufferSize} is non-positive * @see ReactiveX operators documentation: CombineLatest */ @CheckReturnValue @NonNull @SchedulerSupport(SchedulerSupport.NONE) public static Observable combineLatest( @NonNull Iterable<@NonNull ? extends ObservableSource> sources, @NonNull Function combiner, int bufferSize) { Objects.requireNonNull(sources, "sources is null"); Objects.requireNonNull(combiner, "combiner is null"); ObjectHelper.verifyPositive(bufferSize, "bufferSize"); // the queue holds a pair of values so we need to double the capacity int s = bufferSize << 1; return RxJavaPlugins.onAssembly(new ObservableCombineLatest<>(null, sources, combiner, s, false)); } /** * Combines an array of source {@link ObservableSource}s by emitting an item that aggregates the latest values of each of * the {@code ObservableSource}s each time an item is received from any of the returned {@code ObservableSource}s, where this * aggregation is defined by a specified function. *

* Note on method signature: since Java doesn't allow creating a generic array with {@code new T[]}, the * implementation of this operator has to create an {@code Object[]} instead. Unfortunately, a * {@code Function} passed to the method would trigger a {@link ClassCastException}. *

* If any of the sources never produces an item but only terminates (normally or with an error), the * resulting sequence terminates immediately (normally or with all the errors accumulated till that point). * If that input source is also synchronous, other sources after it will not be subscribed to. *

* If the provided array of {@code ObservableSource}s is empty, the resulting sequence completes immediately without emitting * any items and without any calls to the combiner function. * *

* *

*
Scheduler:
*
{@code combineLatestArray} does not operate by default on a particular {@link Scheduler}.
*
* * @param * the common base type of source values * @param * the result type * @param sources * the collection of source {@code ObservableSource}s * @param combiner * the aggregation function used to combine the items emitted by the {@code ObservableSource}s * @return the new {@code Observable} instance * @throws NullPointerException if {@code sources} or {@code combiner} is {@code null} * @see ReactiveX operators documentation: CombineLatest */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public static Observable combineLatestArray( @NonNull ObservableSource[] sources, @NonNull Function combiner) { return combineLatestArray(sources, combiner, bufferSize()); } /** * Combines an array of source {@link ObservableSource}s by emitting an item that aggregates the latest values of each of * the {@code ObservableSource}s each time an item is received from any of the {@code ObservableSource}s, where this * aggregation is defined by a specified function. *

* Note on method signature: since Java doesn't allow creating a generic array with {@code new T[]}, the * implementation of this operator has to create an {@code Object[]} instead. Unfortunately, a * {@code Function} passed to the method would trigger a {@link ClassCastException}. *

* If any of the sources never produces an item but only terminates (normally or with an error), the * resulting sequence terminates immediately (normally or with all the errors accumulated till that point). * If that input source is also synchronous, other sources after it will not be subscribed to. *

* If the provided array of {@code ObservableSource}s is empty, the resulting sequence completes immediately without emitting * any items and without any calls to the combiner function. * *

* *

*
Scheduler:
*
{@code combineLatestArray} does not operate by default on a particular {@link Scheduler}.
*
* * @param * the common base type of source values * @param * the result type * @param sources * the collection of source {@code ObservableSource}s * @param combiner * the aggregation function used to combine the items emitted by the {@code ObservableSource}s * @param bufferSize * the expected number of row combination items to be buffered internally * @return the new {@code Observable} instance * @throws NullPointerException if {@code sources} or {@code combiner} is {@code null} * @throws IllegalArgumentException if {@code bufferSize} is non-positive * @see ReactiveX operators documentation: CombineLatest */ @CheckReturnValue @NonNull @SchedulerSupport(SchedulerSupport.NONE) public static Observable combineLatestArray( @NonNull ObservableSource[] sources, @NonNull Function combiner, int bufferSize) { Objects.requireNonNull(sources, "sources is null"); if (sources.length == 0) { return empty(); } Objects.requireNonNull(combiner, "combiner is null"); ObjectHelper.verifyPositive(bufferSize, "bufferSize"); // the queue holds a pair of values so we need to double the capacity int s = bufferSize << 1; return RxJavaPlugins.onAssembly(new ObservableCombineLatest<>(sources, null, combiner, s, false)); } /** * Combines two source {@link ObservableSource}s by emitting an item that aggregates the latest values of each of the * {@code ObservableSource}s each time an item is received from either of the {@code ObservableSource}s, where this * aggregation is defined by a specified function. *

* If any of the sources never produces an item but only terminates (normally or with an error), the * resulting sequence terminates immediately (normally or with all the errors accumulated till that point). * If that input source is also synchronous, other sources after it will not be subscribed to. *

* *

*
Scheduler:
*
{@code combineLatest} does not operate by default on a particular {@link Scheduler}.
*
* * @param the element type of the first source * @param the element type of the second source * @param the combined output type * @param source1 * the first source {@code ObservableSource} * @param source2 * the second source {@code ObservableSource} * @param combiner * the aggregation function used to combine the items emitted by the {@code ObservableSource}s * @return the new {@code Observable} instance * @throws NullPointerException if {@code source1}, {@code source2} or {@code combiner} is {@code null} * @see ReactiveX operators documentation: CombineLatest */ @SuppressWarnings("unchecked") @CheckReturnValue @NonNull @SchedulerSupport(SchedulerSupport.NONE) public static Observable combineLatest( @NonNull ObservableSource source1, @NonNull ObservableSource source2, @NonNull BiFunction combiner) { Objects.requireNonNull(source1, "source1 is null"); Objects.requireNonNull(source2, "source2 is null"); Objects.requireNonNull(combiner, "combiner is null"); return combineLatestArray(new ObservableSource[] { source1, source2 }, Functions.toFunction(combiner), bufferSize()); } /** * Combines three source {@link ObservableSource}s by emitting an item that aggregates the latest values of each of the * {@code ObservableSource}s each time an item is received from any of the {@code ObservableSource}s, where this * aggregation is defined by a specified function. *

* If any of the sources never produces an item but only terminates (normally or with an error), the * resulting sequence terminates immediately (normally or with all the errors accumulated till that point). * If that input source is also synchronous, other sources after it will not be subscribed to. *

* *

*
Scheduler:
*
{@code combineLatest} does not operate by default on a particular {@link Scheduler}.
*
* * @param the element type of the first source * @param the element type of the second source * @param the element type of the third source * @param the combined output type * @param source1 * the first source {@code ObservableSource} * @param source2 * the second source {@code ObservableSource} * @param source3 * the third source {@code ObservableSource} * @param combiner * the aggregation function used to combine the items emitted by the {@code ObservableSource}s * @return the new {@code Observable} instance * @throws NullPointerException if {@code source1}, {@code source2}, {@code source3} or {@code combiner} is {@code null} * @see ReactiveX operators documentation: CombineLatest */ @SuppressWarnings("unchecked") @CheckReturnValue @NonNull @SchedulerSupport(SchedulerSupport.NONE) public static Observable combineLatest( @NonNull ObservableSource source1, @NonNull ObservableSource source2, @NonNull ObservableSource source3, @NonNull Function3 combiner) { Objects.requireNonNull(source1, "source1 is null"); Objects.requireNonNull(source2, "source2 is null"); Objects.requireNonNull(source3, "source3 is null"); Objects.requireNonNull(combiner, "combiner is null"); return combineLatestArray(new ObservableSource[] { source1, source2, source3 }, Functions.toFunction(combiner), bufferSize()); } /** * Combines four source {@link ObservableSource}s by emitting an item that aggregates the latest values of each of the * {@code ObservableSource}s each time an item is received from any of the {@code ObservableSource}s, where this * aggregation is defined by a specified function. *

* If any of the sources never produces an item but only terminates (normally or with an error), the * resulting sequence terminates immediately (normally or with all the errors accumulated till that point). * If that input source is also synchronous, other sources after it will not be subscribed to. *

* *

*
Scheduler:
*
{@code combineLatest} does not operate by default on a particular {@link Scheduler}.
*
* * @param the element type of the first source * @param the element type of the second source * @param the element type of the third source * @param the element type of the fourth source * @param the combined output type * @param source1 * the first source {@code ObservableSource} * @param source2 * the second source {@code ObservableSource} * @param source3 * the third source {@code ObservableSource} * @param source4 * the fourth source {@code ObservableSource} * @param combiner * the aggregation function used to combine the items emitted by the {@code ObservableSource}s * @return the new {@code Observable} instance * @throws NullPointerException if {@code source1}, {@code source2}, {@code source3}, * {@code source4} or {@code combiner} is {@code null} * @see ReactiveX operators documentation: CombineLatest */ @SuppressWarnings("unchecked") @CheckReturnValue @NonNull @SchedulerSupport(SchedulerSupport.NONE) public static Observable combineLatest( @NonNull ObservableSource source1, @NonNull ObservableSource source2, @NonNull ObservableSource source3, @NonNull ObservableSource source4, @NonNull Function4 combiner) { Objects.requireNonNull(source1, "source1 is null"); Objects.requireNonNull(source2, "source2 is null"); Objects.requireNonNull(source3, "source3 is null"); Objects.requireNonNull(source4, "source4 is null"); Objects.requireNonNull(combiner, "combiner is null"); return combineLatestArray(new ObservableSource[] { source1, source2, source3, source4 }, Functions.toFunction(combiner), bufferSize()); } /** * Combines five source {@link ObservableSource}s by emitting an item that aggregates the latest values of each of the * {@code ObservableSource}s each time an item is received from any of the {@code ObservableSource}s, where this * aggregation is defined by a specified function. *

* If any of the sources never produces an item but only terminates (normally or with an error), the * resulting sequence terminates immediately (normally or with all the errors accumulated till that point). * If that input source is also synchronous, other sources after it will not be subscribed to. *

* *

*
Scheduler:
*
{@code combineLatest} does not operate by default on a particular {@link Scheduler}.
*
* * @param the element type of the first source * @param the element type of the second source * @param the element type of the third source * @param the element type of the fourth source * @param the element type of the fifth source * @param the combined output type * @param source1 * the first source {@code ObservableSource} * @param source2 * the second source {@code ObservableSource} * @param source3 * the third source {@code ObservableSource} * @param source4 * the fourth source {@code ObservableSource} * @param source5 * the fifth source {@code ObservableSource} * @param combiner * the aggregation function used to combine the items emitted by the {@code ObservableSource}s * @return the new {@code Observable} instance * @throws NullPointerException if {@code source1}, {@code source2}, {@code source3}, * {@code source4}, {@code source5} or {@code combiner} is {@code null} * @see ReactiveX operators documentation: CombineLatest */ @SuppressWarnings("unchecked") @CheckReturnValue @NonNull @SchedulerSupport(SchedulerSupport.NONE) public static Observable combineLatest( @NonNull ObservableSource source1, @NonNull ObservableSource source2, @NonNull ObservableSource source3, @NonNull ObservableSource source4, @NonNull ObservableSource source5, @NonNull Function5 combiner) { Objects.requireNonNull(source1, "source1 is null"); Objects.requireNonNull(source2, "source2 is null"); Objects.requireNonNull(source3, "source3 is null"); Objects.requireNonNull(source4, "source4 is null"); Objects.requireNonNull(source5, "source5 is null"); Objects.requireNonNull(combiner, "combiner is null"); return combineLatestArray(new ObservableSource[] { source1, source2, source3, source4, source5 }, Functions.toFunction(combiner), bufferSize()); } /** * Combines six source {@link ObservableSource}s by emitting an item that aggregates the latest values of each of the * {@code ObservableSource}s each time an item is received from any of the {@code ObservableSource}s, where this * aggregation is defined by a specified function. *

* If any of the sources never produces an item but only terminates (normally or with an error), the * resulting sequence terminates immediately (normally or with all the errors accumulated till that point). * If that input source is also synchronous, other sources after it will not be subscribed to. *

* *

*
Scheduler:
*
{@code combineLatest} does not operate by default on a particular {@link Scheduler}.
*
* * @param the element type of the first source * @param the element type of the second source * @param the element type of the third source * @param the element type of the fourth source * @param the element type of the fifth source * @param the element type of the sixth source * @param the combined output type * @param source1 * the first source {@code ObservableSource} * @param source2 * the second source {@code ObservableSource} * @param source3 * the third source {@code ObservableSource} * @param source4 * the fourth source {@code ObservableSource} * @param source5 * the fifth source {@code ObservableSource} * @param source6 * the sixth source {@code ObservableSource} * @param combiner * the aggregation function used to combine the items emitted by the {@code ObservableSource}s * @return the new {@code Observable} instance * @throws NullPointerException if {@code source1}, {@code source2}, {@code source3}, * {@code source4}, {@code source5}, {@code source6} or {@code combiner} is {@code null} * @see ReactiveX operators documentation: CombineLatest */ @SuppressWarnings("unchecked") @CheckReturnValue @NonNull @SchedulerSupport(SchedulerSupport.NONE) public static Observable combineLatest( @NonNull ObservableSource source1, @NonNull ObservableSource source2, @NonNull ObservableSource source3, @NonNull ObservableSource source4, @NonNull ObservableSource source5, @NonNull ObservableSource source6, @NonNull Function6 combiner) { Objects.requireNonNull(source1, "source1 is null"); Objects.requireNonNull(source2, "source2 is null"); Objects.requireNonNull(source3, "source3 is null"); Objects.requireNonNull(source4, "source4 is null"); Objects.requireNonNull(source5, "source5 is null"); Objects.requireNonNull(source6, "source6 is null"); Objects.requireNonNull(combiner, "combiner is null"); return combineLatestArray(new ObservableSource[] { source1, source2, source3, source4, source5, source6 }, Functions.toFunction(combiner), bufferSize()); } /** * Combines seven source {@link ObservableSource}s by emitting an item that aggregates the latest values of each of the * {@code ObservableSource}s each time an item is received from any of the {@code ObservableSource}s, where this * aggregation is defined by a specified function. *

* If any of the sources never produces an item but only terminates (normally or with an error), the * resulting sequence terminates immediately (normally or with all the errors accumulated till that point). * If that input source is also synchronous, other sources after it will not be subscribed to. *

* *

*
Scheduler:
*
{@code combineLatest} does not operate by default on a particular {@link Scheduler}.
*
* * @param the element type of the first source * @param the element type of the second source * @param the element type of the third source * @param the element type of the fourth source * @param the element type of the fifth source * @param the element type of the sixth source * @param the element type of the seventh source * @param the combined output type * @param source1 * the first source {@code ObservableSource} * @param source2 * the second source {@code ObservableSource} * @param source3 * the third source {@code ObservableSource} * @param source4 * the fourth source {@code ObservableSource} * @param source5 * the fifth source {@code ObservableSource} * @param source6 * the sixth source {@code ObservableSource} * @param source7 * the seventh source {@code ObservableSource} * @param combiner * the aggregation function used to combine the items emitted by the {@code ObservableSource}s * @return the new {@code Observable} instance * @throws NullPointerException if {@code source1}, {@code source2}, {@code source3}, * {@code source4}, {@code source5}, {@code source6}, * {@code source7} or {@code combiner} is {@code null} * @see ReactiveX operators documentation: CombineLatest */ @SuppressWarnings("unchecked") @CheckReturnValue @NonNull @SchedulerSupport(SchedulerSupport.NONE) public static Observable combineLatest( @NonNull ObservableSource source1, @NonNull ObservableSource source2, @NonNull ObservableSource source3, @NonNull ObservableSource source4, @NonNull ObservableSource source5, @NonNull ObservableSource source6, @NonNull ObservableSource source7, @NonNull Function7 combiner) { Objects.requireNonNull(source1, "source1 is null"); Objects.requireNonNull(source2, "source2 is null"); Objects.requireNonNull(source3, "source3 is null"); Objects.requireNonNull(source4, "source4 is null"); Objects.requireNonNull(source5, "source5 is null"); Objects.requireNonNull(source6, "source6 is null"); Objects.requireNonNull(source7, "source7 is null"); Objects.requireNonNull(combiner, "combiner is null"); return combineLatestArray(new ObservableSource[] { source1, source2, source3, source4, source5, source6, source7 }, Functions.toFunction(combiner), bufferSize()); } /** * Combines eight source {@link ObservableSource}s by emitting an item that aggregates the latest values of each of the * {@code ObservableSource}s each time an item is received from any of the {@code ObservableSource}s, where this * aggregation is defined by a specified function. *

* If any of the sources never produces an item but only terminates (normally or with an error), the * resulting sequence terminates immediately (normally or with all the errors accumulated till that point). * If that input source is also synchronous, other sources after it will not be subscribed to. *

* *

*
Scheduler:
*
{@code combineLatest} does not operate by default on a particular {@link Scheduler}.
*
* * @param the element type of the first source * @param the element type of the second source * @param the element type of the third source * @param the element type of the fourth source * @param the element type of the fifth source * @param the element type of the sixth source * @param the element type of the seventh source * @param the element type of the eighth source * @param the combined output type * @param source1 * the first source {@code ObservableSource} * @param source2 * the second source {@code ObservableSource} * @param source3 * the third source {@code ObservableSource} * @param source4 * the fourth source {@code ObservableSource} * @param source5 * the fifth source {@code ObservableSource} * @param source6 * the sixth source {@code ObservableSource} * @param source7 * the seventh source {@code ObservableSource} * @param source8 * the eighth source {@code ObservableSource} * @param combiner * the aggregation function used to combine the items emitted by the {@code ObservableSource}s * @return the new {@code Observable} instance * @throws NullPointerException if {@code source1}, {@code source2}, {@code source3}, * {@code source4}, {@code source5}, {@code source6}, * {@code source7}, {@code source8} or {@code combiner} is {@code null} * @see ReactiveX operators documentation: CombineLatest */ @SuppressWarnings("unchecked") @CheckReturnValue @NonNull @SchedulerSupport(SchedulerSupport.NONE) public static Observable combineLatest( @NonNull ObservableSource source1, @NonNull ObservableSource source2, @NonNull ObservableSource source3, @NonNull ObservableSource source4, @NonNull ObservableSource source5, @NonNull ObservableSource source6, @NonNull ObservableSource source7, @NonNull ObservableSource source8, @NonNull Function8 combiner) { Objects.requireNonNull(source1, "source1 is null"); Objects.requireNonNull(source2, "source2 is null"); Objects.requireNonNull(source3, "source3 is null"); Objects.requireNonNull(source4, "source4 is null"); Objects.requireNonNull(source5, "source5 is null"); Objects.requireNonNull(source6, "source6 is null"); Objects.requireNonNull(source7, "source7 is null"); Objects.requireNonNull(source8, "source8 is null"); Objects.requireNonNull(combiner, "combiner is null"); return combineLatestArray(new ObservableSource[] { source1, source2, source3, source4, source5, source6, source7, source8 }, Functions.toFunction(combiner), bufferSize()); } /** * Combines nine source {@link ObservableSource}s by emitting an item that aggregates the latest values of each of the * {@code ObservableSource}s each time an item is received from any of the {@code ObservableSource}s, where this * aggregation is defined by a specified function. *

* If any of the sources never produces an item but only terminates (normally or with an error), the * resulting sequence terminates immediately (normally or with all the errors accumulated till that point). * If that input source is also synchronous, other sources after it will not be subscribed to. *

* *

*
Scheduler:
*
{@code combineLatest} does not operate by default on a particular {@link Scheduler}.
*
* * @param the element type of the first source * @param the element type of the second source * @param the element type of the third source * @param the element type of the fourth source * @param the element type of the fifth source * @param the element type of the sixth source * @param the element type of the seventh source * @param the element type of the eighth source * @param the element type of the ninth source * @param the combined output type * @param source1 * the first source {@code ObservableSource} * @param source2 * the second source {@code ObservableSource} * @param source3 * the third source {@code ObservableSource} * @param source4 * the fourth source {@code ObservableSource} * @param source5 * the fifth source {@code ObservableSource} * @param source6 * the sixth source {@code ObservableSource} * @param source7 * the seventh source {@code ObservableSource} * @param source8 * the eighth source {@code ObservableSource} * @param source9 * the ninth source {@code ObservableSource} * @param combiner * the aggregation function used to combine the items emitted by the {@code ObservableSource}s * @return the new {@code Observable} instance * @throws NullPointerException if {@code source1}, {@code source2}, {@code source3}, * {@code source4}, {@code source5}, {@code source6}, * {@code source7}, {@code source8}, {@code source9} or {@code combiner} is {@code null} * @see ReactiveX operators documentation: CombineLatest */ @SuppressWarnings("unchecked") @CheckReturnValue @NonNull @SchedulerSupport(SchedulerSupport.NONE) public static Observable combineLatest( @NonNull ObservableSource source1, @NonNull ObservableSource source2, @NonNull ObservableSource source3, @NonNull ObservableSource source4, @NonNull ObservableSource source5, @NonNull ObservableSource source6, @NonNull ObservableSource source7, @NonNull ObservableSource source8, @NonNull ObservableSource source9, @NonNull Function9 combiner) { Objects.requireNonNull(source1, "source1 is null"); Objects.requireNonNull(source2, "source2 is null"); Objects.requireNonNull(source3, "source3 is null"); Objects.requireNonNull(source4, "source4 is null"); Objects.requireNonNull(source5, "source5 is null"); Objects.requireNonNull(source6, "source6 is null"); Objects.requireNonNull(source7, "source7 is null"); Objects.requireNonNull(source8, "source8 is null"); Objects.requireNonNull(source9, "source9 is null"); Objects.requireNonNull(combiner, "combiner is null"); return combineLatestArray(new ObservableSource[] { source1, source2, source3, source4, source5, source6, source7, source8, source9 }, Functions.toFunction(combiner), bufferSize()); } /** * Combines an array of {@link ObservableSource}s by emitting an item that aggregates the latest values of each of * the {@code ObservableSource}s each time an item is received from any of the {@code ObservableSource}s, where this * aggregation is defined by a specified function. *

* *

* Note on method signature: since Java doesn't allow creating a generic array with {@code new T[]}, the * implementation of this operator has to create an {@code Object[]} instead. Unfortunately, a * {@code Function} passed to the method would trigger a {@link ClassCastException}. *

* If any of the sources never produces an item but only terminates (normally or with an error), the * resulting sequence terminates immediately (normally or with all the errors accumulated till that point). * If that input source is also synchronous, other sources after it will not be subscribed to. *

* If the provided array of {@code ObservableSource}s is empty, the resulting sequence completes immediately without emitting * any items and without any calls to the combiner function. * *

*
Scheduler:
*
{@code combineLatestArrayDelayError} does not operate by default on a particular {@link Scheduler}.
*
* * @param * the common base type of source values * @param * the result type * @param sources * the collection of source {@code ObservableSource}s * @param combiner * the aggregation function used to combine the items emitted by the {@code ObservableSource}s * @return the new {@code Observable} instance * @throws NullPointerException if {@code sources} or {@code combiner} is {@code null} * @see ReactiveX operators documentation: CombineLatest */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public static Observable combineLatestArrayDelayError( @NonNull ObservableSource[] sources, @NonNull Function combiner) { return combineLatestArrayDelayError(sources, combiner, bufferSize()); } /** * Combines an array of {@link ObservableSource}s by emitting an item that aggregates the latest values of each of * the {@code ObservableSource}s each time an item is received from any of the {@code ObservableSource}s, where this * aggregation is defined by a specified function and delays any error from the sources until * all source {@code ObservableSource}s terminate. *

* Note on method signature: since Java doesn't allow creating a generic array with {@code new T[]}, the * implementation of this operator has to create an {@code Object[]} instead. Unfortunately, a * {@code Function} passed to the method would trigger a {@link ClassCastException}. *

* If any of the sources never produces an item but only terminates (normally or with an error), the * resulting sequence terminates immediately (normally or with all the errors accumulated till that point). * If that input source is also synchronous, other sources after it will not be subscribed to. *

* If the provided array of {@code ObservableSource}s is empty, the resulting sequence completes immediately without emitting * any items and without any calls to the combiner function. * *

* *

*
Scheduler:
*
{@code combineLatestArrayDelayError} does not operate by default on a particular {@link Scheduler}.
*
* * @param * the common base type of source values * @param * the result type * @param sources * the collection of source {@code ObservableSource}s * @param combiner * the aggregation function used to combine the items emitted by the {@code ObservableSource}s * @param bufferSize * the expected number of row combination items to be buffered internally * @return the new {@code Observable} instance * @throws NullPointerException if {@code sources} or {@code combiner} is {@code null} * @throws IllegalArgumentException if {@code bufferSize} is non-positive * @see ReactiveX operators documentation: CombineLatest */ @CheckReturnValue @NonNull @SchedulerSupport(SchedulerSupport.NONE) public static Observable combineLatestArrayDelayError(@NonNull ObservableSource[] sources, @NonNull Function combiner, int bufferSize) { Objects.requireNonNull(sources, "sources is null"); Objects.requireNonNull(combiner, "combiner is null"); ObjectHelper.verifyPositive(bufferSize, "bufferSize"); if (sources.length == 0) { return empty(); } // the queue holds a pair of values so we need to double the capacity int s = bufferSize << 1; return RxJavaPlugins.onAssembly(new ObservableCombineLatest<>(sources, null, combiner, s, true)); } /** * Combines an {@link Iterable} of {@link ObservableSource}s by emitting an item that aggregates the latest values of each of * the {@code ObservableSource}s each time an item is received from any of the {@code ObservableSource}s, where this * aggregation is defined by a specified function and delays any error from the sources until * all source {@code ObservableSource}s terminate. *

* Note on method signature: since Java doesn't allow creating a generic array with {@code new T[]}, the * implementation of this operator has to create an {@code Object[]} instead. Unfortunately, a * {@code Function} passed to the method would trigger a {@link ClassCastException}. *

* If any of the sources never produces an item but only terminates (normally or with an error), the * resulting sequence terminates immediately (normally or with all the errors accumulated till that point). * If that input source is also synchronous, other sources after it will not be subscribed to. *

* If the provided iterable of {@code ObservableSource}s is empty, the resulting sequence completes immediately without emitting * any items and without any calls to the combiner function. * *

* *

*
Scheduler:
*
{@code combineLatestDelayError} does not operate by default on a particular {@link Scheduler}.
*
* * @param * the common base type of source values * @param * the result type * @param sources * the {@code Iterable} of source {@code ObservableSource}s * @param combiner * the aggregation function used to combine the items emitted by the {@code ObservableSource}s * @return the new {@code Observable} instance * @throws NullPointerException if {@code sources} or {@code combiner} is {@code null} * @see ReactiveX operators documentation: CombineLatest */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public static Observable combineLatestDelayError(@NonNull Iterable<@NonNull ? extends ObservableSource> sources, @NonNull Function combiner) { return combineLatestDelayError(sources, combiner, bufferSize()); } /** * Combines an {@link Iterable} of {@link ObservableSource}s by emitting an item that aggregates the latest values of each of * the {@code ObservableSource}s each time an item is received from any of the {@code ObservableSource}s, where this * aggregation is defined by a specified function and delays any error from the sources until * all source {@code ObservableSource}s terminate. *

* Note on method signature: since Java doesn't allow creating a generic array with {@code new T[]}, the * implementation of this operator has to create an {@code Object[]} instead. Unfortunately, a * {@code Function} passed to the method would trigger a {@link ClassCastException}. *

* If any of the sources never produces an item but only terminates (normally or with an error), the * resulting sequence terminates immediately (normally or with all the errors accumulated till that point). * If that input source is also synchronous, other sources after it will not be subscribed to. *

* If the provided iterable of {@code ObservableSource}s is empty, the resulting sequence completes immediately without emitting * any items and without any calls to the combiner function. * *

* *

*
Scheduler:
*
{@code combineLatestDelayError} does not operate by default on a particular {@link Scheduler}.
*
* * @param * the common base type of source values * @param * the result type * @param sources * the collection of source {@code ObservableSource}s * @param combiner * the aggregation function used to combine the items emitted by the {@code ObservableSource}s * @param bufferSize * the expected number of row combination items to be buffered internally * @return the new {@code Observable} instance * @throws NullPointerException if {@code sources} or {@code combiner} is {@code null} * @throws IllegalArgumentException if {@code bufferSize} is non-positive * @see ReactiveX operators documentation: CombineLatest */ @CheckReturnValue @NonNull @SchedulerSupport(SchedulerSupport.NONE) public static Observable combineLatestDelayError(@NonNull Iterable<@NonNull ? extends ObservableSource> sources, @NonNull Function combiner, int bufferSize) { Objects.requireNonNull(sources, "sources is null"); Objects.requireNonNull(combiner, "combiner is null"); ObjectHelper.verifyPositive(bufferSize, "bufferSize"); // the queue holds a pair of values so we need to double the capacity int s = bufferSize << 1; return RxJavaPlugins.onAssembly(new ObservableCombineLatest<>(null, sources, combiner, s, true)); } /** * Concatenates elements of each {@link ObservableSource} provided via an {@link Iterable} sequence into a single sequence * of elements without interleaving them. *

* *

*
Scheduler:
*
{@code concat} does not operate by default on a particular {@link Scheduler}.
*
* @param the common value type of the sources * @param sources the {@code Iterable} sequence of {@code ObservableSource}s * @return the new {@code Observable} instance * @throws NullPointerException if {@code sources} is {@code null} */ @SuppressWarnings({ "unchecked", "rawtypes" }) @CheckReturnValue @NonNull @SchedulerSupport(SchedulerSupport.NONE) public static Observable concat(@NonNull Iterable<@NonNull ? extends ObservableSource> sources) { Objects.requireNonNull(sources, "sources is null"); return fromIterable(sources).concatMapDelayError((Function)Functions.identity(), false, bufferSize()); } /** * Returns an {@code Observable} that emits the items emitted by each of the {@link ObservableSource}s emitted by the * {@code ObservableSource}, one after the other, without interleaving them. *

* *

*
Scheduler:
*
{@code concat} does not operate by default on a particular {@link Scheduler}.
*
* * @param the common element base type * @param sources * an {@code ObservableSource} that emits {@code ObservableSource}s * @return the new {@code Observable} instance * @throws NullPointerException if {@code sources} is {@code null} * @see ReactiveX operators documentation: Concat */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public static Observable concat(@NonNull ObservableSource> sources) { return concat(sources, bufferSize()); } /** * Returns an {@code Observable} that emits the items emitted by each of the {@link ObservableSource}s emitted by the outer * {@code ObservableSource}, one after the other, without interleaving them. *

* *

*
Scheduler:
*
{@code concat} does not operate by default on a particular {@link Scheduler}.
*
* * @param the common element base type * @param sources * an {@code ObservableSource} that emits {@code ObservableSource}s * @param bufferSize * the number of inner {@code ObservableSource}s expected to be buffered. * @return the new {@code Observable} instance * @throws NullPointerException if {@code sources} is {@code null} * @throws IllegalArgumentException if {@code bufferSize} is non-positive * @see ReactiveX operators documentation: Concat */ @SuppressWarnings({ "unchecked", "rawtypes" }) @CheckReturnValue @NonNull @SchedulerSupport(SchedulerSupport.NONE) public static Observable concat(@NonNull ObservableSource> sources, int bufferSize) { Objects.requireNonNull(sources, "sources is null"); ObjectHelper.verifyPositive(bufferSize, "bufferSize"); return RxJavaPlugins.onAssembly(new ObservableConcatMap(sources, Functions.identity(), bufferSize, ErrorMode.IMMEDIATE)); } /** * Returns an {@code Observable} that emits the items emitted by two {@link ObservableSource}s, one after the other, without * interleaving them. *

* *

*
Scheduler:
*
{@code concat} does not operate by default on a particular {@link Scheduler}.
*
* * @param the common element base type * @param source1 * an {@code ObservableSource} to be concatenated * @param source2 * an {@code ObservableSource} to be concatenated * @return the new {@code Observable} instance * @throws NullPointerException if {@code source1} or {@code source2} is {@code null} * @see ReactiveX operators documentation: Concat */ @CheckReturnValue @NonNull @SchedulerSupport(SchedulerSupport.NONE) public static Observable concat(@NonNull ObservableSource source1, ObservableSource source2) { Objects.requireNonNull(source1, "source1 is null"); Objects.requireNonNull(source2, "source2 is null"); return concatArray(source1, source2); } /** * Returns an {@code Observable} that emits the items emitted by three {@link ObservableSource}s, one after the other, without * interleaving them. *

* *

*
Scheduler:
*
{@code concat} does not operate by default on a particular {@link Scheduler}.
*
* * @param the common element base type * @param source1 * an {@code ObservableSource} to be concatenated * @param source2 * an {@code ObservableSource} to be concatenated * @param source3 * an {@code ObservableSource} to be concatenated * @return the new {@code Observable} instance * @throws NullPointerException if {@code source1}, {@code source2} or {@code source3} is {@code null} * @see ReactiveX operators documentation: Concat */ @CheckReturnValue @NonNull @SchedulerSupport(SchedulerSupport.NONE) public static Observable concat( @NonNull ObservableSource source1, @NonNull ObservableSource source2, @NonNull ObservableSource source3) { Objects.requireNonNull(source1, "source1 is null"); Objects.requireNonNull(source2, "source2 is null"); Objects.requireNonNull(source3, "source3 is null"); return concatArray(source1, source2, source3); } /** * Returns an {@code Observable} that emits the items emitted by four {@link ObservableSource}s, one after the other, without * interleaving them. *

* *

*
Scheduler:
*
{@code concat} does not operate by default on a particular {@link Scheduler}.
*
* * @param the common element base type * @param source1 * an {@code ObservableSource} to be concatenated * @param source2 * an {@code ObservableSource} to be concatenated * @param source3 * an {@code ObservableSource} to be concatenated * @param source4 * an {@code ObservableSource} to be concatenated * @return the new {@code Observable} instance * @throws NullPointerException if {@code source1}, {@code source2}, {@code source3} or {@code source4} is {@code null} * @see ReactiveX operators documentation: Concat */ @CheckReturnValue @NonNull @SchedulerSupport(SchedulerSupport.NONE) public static Observable concat( @NonNull ObservableSource source1, @NonNull ObservableSource source2, @NonNull ObservableSource source3, @NonNull ObservableSource source4) { Objects.requireNonNull(source1, "source1 is null"); Objects.requireNonNull(source2, "source2 is null"); Objects.requireNonNull(source3, "source3 is null"); Objects.requireNonNull(source4, "source4 is null"); return concatArray(source1, source2, source3, source4); } /** * Concatenates a variable number of {@link ObservableSource} sources. *

* Note: named this way because of overload conflict with {@code concat(ObservableSource)} *

* *

*
Scheduler:
*
{@code concatArray} does not operate by default on a particular {@link Scheduler}.
*
* @param sources the array of sources * @param the common base value type * @return the new {@code Observable} instance * @throws NullPointerException if {@code sources} is {@code null} */ @SuppressWarnings({ "unchecked", "rawtypes" }) @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull @SafeVarargs public static Observable concatArray(@NonNull ObservableSource... sources) { Objects.requireNonNull(sources, "sources is null"); if (sources.length == 0) { return empty(); } if (sources.length == 1) { return wrap((ObservableSource)sources[0]); } return RxJavaPlugins.onAssembly(new ObservableConcatMap(fromArray(sources), Functions.identity(), bufferSize(), ErrorMode.BOUNDARY)); } /** * Concatenates a variable number of {@link ObservableSource} sources and delays errors from any of them * till all terminate. *

* *

*
Scheduler:
*
{@code concatArrayDelayError} does not operate by default on a particular {@link Scheduler}.
*
* @param sources the array of sources * @param the common base value type * @return the new {@code Observable} instance * @throws NullPointerException if {@code sources} is {@code null} */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull @SafeVarargs public static Observable concatArrayDelayError(@NonNull ObservableSource... sources) { Objects.requireNonNull(sources, "sources is null"); if (sources.length == 0) { return empty(); } if (sources.length == 1) { @SuppressWarnings("unchecked") Observable source = (Observable)wrap(sources[0]); return source; } return concatDelayError(fromArray(sources)); } /** * Concatenates an array of {@link ObservableSource}s eagerly into a single stream of values. *

* *

* Eager concatenation means that once a subscriber subscribes, this operator subscribes to all of the * {@code ObservableSource}s. The operator buffers the values emitted by these {@code ObservableSource}s and then drains them * in order, each one after the previous one completes. *

*
Scheduler:
*
This method does not operate by default on a particular {@link Scheduler}.
*
* @param the value type * @param sources an array of {@code ObservableSource}s that need to be eagerly concatenated * @return the new {@code Observable} instance with the specified concatenation behavior * @throws NullPointerException if {@code sources} is {@code null} * @since 2.0 */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @SafeVarargs @NonNull public static Observable concatArrayEager(@NonNull ObservableSource... sources) { return concatArrayEager(bufferSize(), bufferSize(), sources); } /** * Concatenates an array of {@link ObservableSource}s eagerly into a single stream of values. *

* *

* Eager concatenation means that once a subscriber subscribes, this operator subscribes to all of the * {@code ObservableSource}s. The operator buffers the values emitted by these {@code ObservableSource}s and then drains them * in order, each one after the previous one completes. *

*
Scheduler:
*
This method does not operate by default on a particular {@link Scheduler}.
*
* @param the value type * @param sources an array of {@code ObservableSource}s that need to be eagerly concatenated * @param maxConcurrency the maximum number of concurrent subscriptions at a time, {@link Integer#MAX_VALUE} * is interpreted as indication to subscribe to all sources at once * @param bufferSize the number of elements expected from each {@code ObservableSource} to be buffered * @return the new {@code Observable} instance with the specified concatenation behavior * @throws NullPointerException if {@code sources} is {@code null} * @throws IllegalArgumentException if {@code maxConcurrency} or {@code bufferSize} is non-positive * @since 2.0 */ @SuppressWarnings({ "rawtypes", "unchecked" }) @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull @SafeVarargs public static Observable concatArrayEager(int maxConcurrency, int bufferSize, @NonNull ObservableSource... sources) { return fromArray(sources).concatMapEagerDelayError((Function)Functions.identity(), false, maxConcurrency, bufferSize); } /** * Concatenates an array of {@link ObservableSource}s eagerly into a single stream of values * and delaying any errors until all sources terminate. *

* *

* Eager concatenation means that once a subscriber subscribes, this operator subscribes to all of the * {@code ObservableSource}s. The operator buffers the values emitted by these {@code ObservableSource}s * and then drains them in order, each one after the previous one completes. *

*
Scheduler:
*
This method does not operate by default on a particular {@link Scheduler}.
*
* @param the value type * @param sources an array of {@code ObservableSource}s that need to be eagerly concatenated * @return the new {@code Observable} instance with the specified concatenation behavior * @throws NullPointerException if {@code sources} is {@code null} * @since 2.2.1 - experimental */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @SafeVarargs @NonNull public static Observable concatArrayEagerDelayError(@NonNull ObservableSource... sources) { return concatArrayEagerDelayError(bufferSize(), bufferSize(), sources); } /** * Concatenates an array of {@link ObservableSource}s eagerly into a single stream of values * and delaying any errors until all sources terminate. *

* *

* Eager concatenation means that once a subscriber subscribes, this operator subscribes to all of the * {@code ObservableSource}s. The operator buffers the values emitted by these {@code ObservableSource}s * and then drains them in order, each one after the previous one completes. *

*
Scheduler:
*
This method does not operate by default on a particular {@link Scheduler}.
*
* @param the value type * @param sources an array of {@code ObservableSource}s that need to be eagerly concatenated * @param maxConcurrency the maximum number of concurrent subscriptions at a time, {@link Integer#MAX_VALUE} * is interpreted as indication to subscribe to all sources at once * @param bufferSize the number of elements expected from each {@code ObservableSource} to be buffered * @return the new {@code Observable} instance with the specified concatenation behavior * @throws NullPointerException if {@code sources} is {@code null} * @throws IllegalArgumentException if {@code maxConcurrency} or {@code bufferSize} is non-positive * @since 2.2.1 - experimental */ @SuppressWarnings({ "rawtypes", "unchecked" }) @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull @SafeVarargs public static Observable concatArrayEagerDelayError(int maxConcurrency, int bufferSize, @NonNull ObservableSource... sources) { return fromArray(sources).concatMapEagerDelayError((Function)Functions.identity(), true, maxConcurrency, bufferSize); } /** * Concatenates the {@link Iterable} sequence of {@link ObservableSource}s into a single {@code Observable} sequence * by subscribing to each {@code ObservableSource}, one after the other, one at a time and delays any errors till * the all inner {@code ObservableSource}s terminate. *

* *

*
Scheduler:
*
{@code concatDelayError} does not operate by default on a particular {@link Scheduler}.
*
* * @param the common element base type * @param sources the {@code Iterable} sequence of {@code ObservableSource}s * @return the new {@code Observable} with the concatenating behavior * @throws NullPointerException if {@code sources} is {@code null} */ @CheckReturnValue @NonNull @SchedulerSupport(SchedulerSupport.NONE) public static Observable concatDelayError(@NonNull Iterable<@NonNull ? extends ObservableSource> sources) { Objects.requireNonNull(sources, "sources is null"); return concatDelayError(fromIterable(sources)); } /** * Concatenates the {@link ObservableSource} sequence of {@code ObservableSource}s into a single {@code Observable} sequence * by subscribing to each inner {@code ObservableSource}, one after the other, one at a time and delays any errors till the * all inner and the outer {@code ObservableSource}s terminate. *

* *

*
Scheduler:
*
{@code concatDelayError} does not operate by default on a particular {@link Scheduler}.
*
* * @param the common element base type * @param sources the {@code ObservableSource} sequence of {@code ObservableSource}s * @return the new {@code Observable} with the concatenating behavior * @throws NullPointerException if {@code sources} is {@code null} */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public static Observable concatDelayError(@NonNull ObservableSource> sources) { return concatDelayError(sources, bufferSize(), true); } /** * Concatenates the {@link ObservableSource} sequence of {@code ObservableSource}s into a single sequence by subscribing to each inner {@code ObservableSource}, * one after the other, one at a time and delays any errors till the all inner and the outer {@code ObservableSource}s terminate. *

* *

*
Scheduler:
*
{@code concatDelayError} does not operate by default on a particular {@link Scheduler}.
*
* * @param the common element base type * @param sources the {@code ObservableSource} sequence of {@code ObservableSource}s * @param bufferSize the number of inner {@code ObservableSource}s expected to be buffered * @param tillTheEnd if {@code true}, exceptions from the outer and all inner {@code ObservableSource}s are delayed to the end * if {@code false}, exception from the outer {@code ObservableSource} is delayed till the active {@code ObservableSource} terminates * @return the new {@code Observable} with the concatenating behavior * @throws NullPointerException if {@code sources} is {@code null} * @throws IllegalArgumentException if {@code bufferSize} is non-positive */ @SuppressWarnings({ "rawtypes", "unchecked" }) @CheckReturnValue @NonNull @SchedulerSupport(SchedulerSupport.NONE) public static Observable concatDelayError(@NonNull ObservableSource> sources, int bufferSize, boolean tillTheEnd) { Objects.requireNonNull(sources, "sources is null"); ObjectHelper.verifyPositive(bufferSize, "bufferSize is null"); return RxJavaPlugins.onAssembly(new ObservableConcatMap(sources, Functions.identity(), bufferSize, tillTheEnd ? ErrorMode.END : ErrorMode.BOUNDARY)); } /** * Concatenates a sequence of {@link ObservableSource}s eagerly into a single stream of values. *

* *

* Eager concatenation means that once a subscriber subscribes, this operator subscribes to all of the * {@code ObservableSource}s. The operator buffers the values emitted by these {@code ObservableSource}s and then drains them * in order, each one after the previous one completes. *

*
Scheduler:
*
This method does not operate by default on a particular {@link Scheduler}.
*
* @param the value type * @param sources a sequence of {@code ObservableSource}s that need to be eagerly concatenated * @return the new {@code Observable} instance with the specified concatenation behavior * @throws NullPointerException if {@code sources} is {@code null} * @since 2.0 */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public static Observable concatEager(@NonNull Iterable<@NonNull ? extends ObservableSource> sources) { return concatEager(sources, bufferSize(), bufferSize()); } /** * Concatenates a sequence of {@link ObservableSource}s eagerly into a single stream of values and * runs a limited number of inner sequences at once. *

* *

* Eager concatenation means that once a subscriber subscribes, this operator subscribes to all of the * {@code ObservableSource}s. The operator buffers the values emitted by these {@code ObservableSource}s and then drains them * in order, each one after the previous one completes. *

*
Scheduler:
*
This method does not operate by default on a particular {@link Scheduler}.
*
* @param the value type * @param sources a sequence of {@code ObservableSource}s that need to be eagerly concatenated * @param maxConcurrency the maximum number of concurrently running inner {@code ObservableSource}s; {@link Integer#MAX_VALUE} * is interpreted as all inner {@code ObservableSource}s can be active at the same time * @param bufferSize the number of elements expected from each inner {@code ObservableSource} to be buffered * @return the new {@code Observable} instance with the specified concatenation behavior * @throws NullPointerException if {@code sources} is {@code null} * @throws IllegalArgumentException if {@code maxConcurrency} or {@code bufferSize} is non-positive * @since 2.0 */ @SuppressWarnings({ "unchecked", "rawtypes" }) @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public static Observable concatEager(@NonNull Iterable<@NonNull ? extends ObservableSource> sources, int maxConcurrency, int bufferSize) { return fromIterable(sources).concatMapEagerDelayError((Function)Functions.identity(), false, maxConcurrency, bufferSize); } /** * Concatenates an {@link ObservableSource} sequence of {@code ObservableSource}s eagerly into a single stream of values. *

* *

* Eager concatenation means that once a subscriber subscribes, this operator subscribes to all of the * emitted source {@code ObservableSource}s as they are observed. The operator buffers the values emitted by these * {@code ObservableSource}s and then drains them in order, each one after the previous one completes. *

*
Scheduler:
*
This method does not operate by default on a particular {@link Scheduler}.
*
* @param the value type * @param sources a sequence of {@code ObservableSource}s that need to be eagerly concatenated * @return the new {@code Observable} instance with the specified concatenation behavior * @throws NullPointerException if {@code sources} is {@code null} * @since 2.0 */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public static Observable concatEager(@NonNull ObservableSource> sources) { return concatEager(sources, bufferSize(), bufferSize()); } /** * Concatenates an {@link ObservableSource} sequence of {@code ObservableSource}s eagerly into a single stream of values * and runs a limited number of inner sequences at once. * *

* *

* Eager concatenation means that once a subscriber subscribes, this operator subscribes to all of the * emitted source {@code ObservableSource}s as they are observed. The operator buffers the values emitted by these * {@code ObservableSource}s and then drains them in order, each one after the previous one completes. *

*
Scheduler:
*
This method does not operate by default on a particular {@link Scheduler}.
*
* @param the value type * @param sources a sequence of {@code ObservableSource}s that need to be eagerly concatenated * @param maxConcurrency the maximum number of concurrently running inner {@code ObservableSource}s; {@link Integer#MAX_VALUE} * is interpreted as all inner {@code ObservableSource}s can be active at the same time * @param bufferSize the number of inner {@code ObservableSource} expected to be buffered * @return the new {@code Observable} instance with the specified concatenation behavior * @throws NullPointerException if {@code sources} is {@code null} * @throws IllegalArgumentException if {@code maxConcurrency} or {@code bufferSize} is non-positive * @since 2.0 */ @SuppressWarnings({ "unchecked", "rawtypes" }) @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public static Observable concatEager(@NonNull ObservableSource> sources, int maxConcurrency, int bufferSize) { return wrap(sources).concatMapEager((Function)Functions.identity(), maxConcurrency, bufferSize); } /** * Concatenates a sequence of {@link ObservableSource}s eagerly into a single stream of values, * delaying errors until all the inner sequences terminate. *

* *

* Eager concatenation means that once a subscriber subscribes, this operator subscribes to all of the * {@code ObservableSource}s. The operator buffers the values emitted by these {@code ObservableSource}s and then drains them * in order, each one after the previous one completes. *

*
Scheduler:
*
This method does not operate by default on a particular {@link Scheduler}.
*
* @param the value type * @param sources a sequence of {@code ObservableSource}s that need to be eagerly concatenated * @return the new {@code Observable} instance with the specified concatenation behavior * @throws NullPointerException if {@code sources} is {@code null} * @since 3.0.0 */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public static Observable concatEagerDelayError(@NonNull Iterable<@NonNull ? extends ObservableSource> sources) { return concatEagerDelayError(sources, bufferSize(), bufferSize()); } /** * Concatenates a sequence of {@link ObservableSource}s eagerly into a single stream of values, * delaying errors until all the inner sequences terminate and runs a limited number of inner * sequences at once. *

* *

* Eager concatenation means that once a subscriber subscribes, this operator subscribes to all of the * {@code ObservableSource}s. The operator buffers the values emitted by these {@code ObservableSource}s and then drains them * in order, each one after the previous one completes. *

*
Scheduler:
*
This method does not operate by default on a particular {@link Scheduler}.
*
* @param the value type * @param sources a sequence of {@code ObservableSource}s that need to be eagerly concatenated * @param maxConcurrency the maximum number of concurrently running inner {@code ObservableSource}s; {@link Integer#MAX_VALUE} * is interpreted as all inner {@code ObservableSource}s can be active at the same time * @param bufferSize the number of elements expected from each inner {@code ObservableSource} to be buffered * @return the new {@code Observable} instance with the specified concatenation behavior * @throws NullPointerException if {@code sources} is {@code null} * @throws IllegalArgumentException if {@code maxConcurrency} or {@code bufferSize} is non-positive * @since 3.0.0 */ @SuppressWarnings({ "unchecked", "rawtypes" }) @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public static Observable concatEagerDelayError(@NonNull Iterable<@NonNull ? extends ObservableSource> sources, int maxConcurrency, int bufferSize) { return fromIterable(sources).concatMapEagerDelayError((Function)Functions.identity(), true, maxConcurrency, bufferSize); } /** * Concatenates an {@link ObservableSource} sequence of {@code ObservableSource}s eagerly into a single stream of values, * delaying errors until all the inner and the outer sequence terminate. *

* *

* Eager concatenation means that once a subscriber subscribes, this operator subscribes to all of the * emitted source {@code ObservableSource}s as they are observed. The operator buffers the values emitted by these * {@code ObservableSource}s and then drains them in order, each one after the previous one completes. *

*
Scheduler:
*
This method does not operate by default on a particular {@link Scheduler}.
*
* @param the value type * @param sources a sequence of {@code ObservableSource}s that need to be eagerly concatenated * @return the new {@code Observable} instance with the specified concatenation behavior * @throws NullPointerException if {@code sources} is {@code null} * @since 3.0.0 */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public static Observable concatEagerDelayError(@NonNull ObservableSource> sources) { return concatEagerDelayError(sources, bufferSize(), bufferSize()); } /** * Concatenates an {@link ObservableSource} sequence of {@code ObservableSource}s eagerly into a single stream of values, * delaying errors until all the inner and the outer sequence terminate and runs a limited number of inner sequences at once. *

* *

* Eager concatenation means that once a subscriber subscribes, this operator subscribes to all of the * emitted source {@code ObservableSource}s as they are observed. The operator buffers the values emitted by these * {@code ObservableSource}s and then drains them in order, each one after the previous one completes. *

*
Scheduler:
*
This method does not operate by default on a particular {@link Scheduler}.
*
* @param the value type * @param sources a sequence of {@code ObservableSource}s that need to be eagerly concatenated * @param maxConcurrency the maximum number of concurrently running inner {@code ObservableSource}s; {@link Integer#MAX_VALUE} * is interpreted as all inner {@code ObservableSource}s can be active at the same time * @param bufferSize the number of inner {@code ObservableSource} expected to be buffered * @return the new {@code Observable} instance with the specified concatenation behavior * @throws NullPointerException if {@code sources} is {@code null} * @throws IllegalArgumentException if {@code maxConcurrency} or {@code bufferSize} is non-positive * @since 3.0.0 */ @SuppressWarnings({ "unchecked", "rawtypes" }) @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public static Observable concatEagerDelayError(@NonNull ObservableSource> sources, int maxConcurrency, int bufferSize) { return wrap(sources).concatMapEagerDelayError((Function)Functions.identity(), true, maxConcurrency, bufferSize); } /** * Provides an API (via a cold {@code Observable}) that bridges the reactive world with the callback-style world. *

* Example: *


     * Observable.<Event>create(emitter -> {
     *     Callback listener = new Callback() {
     *         @Override
     *         public void onEvent(Event e) {
     *             emitter.onNext(e);
     *             if (e.isLast()) {
     *                 emitter.onComplete();
     *             }
     *         }
     *
     *         @Override
     *         public void onFailure(Exception e) {
     *             emitter.onError(e);
     *         }
     *     };
     *
     *     AutoCloseable c = api.someMethod(listener);
     *
     *     emitter.setCancellable(c::close);
     *
     * });
     * 
*

* Whenever an {@link Observer} subscribes to the returned {@code Observable}, the provided * {@link ObservableOnSubscribe} callback is invoked with a fresh instance of an {@link ObservableEmitter} * that will interact only with that specific {@code Observer}. If this {@code Observer} * disposes the flow (making {@link ObservableEmitter#isDisposed} return {@code true}), * other observers subscribed to the same returned {@code Observable} are not affected. *

* *

* You should call the {@code ObservableEmitter}'s {@code onNext}, {@code onError} and {@code onComplete} methods in a serialized fashion. The * rest of its methods are thread-safe. *

*
Scheduler:
*
{@code create} does not operate by default on a particular {@link Scheduler}.
*
* * @param the element type * @param source the emitter that is called when an {@code Observer} subscribes to the returned {@code Observable} * @return the new {@code Observable} instance * @throws NullPointerException if {@code source} is {@code null} * @see ObservableOnSubscribe * @see ObservableEmitter * @see Cancellable */ @CheckReturnValue @NonNull @SchedulerSupport(SchedulerSupport.NONE) public static Observable create(@NonNull ObservableOnSubscribe source) { Objects.requireNonNull(source, "source is null"); return RxJavaPlugins.onAssembly(new ObservableCreate<>(source)); } /** * Returns an {@code Observable} that calls an {@link ObservableSource} factory to create an {@code ObservableSource} for each new {@link Observer} * that subscribes. That is, for each subscriber, the actual {@code ObservableSource} that subscriber observes is * determined by the factory function. *

* *

* The {@code defer} operator allows you to defer or delay emitting items from an {@code ObservableSource} until such time as an * {@code Observer} subscribes to the {@code ObservableSource}. This allows an {@code Observer} to easily obtain updates or a * refreshed version of the sequence. *

*
Scheduler:
*
{@code defer} does not operate by default on a particular {@link Scheduler}.
*
* * @param supplier * the {@code ObservableSource} factory function to invoke for each {@code Observer} that subscribes to the * resulting {@code Observable} * @param * the type of the items emitted by the {@code ObservableSource} * @return the new {@code Observable} instance * @throws NullPointerException if {@code supplier} is {@code null} * @see ReactiveX operators documentation: Defer */ @CheckReturnValue @NonNull @SchedulerSupport(SchedulerSupport.NONE) public static Observable defer(@NonNull Supplier> supplier) { Objects.requireNonNull(supplier, "supplier is null"); return RxJavaPlugins.onAssembly(new ObservableDefer<>(supplier)); } /** * Returns an {@code Observable} that emits no items to the {@link Observer} and immediately invokes its * {@link Observer#onComplete onComplete} method. *

* *

*
Scheduler:
*
{@code empty} does not operate by default on a particular {@link Scheduler}.
*
* * @param * the type of the items (ostensibly) emitted by the {@code Observable} * @return the shared {@code Observable} instance * @see ReactiveX operators documentation: Empty */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @SuppressWarnings("unchecked") @NonNull public static Observable empty() { return RxJavaPlugins.onAssembly((Observable) ObservableEmpty.INSTANCE); } /** * Returns an {@code Observable} that invokes an {@link Observer}'s {@link Observer#onError onError} method when the * {@code Observer} subscribes to it. *

* *

*
Scheduler:
*
{@code error} does not operate by default on a particular {@link Scheduler}.
*
* * @param supplier * a {@link Supplier} factory to return a {@link Throwable} for each individual {@code Observer} * @param * the type of the items (ostensibly) emitted by the {@code Observable} * @return the new {@code Observable} instance * @throws NullPointerException if {@code supplier} is {@code null} * @see ReactiveX operators documentation: Throw */ @CheckReturnValue @NonNull @SchedulerSupport(SchedulerSupport.NONE) public static Observable error(@NonNull Supplier supplier) { Objects.requireNonNull(supplier, "supplier is null"); return RxJavaPlugins.onAssembly(new ObservableError<>(supplier)); } /** * Returns an {@code Observable} that invokes an {@link Observer}'s {@link Observer#onError onError} method when the * {@code Observer} subscribes to it. *

* *

*
Scheduler:
*
{@code error} does not operate by default on a particular {@link Scheduler}.
*
* * @param throwable * the particular {@link Throwable} to pass to {@link Observer#onError onError} * @param * the type of the items (ostensibly) emitted by the {@code Observable} * @return the new {@code Observable} instance * @throws NullPointerException if {@code throwable} is {@code null} * @see ReactiveX operators documentation: Throw */ @CheckReturnValue @NonNull @SchedulerSupport(SchedulerSupport.NONE) public static Observable error(@NonNull Throwable throwable) { Objects.requireNonNull(throwable, "throwable is null"); return error(Functions.justSupplier(throwable)); } /** * Returns an {@code Observable} instance that runs the given {@link Action} for each {@link Observer} and * emits either its exception or simply completes. *

* *

*
Scheduler:
*
{@code fromAction} does not operate by default on a particular {@link Scheduler}.
*
Error handling:
*
If the {@code Action} throws an exception, the respective {@link Throwable} is * delivered to the downstream via {@link Observer#onError(Throwable)}, * except when the downstream has canceled the resulting {@code Observable} source. * In this latter case, the {@code Throwable} is delivered to the global error handler via * {@link RxJavaPlugins#onError(Throwable)} as an {@link io.reactivex.rxjava3.exceptions.UndeliverableException UndeliverableException}. *
*
* @param the target type * @param action the {@code Action} to run for each {@code Observer} * @return the new {@code Observable} instance * @throws NullPointerException if {@code action} is {@code null} * @since 3.0.0 */ @CheckReturnValue @NonNull @SchedulerSupport(SchedulerSupport.NONE) public static Observable fromAction(@NonNull Action action) { Objects.requireNonNull(action, "action is null"); return RxJavaPlugins.onAssembly(new ObservableFromAction<>(action)); } /** * Converts an array into an {@link ObservableSource} that emits the items in the array. *

* *

*
Scheduler:
*
{@code fromArray} does not operate by default on a particular {@link Scheduler}.
*
* * @param items * the array of elements * @param * the type of items in the array and the type of items to be emitted by the resulting {@code Observable} * @return the new {@code Observable} instance * @throws NullPointerException if {@code items} is {@code null} * @see ReactiveX operators documentation: From */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull @SafeVarargs public static Observable fromArray(@NonNull T... items) { Objects.requireNonNull(items, "items is null"); if (items.length == 0) { return empty(); } if (items.length == 1) { return just(items[0]); } return RxJavaPlugins.onAssembly(new ObservableFromArray<>(items)); } /** * Returns an {@code Observable} that, when an observer subscribes to it, invokes a function you specify and then * emits the value returned from that function. *

* *

* This allows you to defer the execution of the function you specify until an observer subscribes to the * {@code Observable}. That is to say, it makes the function "lazy." *

*
Scheduler:
*
{@code fromCallable} does not operate by default on a particular {@link Scheduler}.
*
Error handling:
*
If the {@link Callable} throws an exception, the respective {@link Throwable} is * delivered to the downstream via {@link Observer#onError(Throwable)}, * except when the downstream has disposed the current {@code Observable} source. * In this latter case, the {@code Throwable} is delivered to the global error handler via * {@link RxJavaPlugins#onError(Throwable)} as an {@link UndeliverableException}. *
*
* @param callable * a function, the execution of which should be deferred; {@code fromCallable} will invoke this * function only when an observer subscribes to the {@code Observable} that {@code fromCallable} returns * @param * the type of the item returned by the {@code Callable} and emitted by the {@code Observable} * @return the new {@code Observable} instance * @throws NullPointerException if {@code callable} is {@code null} * @see #defer(Supplier) * @see #fromSupplier(Supplier) * @since 2.0 */ @CheckReturnValue @NonNull @SchedulerSupport(SchedulerSupport.NONE) public static Observable fromCallable(@NonNull Callable callable) { Objects.requireNonNull(callable, "callable is null"); return RxJavaPlugins.onAssembly(new ObservableFromCallable<>(callable)); } /** * Wraps a {@link CompletableSource} into an {@code Observable}. *

* *

*
Scheduler:
*
{@code fromCompletable} does not operate by default on a particular {@link Scheduler}.
*
* @param the target type * @param completableSource the {@code CompletableSource} to convert from * @return the new {@code Observable} instance * @throws NullPointerException if {@code completableSource} is {@code null} */ @CheckReturnValue @NonNull @SchedulerSupport(SchedulerSupport.NONE) public static Observable fromCompletable(@NonNull CompletableSource completableSource) { Objects.requireNonNull(completableSource, "completableSource is null"); return RxJavaPlugins.onAssembly(new ObservableFromCompletable<>(completableSource)); } /** * Converts a {@link Future} into an {@code Observable}. *

* *

* The operator calls {@link Future#get()}, which is a blocking method, on the subscription thread. * It is recommended applying {@link #subscribeOn(Scheduler)} to move this blocking wait to a * background thread, and if the {@link Scheduler} supports it, interrupt the wait when the flow * is disposed. *

* Unlike 1.x, disposing the {@code Observable} won't cancel the future. If necessary, one can use composition to achieve the * cancellation effect: {@code futureObservableSource.doOnDispose(() -> future.cancel(true));}. *

* Also note that this operator will consume a {@link CompletionStage}-based {@code Future} subclass (such as * {@link CompletableFuture}) in a blocking manner as well. Use the {@link #fromCompletionStage(CompletionStage)} * operator to convert and consume such sources in a non-blocking fashion instead. *

*
Scheduler:
*
{@code fromFuture} does not operate by default on a particular {@code Scheduler}.
*
* * @param future * the source {@code Future} * @param * the type of object that the {@code Future} returns, and also the type of item to be emitted by * the resulting {@code Observable} * @return the new {@code Observable} instance * @throws NullPointerException if {@code future} is {@code null} * @see ReactiveX operators documentation: From */ @CheckReturnValue @NonNull @SchedulerSupport(SchedulerSupport.NONE) public static Observable fromFuture(@NonNull Future future) { Objects.requireNonNull(future, "future is null"); return RxJavaPlugins.onAssembly(new ObservableFromFuture<>(future, 0L, null)); } /** * Converts a {@link Future} into an {@code Observable}, with a timeout on the {@code Future}. *

* *

* The operator calls {@link Future#get(long, TimeUnit)}, which is a blocking method, on the subscription thread. * It is recommended applying {@link #subscribeOn(Scheduler)} to move this blocking wait to a * background thread, and if the {@link Scheduler} supports it, interrupt the wait when the flow * is disposed. *

* Unlike 1.x, disposing the {@code Observable} won't cancel the future. If necessary, one can use composition to achieve the * cancellation effect: {@code futureObservableSource.doOnDispose(() -> future.cancel(true));}. *

* Also note that this operator will consume a {@link CompletionStage}-based {@code Future} subclass (such as * {@link CompletableFuture}) in a blocking manner as well. Use the {@link #fromCompletionStage(CompletionStage)} * operator to convert and consume such sources in a non-blocking fashion instead. *

*
Scheduler:
*
{@code fromFuture} does not operate by default on a particular {@code Scheduler}.
*
* * @param future * the source {@code Future} * @param timeout * the maximum time to wait before calling {@code get} * @param unit * the {@link TimeUnit} of the {@code timeout} argument * @param * the type of object that the {@code Future} returns, and also the type of item to be emitted by * the resulting {@code Observable} * @return the new {@code Observable} instance * @throws NullPointerException if {@code future} or {@code unit} is {@code null} * @see ReactiveX operators documentation: From */ @CheckReturnValue @NonNull @SchedulerSupport(SchedulerSupport.NONE) public static Observable fromFuture(@NonNull Future future, long timeout, @NonNull TimeUnit unit) { Objects.requireNonNull(future, "future is null"); Objects.requireNonNull(unit, "unit is null"); return RxJavaPlugins.onAssembly(new ObservableFromFuture<>(future, timeout, unit)); } /** * Converts an {@link Iterable} sequence into an {@code Observable} that emits the items in the sequence. *

* *

*
Scheduler:
*
{@code fromIterable} does not operate by default on a particular {@link Scheduler}.
*
* * @param source * the source {@code Iterable} sequence * @param * the type of items in the {@code Iterable} sequence and the type of items to be emitted by the * resulting {@code Observable} * @return the new {@code Observable} instance * @throws NullPointerException if {@code source} is {@code null} * @see ReactiveX operators documentation: From * @see #fromStream(Stream) */ @CheckReturnValue @NonNull @SchedulerSupport(SchedulerSupport.NONE) public static Observable fromIterable(@NonNull Iterable<@NonNull ? extends T> source) { Objects.requireNonNull(source, "source is null"); return RxJavaPlugins.onAssembly(new ObservableFromIterable<>(source)); } /** * Returns an {@code Observable} instance that when subscribed to, subscribes to the {@link MaybeSource} instance and * emits {@code onSuccess} as a single item or forwards any {@code onComplete} or * {@code onError} signal. *

* *

*
Scheduler:
*
{@code fromMaybe} does not operate by default on a particular {@link Scheduler}.
*
* @param the value type of the {@code MaybeSource} element * @param maybe the {@code MaybeSource} instance to subscribe to, not {@code null} * @return the new {@code Observable} instance * @throws NullPointerException if {@code maybe} is {@code null} * @since 3.0.0 */ @CheckReturnValue @NonNull @SchedulerSupport(SchedulerSupport.NONE) public static Observable fromMaybe(@NonNull MaybeSource maybe) { Objects.requireNonNull(maybe, "maybe is null"); return RxJavaPlugins.onAssembly(new MaybeToObservable<>(maybe)); } /** * Converts an arbitrary Reactive Streams {@link Publisher} into an {@code Observable}. *

* *

* The {@code Publisher} must follow the * Reactive-Streams specification. * Violating the specification may result in undefined behavior. *

* If possible, use {@link #create(ObservableOnSubscribe)} to create a * source-like {@code Observable} instead. *

* Note that even though {@code Publisher} appears to be a functional interface, it * is not recommended to implement it through a lambda as the specification requires * state management that is not achievable with a stateless lambda. *

*
Backpressure:
*
The source {@code publisher} is consumed in an unbounded fashion without applying any * backpressure to it.
*
Scheduler:
*
{@code fromPublisher} does not operate by default on a particular {@link Scheduler}.
*
* @param the value type of the flow * @param publisher the {@code Publisher} to convert * @return the new {@code Observable} instance * @throws NullPointerException if {@code publisher} is {@code null} * @see #create(ObservableOnSubscribe) */ @BackpressureSupport(BackpressureKind.UNBOUNDED_IN) @CheckReturnValue @NonNull @SchedulerSupport(SchedulerSupport.NONE) public static Observable fromPublisher(@NonNull Publisher<@NonNull ? extends T> publisher) { Objects.requireNonNull(publisher, "publisher is null"); return RxJavaPlugins.onAssembly(new ObservableFromPublisher<>(publisher)); } /** * Returns an {@code Observable} instance that runs the given {@link Runnable} for each {@link Observer} and * emits either its unchecked exception or simply completes. *

* *

* If the code to be wrapped needs to throw a checked or more broader {@link Throwable} exception, that * exception has to be converted to an unchecked exception by the wrapped code itself. Alternatively, * use the {@link #fromAction(Action)} method which allows the wrapped code to throw any {@code Throwable} * exception and will signal it to observers as-is. *

*
Scheduler:
*
{@code fromRunnable} does not operate by default on a particular {@link Scheduler}.
*
Error handling:
*
If the {@code Runnable} throws an exception, the respective {@code Throwable} is * delivered to the downstream via {@link Observer#onError(Throwable)}, * except when the downstream has canceled the resulting {@code Observable} source. * In this latter case, the {@code Throwable} is delivered to the global error handler via * {@link RxJavaPlugins#onError(Throwable)} as an {@link io.reactivex.rxjava3.exceptions.UndeliverableException UndeliverableException}. *
*
* @param the target type * @param run the {@code Runnable} to run for each {@code Observer} * @return the new {@code Observable} instance * @throws NullPointerException if {@code run} is {@code null} * @since 3.0.0 * @see #fromAction(Action) */ @CheckReturnValue @NonNull @SchedulerSupport(SchedulerSupport.NONE) public static Observable fromRunnable(@NonNull Runnable run) { Objects.requireNonNull(run, "run is null"); return RxJavaPlugins.onAssembly(new ObservableFromRunnable<>(run)); } /** * Returns an {@code Observable} instance that when subscribed to, subscribes to the {@link SingleSource} instance and * emits {@code onSuccess} as a single item or forwards the {@code onError} signal. *

* *

*
Scheduler:
*
{@code fromSingle} does not operate by default on a particular {@link Scheduler}.
*
* @param the value type of the {@code SingleSource} element * @param source the {@code SingleSource} instance to subscribe to, not {@code null} * @return the new {@code Observable} instance * @throws NullPointerException if {@code source} is {@code null} * @since 3.0.0 */ @CheckReturnValue @NonNull @SchedulerSupport(SchedulerSupport.NONE) public static Observable fromSingle(@NonNull SingleSource source) { Objects.requireNonNull(source, "source is null"); return RxJavaPlugins.onAssembly(new SingleToObservable<>(source)); } /** * Returns an {@code Observable} that, when an observer subscribes to it, invokes a supplier function you specify and then * emits the value returned from that function. *

* *

* This allows you to defer the execution of the function you specify until an observer subscribes to the * {@code Observable}. That is to say, it makes the function "lazy." *

*
Scheduler:
*
{@code fromSupplier} does not operate by default on a particular {@link Scheduler}.
*
Error handling:
*
If the {@link Supplier} throws an exception, the respective {@link Throwable} is * delivered to the downstream via {@link Observer#onError(Throwable)}, * except when the downstream has disposed the current {@code Observable} source. * In this latter case, the {@code Throwable} is delivered to the global error handler via * {@link RxJavaPlugins#onError(Throwable)} as an {@link UndeliverableException}. *
*
* @param supplier * a function, the execution of which should be deferred; {@code fromSupplier} will invoke this * function only when an observer subscribes to the {@code Observable} that {@code fromSupplier} returns * @param * the type of the item emitted by the {@code Observable} * @return the new {@code Observable} instance * @throws NullPointerException if {@code supplier} is {@code null} * @see #defer(Supplier) * @see #fromCallable(Callable) * @since 3.0.0 */ @CheckReturnValue @NonNull @SchedulerSupport(SchedulerSupport.NONE) public static Observable fromSupplier(@NonNull Supplier supplier) { Objects.requireNonNull(supplier, "supplier is null"); return RxJavaPlugins.onAssembly(new ObservableFromSupplier<>(supplier)); } /** * Returns a cold, synchronous and stateless generator of values. *

* *

* Note that the {@link Emitter#onNext}, {@link Emitter#onError} and * {@link Emitter#onComplete} methods provided to the function via the {@link Emitter} instance should be called synchronously, * never concurrently and only while the function body is executing. Calling them from multiple threads * or outside the function call is not supported and leads to an undefined behavior. *

*
Scheduler:
*
{@code generate} does not operate by default on a particular {@link Scheduler}.
*
* * @param the generated value type * @param generator the {@link Consumer} called in a loop after a downstream {@link Observer} has * subscribed. The callback then should call {@code onNext}, {@code onError} or * {@code onComplete} to signal a value or a terminal event. Signaling multiple {@code onNext} * in a call will make the operator signal {@link IllegalStateException}. * @return the new {@code Observable} instance * @throws NullPointerException if {@code generator} is {@code null} */ @CheckReturnValue @NonNull @SchedulerSupport(SchedulerSupport.NONE) public static Observable generate(@NonNull Consumer> generator) { Objects.requireNonNull(generator, "generator is null"); return generate(Functions.nullSupplier(), ObservableInternalHelper.simpleGenerator(generator), Functions.emptyConsumer()); } /** * Returns a cold, synchronous and stateful generator of values. *

* *

* Note that the {@link Emitter#onNext}, {@link Emitter#onError} and * {@link Emitter#onComplete} methods provided to the function via the {@link Emitter} instance should be called synchronously, * never concurrently and only while the function body is executing. Calling them from multiple threads * or outside the function call is not supported and leads to an undefined behavior. *

*
Scheduler:
*
{@code generate} does not operate by default on a particular {@link Scheduler}.
*
* * @param the type of the per-{@link Observer} state * @param the generated value type * @param initialState the {@link Supplier} to generate the initial state for each {@code Observer} * @param generator the {@link BiConsumer} called in a loop after a downstream {@code Observer} has * subscribed. The callback then should call {@code onNext}, {@code onError} or * {@code onComplete} to signal a value or a terminal event. Signaling multiple {@code onNext} * in a call will make the operator signal {@link IllegalStateException}. * @return the new {@code Observable} instance * @throws NullPointerException if {@code initialState} or {@code generator} is {@code null} */ @CheckReturnValue @NonNull @SchedulerSupport(SchedulerSupport.NONE) public static Observable generate(@NonNull Supplier initialState, @NonNull BiConsumer> generator) { Objects.requireNonNull(generator, "generator is null"); return generate(initialState, ObservableInternalHelper.simpleBiGenerator(generator), Functions.emptyConsumer()); } /** * Returns a cold, synchronous and stateful generator of values. *

* *

* Note that the {@link Emitter#onNext}, {@link Emitter#onError} and * {@link Emitter#onComplete} methods provided to the function via the {@link Emitter} instance should be called synchronously, * never concurrently and only while the function body is executing. Calling them from multiple threads * or outside the function call is not supported and leads to an undefined behavior. *

*
Scheduler:
*
{@code generate} does not operate by default on a particular {@link Scheduler}.
*
* * @param the type of the per-{@link Observer} state * @param the generated value type * @param initialState the {@link Supplier} to generate the initial state for each {@code Observer} * @param generator the {@link BiConsumer} called in a loop after a downstream {@code Observer} has * subscribed. The callback then should call {@code onNext}, {@code onError} or * {@code onComplete} to signal a value or a terminal event. Signaling multiple {@code onNext} * in a call will make the operator signal {@link IllegalStateException}. * @param disposeState the {@link Consumer} that is called with the current state when the generator * terminates the sequence or it gets disposed * @return the new {@code Observable} instance * @throws NullPointerException if {@code initialState}, {@code generator} or {@code disposeState} is {@code null} */ @CheckReturnValue @NonNull @SchedulerSupport(SchedulerSupport.NONE) public static Observable generate( @NonNull Supplier initialState, @NonNull BiConsumer> generator, @NonNull Consumer disposeState) { Objects.requireNonNull(generator, "generator is null"); return generate(initialState, ObservableInternalHelper.simpleBiGenerator(generator), disposeState); } /** * Returns a cold, synchronous and stateful generator of values. *

* *

* Note that the {@link Emitter#onNext}, {@link Emitter#onError} and * {@link Emitter#onComplete} methods provided to the function via the {@link Emitter} instance should be called synchronously, * never concurrently and only while the function body is executing. Calling them from multiple threads * or outside the function call is not supported and leads to an undefined behavior. *

*
Scheduler:
*
{@code generate} does not operate by default on a particular {@link Scheduler}.
*
* * @param the type of the per-{@link Observer} state * @param the generated value type * @param initialState the {@link Supplier} to generate the initial state for each {@code Observer} * @param generator the {@link BiConsumer} called in a loop after a downstream {@code Observer} has * subscribed. The callback then should call {@code onNext}, {@code onError} or * {@code onComplete} to signal a value or a terminal event and should return a (new) state for * the next invocation. Signaling multiple {@code onNext} * in a call will make the operator signal {@link IllegalStateException}. * @return the new {@code Observable} instance * @throws NullPointerException if {@code initialState} or {@code generator} is {@code null} */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public static Observable generate(@NonNull Supplier initialState, @NonNull BiFunction, S> generator) { return generate(initialState, generator, Functions.emptyConsumer()); } /** * Returns a cold, synchronous and stateful generator of values. *

* *

* Note that the {@link Emitter#onNext}, {@link Emitter#onError} and * {@link Emitter#onComplete} methods provided to the function via the {@link Emitter} instance should be called synchronously, * never concurrently and only while the function body is executing. Calling them from multiple threads * or outside the function call is not supported and leads to an undefined behavior. *

*
Scheduler:
*
{@code generate} does not operate by default on a particular {@link Scheduler}.
*
* * @param the type of the per-{@link Observer} state * @param the generated value type * @param initialState the {@link Supplier} to generate the initial state for each {@code Observer} * @param generator the {@link BiConsumer} called in a loop after a downstream {@code Observer} has * subscribed. The callback then should call {@code onNext}, {@code onError} or * {@code onComplete} to signal a value or a terminal event and should return a (new) state for * the next invocation. Signaling multiple {@code onNext} * in a call will make the operator signal {@link IllegalStateException}. * @param disposeState the {@link Consumer} that is called with the current state when the generator * terminates the sequence or it gets disposed * @return the new {@code Observable} instance * @throws NullPointerException if {@code initialState}, {@code generator} or {@code disposeState} is {@code null} */ @CheckReturnValue @NonNull @SchedulerSupport(SchedulerSupport.NONE) public static Observable generate(@NonNull Supplier initialState, @NonNull BiFunction, S> generator, @NonNull Consumer disposeState) { Objects.requireNonNull(initialState, "initialState is null"); Objects.requireNonNull(generator, "generator is null"); Objects.requireNonNull(disposeState, "disposeState is null"); return RxJavaPlugins.onAssembly(new ObservableGenerate<>(initialState, generator, disposeState)); } /** * Returns an {@code Observable} that emits a {@code 0L} after the {@code initialDelay} and ever increasing numbers * after each {@code period} of time thereafter. *

* *

*
Scheduler:
*
{@code interval} operates by default on the {@code computation} {@link Scheduler}.
*
* * @param initialDelay * the initial delay time to wait before emitting the first value of 0L * @param period * the period of time between emissions of the subsequent numbers * @param unit * the time unit for both {@code initialDelay} and {@code period} * @return the new {@code Observable} instance * @see ReactiveX operators documentation: Interval * @throws NullPointerException if {@code unit} is {@code null} * @since 1.0.12 */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.COMPUTATION) @NonNull public static Observable interval(long initialDelay, long period, @NonNull TimeUnit unit) { return interval(initialDelay, period, unit, Schedulers.computation()); } /** * Returns an {@code Observable} that emits a {@code 0L} after the {@code initialDelay} and ever increasing numbers * after each {@code period} of time thereafter, on a specified {@link Scheduler}. *

* *

*
Scheduler:
*
You specify which {@code Scheduler} this operator will use.
*
* * @param initialDelay * the initial delay time to wait before emitting the first value of 0L * @param period * the period of time between emissions of the subsequent numbers * @param unit * the time unit for both {@code initialDelay} and {@code period} * @param scheduler * the {@code Scheduler} on which the waiting happens and items are emitted * @return the new {@code Observable} instance * @see ReactiveX operators documentation: Interval * @since 1.0.12 * @throws NullPointerException if {@code unit} or {@code scheduler} is {@code null} */ @CheckReturnValue @NonNull @SchedulerSupport(SchedulerSupport.CUSTOM) public static Observable interval(long initialDelay, long period, @NonNull TimeUnit unit, @NonNull Scheduler scheduler) { Objects.requireNonNull(unit, "unit is null"); Objects.requireNonNull(scheduler, "scheduler is null"); return RxJavaPlugins.onAssembly(new ObservableInterval(Math.max(0L, initialDelay), Math.max(0L, period), unit, scheduler)); } /** * Returns an {@code Observable} that emits a sequential number every specified interval of time. *

* *

*
Scheduler:
*
{@code interval} operates by default on the {@code computation} {@link Scheduler}.
*
* * @param period * the period size in time units (see below) * @param unit * time units to use for the interval size * @return the new {@code Observable} instance * @throws NullPointerException if {@code unit} is {@code null} * @see ReactiveX operators documentation: Interval */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.COMPUTATION) @NonNull public static Observable interval(long period, @NonNull TimeUnit unit) { return interval(period, period, unit, Schedulers.computation()); } /** * Returns an {@code Observable} that emits a sequential number every specified interval of time, on a * specified {@link Scheduler}. *

* *

*
Scheduler:
*
You specify which {@code Scheduler} this operator will use.
*
* * @param period * the period size in time units (see below) * @param unit * time units to use for the interval size * @param scheduler * the {@code Scheduler} to use for scheduling the items * @return the new {@code Observable} instance * @throws NullPointerException if {@code unit} or {@code scheduler} is {@code null} * @see ReactiveX operators documentation: Interval */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.CUSTOM) @NonNull public static Observable interval(long period, @NonNull TimeUnit unit, @NonNull Scheduler scheduler) { return interval(period, period, unit, scheduler); } /** * Signals a range of long values, the first after some initial delay and the rest periodically after. *

* The sequence completes immediately after the last value (start + count - 1) has been reached. *

* *

*
Scheduler:
*
{@code intervalRange} by default operates on the {@link Schedulers#computation() computation} {@link Scheduler}.
*
* @param start that start value of the range * @param count the number of values to emit in total, if zero, the operator emits an {@code onComplete} after the initial delay. * @param initialDelay the initial delay before signaling the first value (the start) * @param period the period between subsequent values * @param unit the unit of measure of the {@code initialDelay} and {@code period} amounts * @return the new {@code Observable} instance * @throws NullPointerException if {@code unit} is {@code null} * @throws IllegalArgumentException * if {@code count} is negative, or if {@code start} + {@code count} − 1 exceeds * {@link Long#MAX_VALUE} * @see #range(int, int) */ @CheckReturnValue @NonNull @SchedulerSupport(SchedulerSupport.COMPUTATION) public static Observable intervalRange(long start, long count, long initialDelay, long period, @NonNull TimeUnit unit) { return intervalRange(start, count, initialDelay, period, unit, Schedulers.computation()); } /** * Signals a range of long values, the first after some initial delay and the rest periodically after. *

* The sequence completes immediately after the last value (start + count - 1) has been reached. *

* *

*
Scheduler:
*
you provide the {@link Scheduler}.
*
* @param start that start value of the range * @param count the number of values to emit in total, if zero, the operator emits an {@code onComplete} after the initial delay. * @param initialDelay the initial delay before signaling the first value (the start) * @param period the period between subsequent values * @param unit the unit of measure of the {@code initialDelay} and {@code period} amounts * @param scheduler the target scheduler where the values and terminal signals will be emitted * @return the new {@code Observable} instance * @throws NullPointerException if {@code unit} or {@code scheduler} is {@code null} * @throws IllegalArgumentException * if {@code count} is negative, or if {@code start} + {@code count} − 1 exceeds * {@link Long#MAX_VALUE} */ @CheckReturnValue @NonNull @SchedulerSupport(SchedulerSupport.CUSTOM) public static Observable intervalRange(long start, long count, long initialDelay, long period, @NonNull TimeUnit unit, @NonNull Scheduler scheduler) { if (count < 0) { throw new IllegalArgumentException("count >= 0 required but it was " + count); } if (count == 0L) { return Observable.empty().delay(initialDelay, unit, scheduler); } long end = start + (count - 1); if (start > 0 && end < 0) { throw new IllegalArgumentException("Overflow! start + count is bigger than Long.MAX_VALUE"); } Objects.requireNonNull(unit, "unit is null"); Objects.requireNonNull(scheduler, "scheduler is null"); return RxJavaPlugins.onAssembly(new ObservableIntervalRange(start, end, Math.max(0L, initialDelay), Math.max(0L, period), unit, scheduler)); } /** * Returns an {@code Observable} that signals the given (constant reference) item and then completes. *

* *

* Note that the item is taken and re-emitted as is and not computed by any means by {@code just}. Use {@link #fromCallable(Callable)} * to generate a single item on demand (when {@link Observer}s subscribe to it). *

* See the multi-parameter overloads of {@code just} to emit more than one (constant reference) items one after the other. * Use {@link #fromArray(Object...)} to emit an arbitrary number of items that are known upfront. *

* To emit the items of an {@link Iterable} sequence (such as a {@link java.util.List}), use {@link #fromIterable(Iterable)}. *

*
Scheduler:
*
{@code just} does not operate by default on a particular {@link Scheduler}.
*
* * @param item * the item to emit * @param * the type of that item * @return the new {@code Observable} instance * @throws NullPointerException if {@code item} is {@code null} * @see ReactiveX operators documentation: Just * @see #just(Object, Object) * @see #fromCallable(Callable) * @see #fromArray(Object...) * @see #fromIterable(Iterable) */ @CheckReturnValue @NonNull @SchedulerSupport(SchedulerSupport.NONE) public static Observable just(@NonNull T item) { Objects.requireNonNull(item, "item is null"); return RxJavaPlugins.onAssembly(new ObservableJust<>(item)); } /** * Converts two items into an {@code Observable} that emits those items. *

* *

*
Scheduler:
*
{@code just} does not operate by default on a particular {@link Scheduler}.
*
* * @param item1 * first item * @param item2 * second item * @param * the type of these items * @return the new {@code Observable} instance * @throws NullPointerException if {@code item1} or {@code item2} is {@code null} * @see ReactiveX operators documentation: Just */ @CheckReturnValue @NonNull @SchedulerSupport(SchedulerSupport.NONE) public static Observable just(@NonNull T item1, @NonNull T item2) { Objects.requireNonNull(item1, "item1 is null"); Objects.requireNonNull(item2, "item2 is null"); return fromArray(item1, item2); } /** * Converts three items into an {@code Observable} that emits those items. *

* *

*
Scheduler:
*
{@code just} does not operate by default on a particular {@link Scheduler}.
*
* * @param item1 * first item * @param item2 * second item * @param item3 * third item * @param * the type of these items * @return the new {@code Observable} instance * @throws NullPointerException if {@code item1}, {@code item2} or {@code item3} is {@code null} * @see ReactiveX operators documentation: Just */ @CheckReturnValue @NonNull @SchedulerSupport(SchedulerSupport.NONE) public static Observable just(@NonNull T item1, @NonNull T item2, @NonNull T item3) { Objects.requireNonNull(item1, "item1 is null"); Objects.requireNonNull(item2, "item2 is null"); Objects.requireNonNull(item3, "item3 is null"); return fromArray(item1, item2, item3); } /** * Converts four items into an {@code Observable} that emits those items. *

* *

*
Scheduler:
*
{@code just} does not operate by default on a particular {@link Scheduler}.
*
* * @param item1 * first item * @param item2 * second item * @param item3 * third item * @param item4 * fourth item * @param * the type of these items * @return the new {@code Observable} instance * @throws NullPointerException if {@code item1}, {@code item2}, {@code item3} or {@code item4} is {@code null} * @see ReactiveX operators documentation: Just */ @CheckReturnValue @NonNull @SchedulerSupport(SchedulerSupport.NONE) public static Observable just(@NonNull T item1, @NonNull T item2, @NonNull T item3, @NonNull T item4) { Objects.requireNonNull(item1, "item1 is null"); Objects.requireNonNull(item2, "item2 is null"); Objects.requireNonNull(item3, "item3 is null"); Objects.requireNonNull(item4, "item4 is null"); return fromArray(item1, item2, item3, item4); } /** * Converts five items into an {@code Observable} that emits those items. *

* *

*
Scheduler:
*
{@code just} does not operate by default on a particular {@link Scheduler}.
*
* * @param item1 * first item * @param item2 * second item * @param item3 * third item * @param item4 * fourth item * @param item5 * fifth item * @param * the type of these items * @return the new {@code Observable} instance * @throws NullPointerException if {@code item1}, {@code item2}, {@code item3}, * {@code item4} or {@code item5} is {@code null} * @see ReactiveX operators documentation: Just */ @CheckReturnValue @NonNull @SchedulerSupport(SchedulerSupport.NONE) public static Observable just(@NonNull T item1, @NonNull T item2, @NonNull T item3, @NonNull T item4, @NonNull T item5) { Objects.requireNonNull(item1, "item1 is null"); Objects.requireNonNull(item2, "item2 is null"); Objects.requireNonNull(item3, "item3 is null"); Objects.requireNonNull(item4, "item4 is null"); Objects.requireNonNull(item5, "item5 is null"); return fromArray(item1, item2, item3, item4, item5); } /** * Converts six items into an {@code Observable} that emits those items. *

* *

*
Scheduler:
*
{@code just} does not operate by default on a particular {@link Scheduler}.
*
* * @param item1 * first item * @param item2 * second item * @param item3 * third item * @param item4 * fourth item * @param item5 * fifth item * @param item6 * sixth item * @param * the type of these items * @return the new {@code Observable} instance * @throws NullPointerException if {@code item1}, {@code item2}, {@code item3}, * {@code item4}, {@code item5} or {@code item6} is {@code null} * @see ReactiveX operators documentation: Just */ @CheckReturnValue @NonNull @SchedulerSupport(SchedulerSupport.NONE) public static Observable just(@NonNull T item1, @NonNull T item2, @NonNull T item3, @NonNull T item4, @NonNull T item5, @NonNull T item6) { Objects.requireNonNull(item1, "item1 is null"); Objects.requireNonNull(item2, "item2 is null"); Objects.requireNonNull(item3, "item3 is null"); Objects.requireNonNull(item4, "item4 is null"); Objects.requireNonNull(item5, "item5 is null"); Objects.requireNonNull(item6, "item6 is null"); return fromArray(item1, item2, item3, item4, item5, item6); } /** * Converts seven items into an {@code Observable} that emits those items. *

* *

*
Scheduler:
*
{@code just} does not operate by default on a particular {@link Scheduler}.
*
* * @param item1 * first item * @param item2 * second item * @param item3 * third item * @param item4 * fourth item * @param item5 * fifth item * @param item6 * sixth item * @param item7 * seventh item * @param * the type of these items * @return the new {@code Observable} instance * @throws NullPointerException if {@code item1}, {@code item2}, {@code item3}, * {@code item4}, {@code item5}, {@code item6} * or {@code item7} is {@code null} * @see ReactiveX operators documentation: Just */ @CheckReturnValue @NonNull @SchedulerSupport(SchedulerSupport.NONE) public static Observable just(@NonNull T item1, @NonNull T item2, @NonNull T item3, @NonNull T item4, @NonNull T item5, @NonNull T item6, @NonNull T item7) { Objects.requireNonNull(item1, "item1 is null"); Objects.requireNonNull(item2, "item2 is null"); Objects.requireNonNull(item3, "item3 is null"); Objects.requireNonNull(item4, "item4 is null"); Objects.requireNonNull(item5, "item5 is null"); Objects.requireNonNull(item6, "item6 is null"); Objects.requireNonNull(item7, "item7 is null"); return fromArray(item1, item2, item3, item4, item5, item6, item7); } /** * Converts eight items into an {@code Observable} that emits those items. *

* *

*
Scheduler:
*
{@code just} does not operate by default on a particular {@link Scheduler}.
*
* * @param item1 * first item * @param item2 * second item * @param item3 * third item * @param item4 * fourth item * @param item5 * fifth item * @param item6 * sixth item * @param item7 * seventh item * @param item8 * eighth item * @param * the type of these items * @return the new {@code Observable} instance * @throws NullPointerException if {@code item1}, {@code item2}, {@code item3}, * {@code item4}, {@code item5}, {@code item6} * {@code item7} or {@code item8} is {@code null} * @see ReactiveX operators documentation: Just */ @CheckReturnValue @NonNull @SchedulerSupport(SchedulerSupport.NONE) public static Observable just(@NonNull T item1, @NonNull T item2, @NonNull T item3, @NonNull T item4, @NonNull T item5, @NonNull T item6, @NonNull T item7, @NonNull T item8) { Objects.requireNonNull(item1, "item1 is null"); Objects.requireNonNull(item2, "item2 is null"); Objects.requireNonNull(item3, "item3 is null"); Objects.requireNonNull(item4, "item4 is null"); Objects.requireNonNull(item5, "item5 is null"); Objects.requireNonNull(item6, "item6 is null"); Objects.requireNonNull(item7, "item7 is null"); Objects.requireNonNull(item8, "item8 is null"); return fromArray(item1, item2, item3, item4, item5, item6, item7, item8); } /** * Converts nine items into an {@code Observable} that emits those items. *

* *

*
Scheduler:
*
{@code just} does not operate by default on a particular {@link Scheduler}.
*
* * @param item1 * first item * @param item2 * second item * @param item3 * third item * @param item4 * fourth item * @param item5 * fifth item * @param item6 * sixth item * @param item7 * seventh item * @param item8 * eighth item * @param item9 * ninth item * @param * the type of these items * @return the new {@code Observable} instance * @throws NullPointerException if {@code item1}, {@code item2}, {@code item3}, * {@code item4}, {@code item5}, {@code item6} * {@code item7}, {@code item8} or {@code item9} is {@code null} * @see ReactiveX operators documentation: Just */ @CheckReturnValue @NonNull @SchedulerSupport(SchedulerSupport.NONE) public static Observable just(@NonNull T item1, @NonNull T item2, @NonNull T item3, @NonNull T item4, @NonNull T item5, @NonNull T item6, @NonNull T item7, @NonNull T item8, @NonNull T item9) { Objects.requireNonNull(item1, "item1 is null"); Objects.requireNonNull(item2, "item2 is null"); Objects.requireNonNull(item3, "item3 is null"); Objects.requireNonNull(item4, "item4 is null"); Objects.requireNonNull(item5, "item5 is null"); Objects.requireNonNull(item6, "item6 is null"); Objects.requireNonNull(item7, "item7 is null"); Objects.requireNonNull(item8, "item8 is null"); Objects.requireNonNull(item9, "item9 is null"); return fromArray(item1, item2, item3, item4, item5, item6, item7, item8, item9); } /** * Converts ten items into an {@code Observable} that emits those items. *

* *

*
Scheduler:
*
{@code just} does not operate by default on a particular {@link Scheduler}.
*
* * @param item1 * first item * @param item2 * second item * @param item3 * third item * @param item4 * fourth item * @param item5 * fifth item * @param item6 * sixth item * @param item7 * seventh item * @param item8 * eighth item * @param item9 * ninth item * @param item10 * tenth item * @param * the type of these items * @return the new {@code Observable} instance * @throws NullPointerException if {@code item1}, {@code item2}, {@code item3}, * {@code item4}, {@code item5}, {@code item6} * {@code item7}, {@code item8}, {@code item9} * or {@code item10} is {@code null} * @see ReactiveX operators documentation: Just */ @CheckReturnValue @NonNull @SchedulerSupport(SchedulerSupport.NONE) public static Observable just(@NonNull T item1, @NonNull T item2, @NonNull T item3, @NonNull T item4, @NonNull T item5, @NonNull T item6, @NonNull T item7, @NonNull T item8, @NonNull T item9, @NonNull T item10) { Objects.requireNonNull(item1, "item1 is null"); Objects.requireNonNull(item2, "item2 is null"); Objects.requireNonNull(item3, "item3 is null"); Objects.requireNonNull(item4, "item4 is null"); Objects.requireNonNull(item5, "item5 is null"); Objects.requireNonNull(item6, "item6 is null"); Objects.requireNonNull(item7, "item7 is null"); Objects.requireNonNull(item8, "item8 is null"); Objects.requireNonNull(item9, "item9 is null"); Objects.requireNonNull(item10, "item10 is null"); return fromArray(item1, item2, item3, item4, item5, item6, item7, item8, item9, item10); } /** * Flattens an {@link Iterable} of {@link ObservableSource}s into one {@code Observable}, without any transformation, while limiting the * number of concurrent subscriptions to these {@code ObservableSource}s. *

* *

* You can combine the items emitted by multiple {@code ObservableSource}s so that they appear as a single {@code ObservableSource}, by * using the {@code merge} method. *

*
Scheduler:
*
{@code merge} does not operate by default on a particular {@link Scheduler}.
*
Error handling:
*
If any of the returned {@code ObservableSource}s signal a {@link Throwable} via {@code onError}, the resulting * {@code Observable} terminates with that {@code Throwable} and all other source {@code ObservableSource}s are disposed. * If more than one {@code ObservableSource} signals an error, the resulting {@code Observable} may terminate with the * first one's error or, depending on the concurrency of the sources, may terminate with a * {@link CompositeException} containing two or more of the various error signals. * {@code Throwable}s that didn't make into the composite will be sent (individually) to the global error handler via * {@link RxJavaPlugins#onError(Throwable)} method as {@link UndeliverableException} errors. Similarly, {@code Throwable}s * signaled by source(s) after the returned {@code Observable} has been disposed or terminated with a * (composite) error will be sent to the same global error handler. * Use {@link #mergeDelayError(Iterable, int, int)} to merge sources and terminate only when all source {@code ObservableSource}s * have completed or failed with an error. *
*
* * @param the common element base type * @param sources * the {@code Iterable} of {@code ObservableSource}s * @param maxConcurrency * the maximum number of {@code ObservableSource}s that may be subscribed to concurrently * @param bufferSize * the number of items expected from each inner {@code ObservableSource} to be buffered * @return the new {@code Observable} instance * @throws NullPointerException if {@code sources} is {@code null} * @throws IllegalArgumentException * if {@code maxConcurrency} or {@code bufferSize} is non-positive * @see ReactiveX operators documentation: Merge * @see #mergeDelayError(Iterable, int, int) */ @SuppressWarnings({ "unchecked", "rawtypes" }) @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public static Observable merge(@NonNull Iterable<@NonNull ? extends ObservableSource> sources, int maxConcurrency, int bufferSize) { return fromIterable(sources).flatMap((Function)Functions.identity(), false, maxConcurrency, bufferSize); } /** * Flattens an array of {@link ObservableSource}s into one {@code Observable}, without any transformation, while limiting the * number of concurrent subscriptions to these {@code ObservableSource}s. *

* *

* You can combine the items emitted by multiple {@code ObservableSource}s so that they appear as a single {@code ObservableSource}, by * using the {@code merge} method. *

*
Scheduler:
*
{@code mergeArray} does not operate by default on a particular {@link Scheduler}.
*
Error handling:
*
If any of the {@code ObservableSource}s signal a {@link Throwable} via {@code onError}, the resulting * {@code Observable} terminates with that {@code Throwable} and all other source {@code ObservableSource}s are disposed. * If more than one {@code ObservableSource} signals an error, the resulting {@code Observable} may terminate with the * first one's error or, depending on the concurrency of the sources, may terminate with a * {@link CompositeException} containing two or more of the various error signals. * {@code Throwable}s that didn't make into the composite will be sent (individually) to the global error handler via * {@link RxJavaPlugins#onError(Throwable)} method as {@link UndeliverableException} errors. Similarly, {@code Throwable}s * signaled by source(s) after the returned {@code Observable} has been disposed or terminated with a * (composite) error will be sent to the same global error handler. * Use {@link #mergeArrayDelayError(int, int, ObservableSource...)} to merge sources and terminate only when all source {@code ObservableSource}s * have completed or failed with an error. *
*
* * @param the common element base type * @param sources * the array of {@code ObservableSource}s * @param maxConcurrency * the maximum number of {@code ObservableSource}s that may be subscribed to concurrently * @param bufferSize * the number of items expected from each inner {@code ObservableSource} to be buffered * @return the new {@code Observable} instance * @throws NullPointerException if {@code sources} is {@code null} * @throws IllegalArgumentException * if {@code maxConcurrency} or {@code bufferSize} is non-positive * @see ReactiveX operators documentation: Merge * @see #mergeArrayDelayError(int, int, ObservableSource...) */ @SuppressWarnings({ "unchecked", "rawtypes" }) @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull @SafeVarargs public static Observable mergeArray(int maxConcurrency, int bufferSize, @NonNull ObservableSource... sources) { return fromArray(sources).flatMap((Function)Functions.identity(), false, maxConcurrency, bufferSize); } /** * Flattens an {@link Iterable} of {@link ObservableSource}s into one {@code Observable}, without any transformation. *

* *

* You can combine the items emitted by multiple {@code ObservableSource}s so that they appear as a single {@code ObservableSource}, by * using the {@code merge} method. *

*
Scheduler:
*
{@code merge} does not operate by default on a particular {@link Scheduler}.
*
Error handling:
*
If any of the returned {@code ObservableSource}s signal a {@link Throwable} via {@code onError}, the resulting * {@code Observable} terminates with that {@code Throwable} and all other source {@code ObservableSource}s are disposed. * If more than one {@code ObservableSource} signals an error, the resulting {@code Observable} may terminate with the * first one's error or, depending on the concurrency of the sources, may terminate with a * {@link CompositeException} containing two or more of the various error signals. * {@code Throwable}s that didn't make into the composite will be sent (individually) to the global error handler via * {@link RxJavaPlugins#onError(Throwable)} method as {@link UndeliverableException} errors. Similarly, {@code Throwable}s * signaled by source(s) after the returned {@code Observable} has been disposed or terminated with a * (composite) error will be sent to the same global error handler. * Use {@link #mergeDelayError(Iterable)} to merge sources and terminate only when all source {@code ObservableSource}s * have completed or failed with an error. *
*
* * @param the common element base type * @param sources * the {@code Iterable} of {@code ObservableSource}s * @return the new {@code Observable} instance * @throws NullPointerException if {@code sources} is {@code null} * @see ReactiveX operators documentation: Merge * @see #mergeDelayError(Iterable) */ @SuppressWarnings({ "unchecked", "rawtypes" }) @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public static Observable merge(@NonNull Iterable<@NonNull ? extends ObservableSource> sources) { return fromIterable(sources).flatMap((Function)Functions.identity()); } /** * Flattens an {@link Iterable} of {@link ObservableSource}s into one {@code Observable}, without any transformation, while limiting the * number of concurrent subscriptions to these {@code ObservableSource}s. *

* *

* You can combine the items emitted by multiple {@code ObservableSource}s so that they appear as a single {@code ObservableSource}, by * using the {@code merge} method. *

*
Scheduler:
*
{@code merge} does not operate by default on a particular {@link Scheduler}.
*
Error handling:
*
If any of the returned {@code ObservableSource}s signal a {@link Throwable} via {@code onError}, the resulting * {@code Observable} terminates with that {@code Throwable} and all other source {@code ObservableSource}s are disposed. * If more than one {@code ObservableSource} signals an error, the resulting {@code Observable} may terminate with the * first one's error or, depending on the concurrency of the sources, may terminate with a * {@link CompositeException} containing two or more of the various error signals. * {@code Throwable}s that didn't make into the composite will be sent (individually) to the global error handler via * {@link RxJavaPlugins#onError(Throwable)} method as {@link UndeliverableException} errors. Similarly, {@code Throwable}s * signaled by source(s) after the returned {@code Observable} has been disposed or terminated with a * (composite) error will be sent to the same global error handler. * Use {@link #mergeDelayError(Iterable, int)} to merge sources and terminate only when all source {@code ObservableSource}s * have completed or failed with an error. *
*
* * @param the common element base type * @param sources * the {@code Iterable} of {@code ObservableSource}s * @param maxConcurrency * the maximum number of {@code ObservableSource}s that may be subscribed to concurrently * @return the new {@code Observable} instance * @throws NullPointerException if {@code sources} is {@code null} * @throws IllegalArgumentException * if {@code maxConcurrency} is less than or equal to 0 * @see ReactiveX operators documentation: Merge * @see #mergeDelayError(Iterable, int) */ @SuppressWarnings({ "unchecked", "rawtypes" }) @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public static Observable merge(@NonNull Iterable<@NonNull ? extends ObservableSource> sources, int maxConcurrency) { return fromIterable(sources).flatMap((Function)Functions.identity(), maxConcurrency); } /** * Flattens an {@link ObservableSource} that emits {@code ObservableSource}s into a single {@code Observable} that emits the items emitted by * those {@code ObservableSource}s, without any transformation. *

* *

* You can combine the items emitted by multiple {@code ObservableSource}s so that they appear as a single {@code ObservableSource}, by * using the {@code merge} method. *

*
Scheduler:
*
{@code merge} does not operate by default on a particular {@link Scheduler}.
*
Error handling:
*
If any of the returned {@code ObservableSource}s signal a {@link Throwable} via {@code onError}, the resulting * {@code Observable} terminates with that {@code Throwable} and all other source {@code ObservableSource}s are disposed. * If more than one {@code ObservableSource} signals an error, the resulting {@code Observable} may terminate with the * first one's error or, depending on the concurrency of the sources, may terminate with a * {@link CompositeException} containing two or more of the various error signals. * {@code Throwable}s that didn't make into the composite will be sent (individually) to the global error handler via * {@link RxJavaPlugins#onError(Throwable)} method as {@link UndeliverableException} errors. Similarly, {@code Throwable}s * signaled by source(s) after the returned {@code Observable} has been disposed or terminated with a * (composite) error will be sent to the same global error handler. * Use {@link #mergeDelayError(ObservableSource)} to merge sources and terminate only when all source {@code ObservableSource}s * have completed or failed with an error. *
*
* * @param the common element base type * @param sources * an {@code ObservableSource} that emits {@code ObservableSource}s * @return the new {@code Observable} instance * @see ReactiveX operators documentation: Merge * @throws NullPointerException if {@code sources} is {@code null} * @see #mergeDelayError(ObservableSource) */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @SuppressWarnings({ "unchecked", "rawtypes" }) @NonNull public static Observable merge(@NonNull ObservableSource> sources) { Objects.requireNonNull(sources, "sources is null"); return RxJavaPlugins.onAssembly(new ObservableFlatMap(sources, Functions.identity(), false, Integer.MAX_VALUE, bufferSize())); } /** * Flattens an {@link ObservableSource} that emits {@code ObservableSource}s into a single {@code Observable} that emits the items emitted by * those {@code ObservableSource}s, without any transformation, while limiting the maximum number of concurrent * subscriptions to these {@code ObservableSource}s. *

* *

* You can combine the items emitted by multiple {@code ObservableSource}s so that they appear as a single {@code ObservableSource}, by * using the {@code merge} method. *

*
Scheduler:
*
{@code merge} does not operate by default on a particular {@link Scheduler}.
*
Error handling:
*
If any of the returned {@code ObservableSource}s signal a {@link Throwable} via {@code onError}, the resulting * {@code Observable} terminates with that {@code Throwable} and all other source {@code ObservableSource}s are disposed. * If more than one {@code ObservableSource} signals an error, the resulting {@code Observable} may terminate with the * first one's error or, depending on the concurrency of the sources, may terminate with a * {@link CompositeException} containing two or more of the various error signals. * {@code Throwable}s that didn't make into the composite will be sent (individually) to the global error handler via * {@link RxJavaPlugins#onError(Throwable)} method as {@link UndeliverableException} errors. Similarly, {@code Throwable}s * signaled by source(s) after the returned {@code Observable} has been disposed or terminated with a * (composite) error will be sent to the same global error handler. * Use {@link #mergeDelayError(ObservableSource, int)} to merge sources and terminate only when all source {@code ObservableSource}s * have completed or failed with an error. *
*
* * @param the common element base type * @param sources * an {@code ObservableSource} that emits {@code ObservableSource}s * @param maxConcurrency * the maximum number of {@code ObservableSource}s that may be subscribed to concurrently * @return the new {@code Observable} instance * @throws NullPointerException if {@code sources} is {@code null} * @throws IllegalArgumentException * if {@code maxConcurrency} is non-positive * @see ReactiveX operators documentation: Merge * @since 1.1.0 * @see #mergeDelayError(ObservableSource, int) */ @SuppressWarnings({ "unchecked", "rawtypes" }) @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public static Observable merge(@NonNull ObservableSource> sources, int maxConcurrency) { Objects.requireNonNull(sources, "sources is null"); ObjectHelper.verifyPositive(maxConcurrency, "maxConcurrency"); return RxJavaPlugins.onAssembly(new ObservableFlatMap(sources, Functions.identity(), false, maxConcurrency, bufferSize())); } /** * Flattens two {@link ObservableSource}s into a single {@code Observable}, without any transformation. *

* *

* You can combine items emitted by multiple {@code ObservableSource}s so that they appear as a single {@code ObservableSource}, by * using the {@code merge} method. *

*
Scheduler:
*
{@code merge} does not operate by default on a particular {@link Scheduler}.
*
Error handling:
*
If any of the {@code ObservableSource}s signal a {@link Throwable} via {@code onError}, the resulting * {@code Observable} terminates with that {@code Throwable} and all other source {@code ObservableSource}s are disposed. * If more than one {@code ObservableSource} signals an error, the resulting {@code Observable} may terminate with the * first one's error or, depending on the concurrency of the sources, may terminate with a * {@link CompositeException} containing two or more of the various error signals. * {@code Throwable}s that didn't make into the composite will be sent (individually) to the global error handler via * {@link RxJavaPlugins#onError(Throwable)} method as {@link UndeliverableException} errors. Similarly, {@code Throwable}s * signaled by source(s) after the returned {@code Observable} has been disposed or terminated with a * (composite) error will be sent to the same global error handler. * Use {@link #mergeDelayError(ObservableSource, ObservableSource)} to merge sources and terminate only when all source {@code ObservableSource}s * have completed or failed with an error. *
*
* * @param the common element base type * @param source1 * an {@code ObservableSource} to be merged * @param source2 * an {@code ObservableSource} to be merged * @return the new {@code Observable} instance * @throws NullPointerException if {@code source1} or {@code source2} is {@code null} * @see ReactiveX operators documentation: Merge * @see #mergeDelayError(ObservableSource, ObservableSource) */ @SuppressWarnings({ "unchecked", "rawtypes" }) @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public static Observable merge(@NonNull ObservableSource source1, @NonNull ObservableSource source2) { Objects.requireNonNull(source1, "source1 is null"); Objects.requireNonNull(source2, "source2 is null"); return fromArray(source1, source2).flatMap((Function)Functions.identity(), false, 2); } /** * Flattens three {@link ObservableSource}s into a single {@code Observable}, without any transformation. *

* *

* You can combine items emitted by multiple {@code ObservableSource}s so that they appear as a single {@code ObservableSource}, by * using the {@code merge} method. *

*
Scheduler:
*
{@code merge} does not operate by default on a particular {@link Scheduler}.
*
Error handling:
*
If any of the {@code ObservableSource}s signal a {@link Throwable} via {@code onError}, the resulting * {@code Observable} terminates with that {@code Throwable} and all other source {@code ObservableSource}s are disposed. * If more than one {@code ObservableSource} signals an error, the resulting {@code Observable} may terminate with the * first one's error or, depending on the concurrency of the sources, may terminate with a * {@link CompositeException} containing two or more of the various error signals. * {@code Throwable}s that didn't make into the composite will be sent (individually) to the global error handler via * {@link RxJavaPlugins#onError(Throwable)} method as {@link UndeliverableException} errors. Similarly, {@code Throwable}s * signaled by source(s) after the returned {@code Observable} has been disposed or terminated with a * (composite) error will be sent to the same global error handler. * Use {@link #mergeDelayError(ObservableSource, ObservableSource, ObservableSource)} to merge sources and terminate only when all source {@code ObservableSource}s * have completed or failed with an error. *
*
* * @param the common element base type * @param source1 * an {@code ObservableSource} to be merged * @param source2 * an {@code ObservableSource} to be merged * @param source3 * an {@code ObservableSource} to be merged * @return the new {@code Observable} instance * @throws NullPointerException if {@code source1}, {@code source2} or {@code source3} is {@code null} * @see ReactiveX operators documentation: Merge * @see #mergeDelayError(ObservableSource, ObservableSource, ObservableSource) */ @SuppressWarnings({ "unchecked", "rawtypes" }) @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public static Observable merge( @NonNull ObservableSource source1, @NonNull ObservableSource source2, @NonNull ObservableSource source3) { Objects.requireNonNull(source1, "source1 is null"); Objects.requireNonNull(source2, "source2 is null"); Objects.requireNonNull(source3, "source3 is null"); return fromArray(source1, source2, source3).flatMap((Function)Functions.identity(), false, 3); } /** * Flattens four {@link ObservableSource}s into a single {@code Observable}, without any transformation. *

* *

* You can combine items emitted by multiple {@code ObservableSource}s so that they appear as a single {@code ObservableSource}, by * using the {@code merge} method. *

*
Scheduler:
*
{@code merge} does not operate by default on a particular {@link Scheduler}.
*
Error handling:
*
If any of the {@code ObservableSource}s signal a {@link Throwable} via {@code onError}, the resulting * {@code Observable} terminates with that {@code Throwable} and all other source {@code ObservableSource}s are disposed. * If more than one {@code ObservableSource} signals an error, the resulting {@code Observable} may terminate with the * first one's error or, depending on the concurrency of the sources, may terminate with a * {@link CompositeException} containing two or more of the various error signals. * {@code Throwable}s that didn't make into the composite will be sent (individually) to the global error handler via * {@link RxJavaPlugins#onError(Throwable)} method as {@link UndeliverableException} errors. Similarly, {@code Throwable}s * signaled by source(s) after the returned {@code Observable} has been disposed or terminated with a * (composite) error will be sent to the same global error handler. * Use {@link #mergeDelayError(ObservableSource, ObservableSource, ObservableSource, ObservableSource)} to merge sources and terminate only when all source {@code ObservableSource}s * have completed or failed with an error. *
*
* * @param the common element base type * @param source1 * an {@code ObservableSource} to be merged * @param source2 * an {@code ObservableSource} to be merged * @param source3 * an {@code ObservableSource} to be merged * @param source4 * an {@code ObservableSource} to be merged * @return the new {@code Observable} instance * @throws NullPointerException if {@code source1}, {@code source2}, {@code source3} or {@code source4} is {@code null} * @see ReactiveX operators documentation: Merge * @see #mergeDelayError(ObservableSource, ObservableSource, ObservableSource, ObservableSource) */ @SuppressWarnings({ "unchecked", "rawtypes" }) @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public static Observable merge( @NonNull ObservableSource source1, @NonNull ObservableSource source2, @NonNull ObservableSource source3, @NonNull ObservableSource source4) { Objects.requireNonNull(source1, "source1 is null"); Objects.requireNonNull(source2, "source2 is null"); Objects.requireNonNull(source3, "source3 is null"); Objects.requireNonNull(source4, "source4 is null"); return fromArray(source1, source2, source3, source4).flatMap((Function)Functions.identity(), false, 4); } /** * Flattens an array of {@link ObservableSource}s into one {@code Observable}, without any transformation. *

* *

* You can combine items emitted by multiple {@code ObservableSource}s so that they appear as a single {@code ObservableSource}, by * using the {@code merge} method. *

*
Scheduler:
*
{@code mergeArray} does not operate by default on a particular {@link Scheduler}.
*
Error handling:
*
If any of the {@code ObservableSource}s signal a {@link Throwable} via {@code onError}, the resulting * {@code Observable} terminates with that {@code Throwable} and all other source {@code ObservableSource}s are disposed. * If more than one {@code ObservableSource} signals an error, the resulting {@code Observable} may terminate with the * first one's error or, depending on the concurrency of the sources, may terminate with a * {@link CompositeException} containing two or more of the various error signals. * {@code Throwable}s that didn't make into the composite will be sent (individually) to the global error handler via * {@link RxJavaPlugins#onError(Throwable)} method as {@link UndeliverableException} errors. Similarly, {@code Throwable}s * signaled by source(s) after the returned {@code Observable} has been disposed or terminated with a * (composite) error will be sent to the same global error handler. * Use {@link #mergeArrayDelayError(ObservableSource...)} to merge sources and terminate only when all source {@code ObservableSource}s * have completed or failed with an error. *
*
* * @param the common element base type * @param sources * the array of {@code ObservableSource}s * @return the new {@code Observable} instance * @throws NullPointerException if {@code sources} is {@code null} * @see ReactiveX operators documentation: Merge * @see #mergeArrayDelayError(ObservableSource...) */ @SuppressWarnings({ "unchecked", "rawtypes" }) @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull @SafeVarargs public static Observable mergeArray(@NonNull ObservableSource... sources) { return fromArray(sources).flatMap((Function)Functions.identity(), sources.length); } /** * Flattens an {@link Iterable} of {@link ObservableSource}s into one {@code Observable}, in a way that allows an {@link Observer} to receive all * successfully emitted items from each of the returned {@code ObservableSource}s without being interrupted by an error * notification from one of them. *

* This behaves like {@link #merge(ObservableSource)} except that if any of the merged {@code ObservableSource}s notify of an * error via {@link Observer#onError onError}, {@code mergeDelayError} will refrain from propagating that * error notification until all of the merged {@code ObservableSource}s have finished emitting items. *

* *

* Even if multiple merged {@code ObservableSource}s send {@code onError} notifications, {@code mergeDelayError} will only * invoke the {@code onError} method of its {@code Observer}s once. *

*
Scheduler:
*
{@code mergeDelayError} does not operate by default on a particular {@link Scheduler}.
*
* * @param the common element base type * @param sources * the {@code Iterable} of {@code ObservableSource}s * @return the new {@code Observable} instance * @throws NullPointerException if {@code sources} is {@code null} * @see ReactiveX operators documentation: Merge */ @SuppressWarnings({ "unchecked", "rawtypes" }) @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public static Observable mergeDelayError(@NonNull Iterable<@NonNull ? extends ObservableSource> sources) { return fromIterable(sources).flatMap((Function)Functions.identity(), true); } /** * Flattens an {@link Iterable} of {@link ObservableSource}s into one {@code Observable}, in a way that allows an {@link Observer} to receive all * successfully emitted items from each of the returned {@code ObservableSource}s without being interrupted by an error * notification from one of them, while limiting the number of concurrent subscriptions to these {@code ObservableSource}s. *

* This behaves like {@link #merge(ObservableSource)} except that if any of the merged {@code ObservableSource}s notify of an * error via {@link Observer#onError onError}, {@code mergeDelayError} will refrain from propagating that * error notification until all of the merged {@code ObservableSource}s have finished emitting items. *

* *

* Even if multiple merged {@code ObservableSource}s send {@code onError} notifications, {@code mergeDelayError} will only * invoke the {@code onError} method of its {@code Observer}s once. *

*
Scheduler:
*
{@code mergeDelayError} does not operate by default on a particular {@link Scheduler}.
*
* * @param the common element base type * @param sources * the {@code Iterable} of {@code ObservableSource}s * @param maxConcurrency * the maximum number of {@code ObservableSource}s that may be subscribed to concurrently * @param bufferSize * the number of items expected from each inner {@code ObservableSource} to be buffered * @return the new {@code Observable} instance * @throws NullPointerException if {@code sources} is {@code null} * @throws IllegalArgumentException if {@code maxConcurrency} or {@code bufferSize} is non-positive * @see ReactiveX operators documentation: Merge */ @SuppressWarnings({ "unchecked", "rawtypes" }) @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public static Observable mergeDelayError(@NonNull Iterable<@NonNull ? extends ObservableSource> sources, int maxConcurrency, int bufferSize) { return fromIterable(sources).flatMap((Function)Functions.identity(), true, maxConcurrency, bufferSize); } /** * Flattens an array of {@link ObservableSource}s into one {@code Observable}, in a way that allows an {@link Observer} to receive all * successfully emitted items from each of the {@code ObservableSource}s without being interrupted by an error * notification from one of them, while limiting the number of concurrent subscriptions to these {@code ObservableSource}s. *

* This behaves like {@link #merge(ObservableSource)} except that if any of the merged {@code ObservableSource}s notify of an * error via {@link Observer#onError onError}, {@code mergeDelayError} will refrain from propagating that * error notification until all of the merged {@code ObservableSource}s have finished emitting items. *

* *

* Even if multiple merged {@code ObservableSource}s send {@code onError} notifications, {@code mergeDelayError} will only * invoke the {@code onError} method of its {@code Observer}s once. *

*
Scheduler:
*
{@code mergeArrayDelayError} does not operate by default on a particular {@link Scheduler}.
*
* * @param the common element base type * @param sources * the array of {@code ObservableSource}s * @param maxConcurrency * the maximum number of {@code ObservableSource}s that may be subscribed to concurrently * @param bufferSize * the number of items expected from each inner {@code ObservableSource} to be buffered * @return the new {@code Observable} instance * @throws NullPointerException if {@code sources} is {@code null} * @throws IllegalArgumentException if {@code maxConcurrency} or {@code bufferSize} is non-positive * @see ReactiveX operators documentation: Merge */ @SuppressWarnings({ "unchecked", "rawtypes" }) @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull @SafeVarargs public static Observable mergeArrayDelayError(int maxConcurrency, int bufferSize, @NonNull ObservableSource... sources) { return fromArray(sources).flatMap((Function)Functions.identity(), true, maxConcurrency, bufferSize); } /** * Flattens an {@link Iterable} of {@link ObservableSource}s into one {@code Observable}, in a way that allows an {@link Observer} to receive all * successfully emitted items from each of the returned {@code ObservableSource}s without being interrupted by an error * notification from one of them, while limiting the number of concurrent subscriptions to these {@code ObservableSource}s. *

* This behaves like {@link #merge(ObservableSource)} except that if any of the merged {@code ObservableSource}s notify of an * error via {@link Observer#onError onError}, {@code mergeDelayError} will refrain from propagating that * error notification until all of the merged {@code ObservableSource}s have finished emitting items. *

* *

* Even if multiple merged {@code ObservableSource}s send {@code onError} notifications, {@code mergeDelayError} will only * invoke the {@code onError} method of its {@code Observer}s once. *

*
Scheduler:
*
{@code mergeDelayError} does not operate by default on a particular {@link Scheduler}.
*
* * @param the common element base type * @param sources * the {@code Iterable} of {@code ObservableSource}s * @param maxConcurrency * the maximum number of {@code ObservableSource}s that may be subscribed to concurrently * @return the new {@code Observable} instance * @throws NullPointerException if {@code sources} is {@code null} * @throws IllegalArgumentException if {@code maxConcurrency} is non-positive * @see ReactiveX operators documentation: Merge */ @SuppressWarnings({ "unchecked", "rawtypes" }) @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public static Observable mergeDelayError(@NonNull Iterable<@NonNull ? extends ObservableSource> sources, int maxConcurrency) { return fromIterable(sources).flatMap((Function)Functions.identity(), true, maxConcurrency); } /** * Flattens an {@link ObservableSource} that emits {@code ObservableSource}s into one {@code Observable}, in a way that allows an {@link Observer} to * receive all successfully emitted items from all of the emitted {@code ObservableSource}s without being interrupted by * an error notification from one of them. *

* This behaves like {@link #merge(ObservableSource)} except that if any of the merged {@code ObservableSource}s notify of an * error via {@link Observer#onError onError}, {@code mergeDelayError} will refrain from propagating that * error notification until all of the merged {@code ObservableSource}s have finished emitting items. *

* *

* Even if multiple merged {@code ObservableSource}s send {@code onError} notifications, {@code mergeDelayError} will only * invoke the {@code onError} method of its {@code Observer}s once. *

*
Scheduler:
*
{@code mergeDelayError} does not operate by default on a particular {@link Scheduler}.
*
* * @param the common element base type * @param sources * an {@code ObservableSource} that emits {@code ObservableSource}s * @return the new {@code Observable} instance * @throws NullPointerException if {@code sources} is {@code null} * @see ReactiveX operators documentation: Merge */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @SuppressWarnings({ "unchecked", "rawtypes" }) @NonNull public static Observable mergeDelayError(@NonNull ObservableSource> sources) { Objects.requireNonNull(sources, "sources is null"); return RxJavaPlugins.onAssembly(new ObservableFlatMap(sources, Functions.identity(), true, Integer.MAX_VALUE, bufferSize())); } /** * Flattens an {@link ObservableSource} that emits {@code ObservableSource}s into one {@code Observable}, in a way that allows an {@link Observer} to * receive all successfully emitted items from all of the emitted {@code ObservableSource}s without being interrupted by * an error notification from one of them, while limiting the * number of concurrent subscriptions to these {@code ObservableSource}s. *

* This behaves like {@link #merge(ObservableSource)} except that if any of the merged {@code ObservableSource}s notify of an * error via {@link Observer#onError onError}, {@code mergeDelayError} will refrain from propagating that * error notification until all of the merged {@code ObservableSource}s have finished emitting items. *

* *

* Even if multiple merged {@code ObservableSource}s send {@code onError} notifications, {@code mergeDelayError} will only * invoke the {@code onError} method of its {@code Observer}s once. *

*
Scheduler:
*
{@code mergeDelayError} does not operate by default on a particular {@link Scheduler}.
*
* * @param the common element base type * @param sources * an {@code ObservableSource} that emits {@code ObservableSource}s * @param maxConcurrency * the maximum number of {@code ObservableSource}s that may be subscribed to concurrently * @return the new {@code Observable} instance * @throws NullPointerException if {@code sources} is {@code null} * @throws IllegalArgumentException if {@code maxConcurrency} is non-positive * @see ReactiveX operators documentation: Merge * @since 2.0 */ @SuppressWarnings({ "unchecked", "rawtypes" }) @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public static Observable mergeDelayError(@NonNull ObservableSource> sources, int maxConcurrency) { Objects.requireNonNull(sources, "sources is null"); ObjectHelper.verifyPositive(maxConcurrency, "maxConcurrency"); return RxJavaPlugins.onAssembly(new ObservableFlatMap(sources, Functions.identity(), true, maxConcurrency, bufferSize())); } /** * Flattens two {@link ObservableSource}s into one {@code Observable}, in a way that allows an {@link Observer} to receive all * successfully emitted items from each of the {@code ObservableSource}s without being interrupted by an error * notification from one of them. *

* This behaves like {@link #merge(ObservableSource, ObservableSource)} except that if any of the merged {@code ObservableSource}s * notify of an error via {@link Observer#onError onError}, {@code mergeDelayError} will refrain from * propagating that error notification until all of the merged {@code ObservableSource}s have finished emitting items. *

* *

* Even if both merged {@code ObservableSource}s send {@code onError} notifications, {@code mergeDelayError} will only * invoke the {@code onError} method of its {@code Observer}s once. *

*
Scheduler:
*
{@code mergeDelayError} does not operate by default on a particular {@link Scheduler}.
*
* * @param the common element base type * @param source1 * an {@code ObservableSource} to be merged * @param source2 * an {@code ObservableSource} to be merged * @return the new {@code Observable} instance * @throws NullPointerException if {@code source1} or {@code source2} is {@code null} * @see ReactiveX operators documentation: Merge */ @SuppressWarnings({ "unchecked", "rawtypes" }) @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public static Observable mergeDelayError( @NonNull ObservableSource source1, @NonNull ObservableSource source2) { Objects.requireNonNull(source1, "source1 is null"); Objects.requireNonNull(source2, "source2 is null"); return fromArray(source1, source2).flatMap((Function)Functions.identity(), true, 2); } /** * Flattens three {@link ObservableSource}s into one {@code Observable}, in a way that allows an {@link Observer} to receive all * successfully emitted items from all of the {@code ObservableSource}s without being interrupted by an error * notification from one of them. *

* This behaves like {@link #merge(ObservableSource, ObservableSource, ObservableSource)} except that if any of the merged * {@code ObservableSource}s notify of an error via {@link Observer#onError onError}, {@code mergeDelayError} will refrain * from propagating that error notification until all of the merged {@code ObservableSource}s have finished emitting * items. *

* *

* Even if multiple merged {@code ObservableSource}s send {@code onError} notifications, {@code mergeDelayError} will only * invoke the {@code onError} method of its {@code Observer}s once. *

*
Scheduler:
*
{@code mergeDelayError} does not operate by default on a particular {@link Scheduler}.
*
* * @param the common element base type * @param source1 * an {@code ObservableSource} to be merged * @param source2 * an {@code ObservableSource} to be merged * @param source3 * an {@code ObservableSource} to be merged * @return the new {@code Observable} instance * @throws NullPointerException if {@code source1}, {@code source2} or {@code source3} is {@code null} * @see ReactiveX operators documentation: Merge */ @SuppressWarnings({ "unchecked", "rawtypes" }) @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public static Observable mergeDelayError( @NonNull ObservableSource source1, @NonNull ObservableSource source2, @NonNull ObservableSource source3) { Objects.requireNonNull(source1, "source1 is null"); Objects.requireNonNull(source2, "source2 is null"); Objects.requireNonNull(source3, "source3 is null"); return fromArray(source1, source2, source3).flatMap((Function)Functions.identity(), true, 3); } /** * Flattens four {@link ObservableSource}s into one {@code Observable}, in a way that allows an {@link Observer} to receive all * successfully emitted items from all of the {@code ObservableSource}s without being interrupted by an error * notification from one of them. *

* This behaves like {@link #merge(ObservableSource, ObservableSource, ObservableSource, ObservableSource)} except that if any of * the merged {@code ObservableSource}s notify of an error via {@link Observer#onError onError}, {@code mergeDelayError} * will refrain from propagating that error notification until all of the merged {@code ObservableSource}s have finished * emitting items. *

* *

* Even if multiple merged {@code ObservableSource}s send {@code onError} notifications, {@code mergeDelayError} will only * invoke the {@code onError} method of its {@code Observer}s once. *

*
Scheduler:
*
{@code mergeDelayError} does not operate by default on a particular {@link Scheduler}.
*
* * @param the common element base type * @param source1 * an {@code ObservableSource} to be merged * @param source2 * an {@code ObservableSource} to be merged * @param source3 * an {@code ObservableSource} to be merged * @param source4 * an {@code ObservableSource} to be merged * @return the new {@code Observable} instance * @throws NullPointerException if {@code source1}, {@code source2}, {@code source3} or {@code source4} is {@code null} * @see ReactiveX operators documentation: Merge */ @SuppressWarnings({ "unchecked", "rawtypes" }) @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public static Observable mergeDelayError( @NonNull ObservableSource source1, @NonNull ObservableSource source2, @NonNull ObservableSource source3, @NonNull ObservableSource source4) { Objects.requireNonNull(source1, "source1 is null"); Objects.requireNonNull(source2, "source2 is null"); Objects.requireNonNull(source3, "source3 is null"); Objects.requireNonNull(source4, "source4 is null"); return fromArray(source1, source2, source3, source4).flatMap((Function)Functions.identity(), true, 4); } /** * Flattens an array of {@link ObservableSource}s into one {@code Observable}, in a way that allows an {@link Observer} to receive all * successfully emitted items from each of the {@code ObservableSource}s without being interrupted by an error * notification from one of them. *

* This behaves like {@link #merge(ObservableSource)} except that if any of the merged {@code ObservableSource}s notify of an * error via {@link Observer#onError onError}, {@code mergeDelayError} will refrain from propagating that * error notification until all of the merged {@code ObservableSource}s have finished emitting items. *

* *

* Even if multiple merged {@code ObservableSource}s send {@code onError} notifications, {@code mergeDelayError} will only * invoke the {@code onError} method of its {@code Observer}s once. *

*
Scheduler:
*
{@code mergeArrayDelayError} does not operate by default on a particular {@link Scheduler}.
*
* * @param the common element base type * @param sources * the array of {@code ObservableSource}s * @return the new {@code Observable} instance * @throws NullPointerException if {@code sources} is {@code null} * @see ReactiveX operators documentation: Merge */ @SuppressWarnings({ "unchecked", "rawtypes" }) @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull @SafeVarargs public static Observable mergeArrayDelayError(@NonNull ObservableSource... sources) { return fromArray(sources).flatMap((Function)Functions.identity(), true, sources.length); } /** * Returns an {@code Observable} that never sends any items or notifications to an {@link Observer}. *

* *

* The returned {@code Observable} is useful primarily for testing purposes. *

*
Scheduler:
*
{@code never} does not operate by default on a particular {@link Scheduler}.
*
* * @param * the type of items (not) emitted by the {@code Observable} * @return the shared {@code Observable} instance * @see ReactiveX operators documentation: Never */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @SuppressWarnings("unchecked") @NonNull public static Observable never() { return RxJavaPlugins.onAssembly((Observable) ObservableNever.INSTANCE); } /** * Returns an {@code Observable} that emits a sequence of {@link Integer}s within a specified range. *

* *

*
Scheduler:
*
{@code range} does not operate by default on a particular {@link Scheduler}.
*
* * @param start * the value of the first {@code Integer} in the sequence * @param count * the number of sequential {@code Integer}s to generate * @return the new {@code Observable} instance * @throws IllegalArgumentException * if {@code count} is negative, or if {@code start} + {@code count} − 1 exceeds * {@link Integer#MAX_VALUE} * @see ReactiveX operators documentation: Range * @see #rangeLong(long, long) * @see #intervalRange(long, long, long, long, TimeUnit) */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public static Observable range(int start, int count) { if (count < 0) { throw new IllegalArgumentException("count >= 0 required but it was " + count); } if (count == 0) { return empty(); } if (count == 1) { return just(start); } if ((long)start + (count - 1) > Integer.MAX_VALUE) { throw new IllegalArgumentException("Integer overflow"); } return RxJavaPlugins.onAssembly(new ObservableRange(start, count)); } /** * Returns an {@code Observable} that emits a sequence of {@link Long}s within a specified range. *

* *

*
Scheduler:
*
{@code rangeLong} does not operate by default on a particular {@link Scheduler}.
*
* * @param start * the value of the first {@code Long} in the sequence * @param count * the number of sequential {@code Long}s to generate * @return the new {@code Observable} instance * @throws IllegalArgumentException * if {@code count} is negative, or if {@code start} + {@code count} − 1 exceeds * {@link Long#MAX_VALUE} * @see ReactiveX operators documentation: Range * @see #intervalRange(long, long, long, long, TimeUnit) */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public static Observable rangeLong(long start, long count) { if (count < 0) { throw new IllegalArgumentException("count >= 0 required but it was " + count); } if (count == 0) { return empty(); } if (count == 1) { return just(start); } long end = start + (count - 1); if (start > 0 && end < 0) { throw new IllegalArgumentException("Overflow! start + count is bigger than Long.MAX_VALUE"); } return RxJavaPlugins.onAssembly(new ObservableRangeLong(start, count)); } /** * Returns a {@link Single} that emits a {@link Boolean} value that indicates whether two {@link ObservableSource} sequences are the * same by comparing the items emitted by each {@code ObservableSource} pairwise. *

* *

*
Scheduler:
*
{@code sequenceEqual} does not operate by default on a particular {@link Scheduler}.
*
* * @param source1 * the first {@code ObservableSource} to compare * @param source2 * the second {@code ObservableSource} to compare * @param * the type of items emitted by each {@code ObservableSource} * @return the new {@code Single} instance * @throws NullPointerException if {@code source1} or {@code source2} is {@code null} * @see ReactiveX operators documentation: SequenceEqual */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public static Single sequenceEqual(@NonNull ObservableSource source1, @NonNull ObservableSource source2) { return sequenceEqual(source1, source2, ObjectHelper.equalsPredicate(), bufferSize()); } /** * Returns a {@link Single} that emits a {@link Boolean} value that indicates whether two {@link ObservableSource} sequences are the * same by comparing the items emitted by each {@code ObservableSource} pairwise based on the results of a specified * equality function. *

* *

*
Scheduler:
*
{@code sequenceEqual} does not operate by default on a particular {@link Scheduler}.
*
* * @param source1 * the first {@code ObservableSource} to compare * @param source2 * the second {@code ObservableSource} to compare * @param isEqual * a function used to compare items emitted by each {@code ObservableSource} * @param * the type of items emitted by each {@code ObservableSource} * @return the new {@code Single} instance * @throws NullPointerException if {@code source1}, {@code source2} or {@code isEqual} is {@code null} * @see ReactiveX operators documentation: SequenceEqual */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public static Single sequenceEqual( @NonNull ObservableSource source1, @NonNull ObservableSource source2, @NonNull BiPredicate isEqual) { return sequenceEqual(source1, source2, isEqual, bufferSize()); } /** * Returns a {@link Single} that emits a {@link Boolean} value that indicates whether two {@link ObservableSource} sequences are the * same by comparing the items emitted by each {@code ObservableSource} pairwise based on the results of a specified * equality function. *

* *

*
Scheduler:
*
{@code sequenceEqual} does not operate by default on a particular {@link Scheduler}.
*
* * @param source1 * the first {@code ObservableSource} to compare * @param source2 * the second {@code ObservableSource} to compare * @param isEqual * a function used to compare items emitted by each {@code ObservableSource} * @param bufferSize * the number of items expected from the first and second source {@code ObservableSource} to be buffered * @param * the type of items emitted by each {@code ObservableSource} * @return the new {@code Single} instance * @throws NullPointerException if {@code source1}, {@code source2} or {@code isEqual} is {@code null} * @throws IllegalArgumentException if {@code bufferSize} is non-positive * @see ReactiveX operators documentation: SequenceEqual */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public static Single sequenceEqual( @NonNull ObservableSource source1, @NonNull ObservableSource source2, @NonNull BiPredicate isEqual, int bufferSize) { Objects.requireNonNull(source1, "source1 is null"); Objects.requireNonNull(source2, "source2 is null"); Objects.requireNonNull(isEqual, "isEqual is null"); ObjectHelper.verifyPositive(bufferSize, "bufferSize"); return RxJavaPlugins.onAssembly(new ObservableSequenceEqualSingle<>(source1, source2, isEqual, bufferSize)); } /** * Returns a {@link Single} that emits a {@link Boolean} value that indicates whether two {@link ObservableSource} sequences are the * same by comparing the items emitted by each {@code ObservableSource} pairwise. *

* *

*
Scheduler:
*
{@code sequenceEqual} does not operate by default on a particular {@link Scheduler}.
*
* * @param source1 * the first {@code ObservableSource} to compare * @param source2 * the second {@code ObservableSource} to compare * @param bufferSize * the number of items expected from the first and second source {@code ObservableSource} to be buffered * @param * the type of items emitted by each {@code ObservableSource} * @return the new {@code Single} instance * @throws NullPointerException if {@code source1} or {@code source2} is {@code null} * @throws IllegalArgumentException if {@code bufferSize} is non-positive * @see ReactiveX operators documentation: SequenceEqual */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public static Single sequenceEqual(@NonNull ObservableSource source1, @NonNull ObservableSource source2, int bufferSize) { return sequenceEqual(source1, source2, ObjectHelper.equalsPredicate(), bufferSize); } /** * Converts an {@link ObservableSource} that emits {@code ObservableSource}s into an {@code Observable} that emits the items emitted by the * most recently emitted of those {@code ObservableSource}s. *

* *

* {@code switchOnNext} subscribes to an {@code ObservableSource} that emits {@code ObservableSource}s. Each time it observes one of * these emitted {@code ObservableSource}s, the {@code ObservableSource} returned by {@code switchOnNext} begins emitting the items * emitted by that {@code ObservableSource}. When a new inner {@code ObservableSource} is emitted, {@code switchOnNext} stops emitting items * from the earlier-emitted {@code ObservableSource} and begins emitting items from the new one. *

* The resulting {@code Observable} completes if both the outer {@code ObservableSource} and the last inner {@code ObservableSource}, if any, complete. * If the outer {@code ObservableSource} signals an {@code onError}, the inner {@code ObservableSource} is disposed and the error delivered in-sequence. *

*
Scheduler:
*
{@code switchOnNext} does not operate by default on a particular {@link Scheduler}.
*
* * @param the item type * @param sources * the {@code ObservableSource} that emits {@code ObservableSource}s * @param bufferSize * the expected number of items to cache from the inner {@code ObservableSource}s * @return the new {@code Observable} instance * @throws NullPointerException if {@code sources} is {@code null} * @throws IllegalArgumentException if {@code bufferSize} is non-positive * @see ReactiveX operators documentation: Switch */ @SuppressWarnings({ "rawtypes", "unchecked" }) @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public static Observable switchOnNext(@NonNull ObservableSource> sources, int bufferSize) { Objects.requireNonNull(sources, "sources is null"); ObjectHelper.verifyPositive(bufferSize, "bufferSize"); return RxJavaPlugins.onAssembly(new ObservableSwitchMap(sources, Functions.identity(), bufferSize, false)); } /** * Converts an {@link ObservableSource} that emits {@code ObservableSource}s into an {@code Observable} that emits the items emitted by the * most recently emitted of those {@code ObservableSource}s. *

* *

* {@code switchOnNext} subscribes to an {@code ObservableSource} that emits {@code ObservableSource}s. Each time it observes one of * these emitted {@code ObservableSource}s, the {@code ObservableSource} returned by {@code switchOnNext} begins emitting the items * emitted by that {@code ObservableSource}. When a new inner {@code ObservableSource} is emitted, {@code switchOnNext} stops emitting items * from the earlier-emitted {@code ObservableSource} and begins emitting items from the new one. *

* The resulting {@code Observable} completes if both the outer {@code ObservableSource} and the last inner {@code ObservableSource}, if any, complete. * If the outer {@code ObservableSource} signals an {@code onError}, the inner {@code ObservableSource} is disposed and the error delivered in-sequence. *

*
Scheduler:
*
{@code switchOnNext} does not operate by default on a particular {@link Scheduler}.
*
* * @param the item type * @param sources * the {@code ObservableSource} that emits {@code ObservableSource}s * @return the new {@code Observable} instance * @throws NullPointerException if {@code sources} is {@code null} * @see ReactiveX operators documentation: Switch */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public static Observable switchOnNext(@NonNull ObservableSource> sources) { return switchOnNext(sources, bufferSize()); } /** * Converts an {@link ObservableSource} that emits {@code ObservableSource}s into an {@code Observable} that emits the items emitted by the * most recently emitted of those {@code ObservableSource}s and delays any exception until all {@code ObservableSource}s terminate. *

* *

* {@code switchOnNext} subscribes to an {@code ObservableSource} that emits {@code ObservableSource}s. Each time it observes one of * these emitted {@code ObservableSource}s, the {@code ObservableSource} returned by {@code switchOnNext} begins emitting the items * emitted by that {@code ObservableSource}. When a new inner {@code ObservableSource} is emitted, {@code switchOnNext} stops emitting items * from the earlier-emitted {@code ObservableSource} and begins emitting items from the new one. *

* The resulting {@code Observable} completes if both the main {@code ObservableSource} and the last inner {@code ObservableSource}, if any, complete. * If the main {@code ObservableSource} signals an {@code onError}, the termination of the last inner {@code ObservableSource} will emit that error as is * or wrapped into a {@link CompositeException} along with the other possible errors the former inner {@code ObservableSource}s signaled. *

*
Scheduler:
*
{@code switchOnNextDelayError} does not operate by default on a particular {@link Scheduler}.
*
* * @param the item type * @param sources * the {@code ObservableSource} that emits {@code ObservableSource}s * @return the new {@code Observable} instance * @throws NullPointerException if {@code sources} is {@code null} * @see ReactiveX operators documentation: Switch * @since 2.0 */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public static Observable switchOnNextDelayError(@NonNull ObservableSource> sources) { return switchOnNextDelayError(sources, bufferSize()); } /** * Converts an {@link ObservableSource} that emits {@code ObservableSource}s into an {@code Observable} that emits the items emitted by the * most recently emitted of those {@code ObservableSource}s and delays any exception until all {@code ObservableSource}s terminate. *

* *

* {@code switchOnNext} subscribes to an {@code ObservableSource} that emits {@code ObservableSource}s. Each time it observes one of * these emitted {@code ObservableSource}s, the {@code ObservableSource} returned by {@code switchOnNext} begins emitting the items * emitted by that {@code ObservableSource}. When a new inner {@code ObservableSource} is emitted, {@code switchOnNext} stops emitting items * from the earlier-emitted {@code ObservableSource} and begins emitting items from the new one. *

* The resulting {@code Observable} completes if both the main {@code ObservableSource} and the last inner {@code ObservableSource}, if any, complete. * If the main {@code ObservableSource} signals an {@code onError}, the termination of the last inner {@code ObservableSource} will emit that error as is * or wrapped into a {@link CompositeException} along with the other possible errors the former inner {@code ObservableSource}s signaled. *

*
Scheduler:
*
{@code switchOnNextDelayError} does not operate by default on a particular {@link Scheduler}.
*
* * @param the item type * @param sources * the {@code ObservableSource} that emits {@code ObservableSource}s * @param bufferSize * the expected number of items to cache from the inner {@code ObservableSource}s * @return the new {@code Observable} instance * @throws NullPointerException if {@code sources} is {@code null} * @throws IllegalArgumentException if {@code bufferSize} is non-positive * @see ReactiveX operators documentation: Switch * @since 2.0 */ @SuppressWarnings({ "rawtypes", "unchecked" }) @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public static Observable switchOnNextDelayError(@NonNull ObservableSource> sources, int bufferSize) { Objects.requireNonNull(sources, "sources is null"); ObjectHelper.verifyPositive(bufferSize, "bufferSize"); return RxJavaPlugins.onAssembly(new ObservableSwitchMap(sources, Functions.identity(), bufferSize, true)); } /** * Returns an {@code Observable} that emits {@code 0L} after a specified delay, and then completes. *

* *

*
Scheduler:
*
{@code timer} operates by default on the {@code computation} {@link Scheduler}.
*
* * @param delay * the initial delay before emitting a single {@code 0L} * @param unit * time units to use for {@code delay} * @return the new {@code Observable} instance * @throws NullPointerException if {@code unit} is {@code null} * @see ReactiveX operators documentation: Timer */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.COMPUTATION) @NonNull public static Observable timer(long delay, @NonNull TimeUnit unit) { return timer(delay, unit, Schedulers.computation()); } /** * Returns an {@code Observable} that emits {@code 0L} after a specified delay, on a specified {@link Scheduler}, and then * completes. *

* *

*
Scheduler:
*
You specify which {@code Scheduler} this operator will use.
*
* * @param delay * the initial delay before emitting a single 0L * @param unit * time units to use for {@code delay} * @param scheduler * the {@code Scheduler} to use for scheduling the item * @throws NullPointerException * if {@code unit} or {@code scheduler} is {@code null} * @return the new {@code Observable} instance * @see ReactiveX operators documentation: Timer */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.CUSTOM) @NonNull public static Observable timer(long delay, @NonNull TimeUnit unit, @NonNull Scheduler scheduler) { Objects.requireNonNull(unit, "unit is null"); Objects.requireNonNull(scheduler, "scheduler is null"); return RxJavaPlugins.onAssembly(new ObservableTimer(Math.max(delay, 0L), unit, scheduler)); } /** * Create an {@code Observable} by wrapping an {@link ObservableSource} which has to be implemented according * to the {@code Observable} specification derived from the Reactive Streams specification by handling * disposal correctly; no safeguards are provided by the {@code Observable} itself. *
*
Scheduler:
*
{@code unsafeCreate} by default doesn't operate on any particular {@link Scheduler}.
*
* @param the value type emitted * @param onSubscribe the {@code ObservableSource} instance to wrap * @return the new {@code Observable} instance * @throws NullPointerException if {@code onSubscribe} is {@code null} * @throws IllegalArgumentException if the {@code onSubscribe} is already an {@code Observable}, use * {@link #wrap(ObservableSource)} in this case * @see #wrap(ObservableSource) */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public static Observable unsafeCreate(@NonNull ObservableSource onSubscribe) { Objects.requireNonNull(onSubscribe, "onSubscribe is null"); if (onSubscribe instanceof Observable) { throw new IllegalArgumentException("unsafeCreate(Observable) should be upgraded"); } return RxJavaPlugins.onAssembly(new ObservableFromUnsafeSource<>(onSubscribe)); } /** * Constructs an {@code Observable} that creates a dependent resource object, an {@link ObservableSource} with * that resource and calls the provided {@code resourceDisposer} function if this inner source terminates or the * downstream disposes the flow. *

* *

*
Scheduler:
*
{@code using} does not operate by default on a particular {@link Scheduler}.
*
* * @param the element type of the generated {@code Observable} * @param the type of the resource associated with the output sequence * @param resourceSupplier * the factory function to create a resource object that depends on the {@code ObservableSource} * @param sourceSupplier * the factory function to create an {@code ObservableSource} * @param resourceCleanup * the function that will dispose of the resource * @return the new {@code Observable} instance * @throws NullPointerException if {@code resourceSupplier}, {@code sourceSupplier} or {@code resourceCleanup} is {@code null} * @see ReactiveX operators documentation: Using */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public static Observable using( @NonNull Supplier resourceSupplier, @NonNull Function> sourceSupplier, @NonNull Consumer resourceCleanup) { return using(resourceSupplier, sourceSupplier, resourceCleanup, true); } /** * Constructs an {@code Observable} that creates a dependent resource object, an {@link ObservableSource} with * that resource and calls the provided {@code disposer} function if this inner source terminates or the * downstream disposes the flow; doing it before these end-states have been reached if {@code eager == true}, after otherwise. *

* *

*
Scheduler:
*
{@code using} does not operate by default on a particular {@link Scheduler}.
*
* * @param the element type of the generated {@code ObservableSource} * @param the type of the resource associated with the output sequence * @param resourceSupplier * the factory function to create a resource object that depends on the {@code ObservableSource} * @param sourceSupplier * the factory function to create an {@code ObservableSource} * @param resourceCleanup * the function that will dispose of the resource * @param eager * If {@code true}, the resource disposal will happen either on a {@code dispose()} call before the upstream is disposed * or just before the emission of a terminal event ({@code onComplete} or {@code onError}). * If {@code false}, the resource disposal will happen either on a {@code dispose()} call after the upstream is disposed * or just after the emission of a terminal event ({@code onComplete} or {@code onError}). * @return the new {@code Observable} instance * @throws NullPointerException if {@code resourceSupplier}, {@code sourceSupplier} and {@code resourceCleanup} is {@code null} * @see ReactiveX operators documentation: Using * @since 2.0 */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public static Observable using( @NonNull Supplier resourceSupplier, @NonNull Function> sourceSupplier, @NonNull Consumer resourceCleanup, boolean eager) { Objects.requireNonNull(resourceSupplier, "resourceSupplier is null"); Objects.requireNonNull(sourceSupplier, "sourceSupplier is null"); Objects.requireNonNull(resourceCleanup, "resourceCleanup is null"); return RxJavaPlugins.onAssembly(new ObservableUsing(resourceSupplier, sourceSupplier, resourceCleanup, eager)); } /** * Wraps an {@link ObservableSource} into an {@code Observable} if not already an {@code Observable}. * *
*
Scheduler:
*
{@code wrap} does not operate by default on a particular {@link Scheduler}.
*
* * @param the value type * @param source the {@code ObservableSource} instance to wrap or cast to {@code Observable} * @return the new {@code Observable} instance or the same as the source * @throws NullPointerException if {@code source} is {@code null} */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public static Observable wrap(@NonNull ObservableSource source) { Objects.requireNonNull(source, "source is null"); if (source instanceof Observable) { return RxJavaPlugins.onAssembly((Observable)source); } return RxJavaPlugins.onAssembly(new ObservableFromUnsafeSource<>(source)); } /** * Returns an {@code Observable} that emits the results of a specified combiner function applied to combinations of * items emitted, in sequence, by an {@link Iterable} of other {@link ObservableSource}s. *

* {@code zip} applies this function in strict sequence, so the first item emitted by the resulting {@code Observable} * will be the result of the function applied to the first item emitted by each of the {@code ObservableSource}s; * the second item emitted by the resulting {@code Observable} will be the result of the function applied to the second * item emitted by each of those {@code ObservableSource}s; and so forth. *

* The resulting {@code Observable} returned from {@code zip} will invoke {@code onNext} as many times as * the number of {@code onNext} invocations of the {@code ObservableSource} that emits the fewest items. *

* The operator subscribes to its sources in order they are specified and completes eagerly if * one of the sources is shorter than the rest while disposing the other sources. Therefore, it * is possible those other sources will never be able to run to completion (and thus not calling * {@code doOnComplete()}). This can also happen if the sources are exactly the same length; if * source A completes and B has been consumed and is about to complete, the operator detects A won't * be sending further values and it will dispose B immediately. For example: *

zip(Arrays.asList(range(1, 5).doOnComplete(action1), range(6, 5).doOnComplete(action2)), (a) -> a)
* {@code action1} will be called but {@code action2} won't. *
To work around this termination property, * use {@link #doOnDispose(Action)} as well or use {@code using()} to do cleanup in case of completion * or a dispose() call. *

* Note on method signature: since Java doesn't allow creating a generic array with {@code new T[]}, the * implementation of this operator has to create an {@code Object[]} instead. Unfortunately, a * {@code Function} passed to the method would trigger a {@link ClassCastException}. * *

* *

*
Scheduler:
*
{@code zip} does not operate by default on a particular {@link Scheduler}.
*
* * @param the common value type * @param the zipped result type * @param sources * an {@code Iterable} of source {@code ObservableSource}s * @param zipper * a function that, when applied to an item emitted by each of the {@code ObservableSource}s, results in * an item that will be emitted by the resulting {@code Observable} * @return the new {@code Observable} instance * @throws NullPointerException if {@code sources} or {@code zipper} is {@code null} * @see ReactiveX operators documentation: Zip */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public static Observable zip(@NonNull Iterable<@NonNull ? extends ObservableSource> sources, @NonNull Function zipper) { Objects.requireNonNull(zipper, "zipper is null"); Objects.requireNonNull(sources, "sources is null"); return RxJavaPlugins.onAssembly(new ObservableZip<>(null, sources, zipper, bufferSize(), false)); } /** * Returns an {@code Observable} that emits the results of a specified combiner function applied to combinations of * items emitted, in sequence, by an {@link Iterable} of other {@link ObservableSource}s. *

* {@code zip} applies this function in strict sequence, so the first item emitted by the resulting {@code Observable} * will be the result of the function applied to the first item emitted by each of the {@code ObservableSource}s; * the second item emitted by the resulting {@code Observable} will be the result of the function applied to the second * item emitted by each of those {@code ObservableSource}s; and so forth. *

* The resulting {@code Observable} returned from {@code zip} will invoke {@code onNext} as many times as * the number of {@code onNext} invocations of the {@code ObservableSource} that emits the fewest items. *

* The operator subscribes to its sources in order they are specified and completes eagerly if * one of the sources is shorter than the rest while disposing the other sources. Therefore, it * is possible those other sources will never be able to run to completion (and thus not calling * {@code doOnComplete()}). This can also happen if the sources are exactly the same length; if * source A completes and B has been consumed and is about to complete, the operator detects A won't * be sending further values and it will dispose B immediately. For example: *

zip(Arrays.asList(range(1, 5).doOnComplete(action1), range(6, 5).doOnComplete(action2)), (a) -> a)
* {@code action1} will be called but {@code action2} won't. *
To work around this termination property, * use {@link #doOnDispose(Action)} as well or use {@code using()} to do cleanup in case of completion * or a dispose() call. *

* Note on method signature: since Java doesn't allow creating a generic array with {@code new T[]}, the * implementation of this operator has to create an {@code Object[]} instead. Unfortunately, a * {@code Function} passed to the method would trigger a {@link ClassCastException}. * *

* *

*
Scheduler:
*
{@code zip} does not operate by default on a particular {@link Scheduler}.
*
* * * @param sources * an {@code Iterable} of source {@code ObservableSource}s * @param zipper * a function that, when applied to an item emitted by each of the {@code ObservableSource}s, results in * an item that will be emitted by the resulting {@code Observable} * @param delayError * delay errors signaled by any of the {@code ObservableSource} until all {@code ObservableSource}s terminate * @param bufferSize * the number of elements expected from each source {@code ObservableSource} to be buffered * @param the common source value type * @param the zipped result type * @return the new {@code Observable} instance * @throws NullPointerException if {@code sources} or {@code zipper} is {@code null} * @throws IllegalArgumentException if {@code bufferSize} is non-positive * @see ReactiveX operators documentation: Zip */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public static Observable zip(@NonNull Iterable<@NonNull ? extends ObservableSource> sources, @NonNull Function zipper, boolean delayError, int bufferSize) { Objects.requireNonNull(zipper, "zipper is null"); Objects.requireNonNull(sources, "sources is null"); ObjectHelper.verifyPositive(bufferSize, "bufferSize"); return RxJavaPlugins.onAssembly(new ObservableZip<>(null, sources, zipper, bufferSize, delayError)); } /** * Returns an {@code Observable} that emits the results of a specified combiner function applied to combinations of * two items emitted, in sequence, by two other {@link ObservableSource}s. *

* *

* {@code zip} applies this function in strict sequence, so the first item emitted by the resulting {@code Observable} * will be the result of the function applied to the first item emitted by {@code o1} and the first item * emitted by {@code o2}; the second item emitted by the resulting {@code Observable} will be the result of the function * applied to the second item emitted by {@code o1} and the second item emitted by {@code o2}; and so forth. *

* The resulting {@code Observable} returned from {@code zip} will invoke {@link Observer#onNext onNext} * as many times as the number of {@code onNext} invocations of the {@code ObservableSource} that emits the fewest * items. *

* The operator subscribes to its sources in order they are specified and completes eagerly if * one of the sources is shorter than the rest while disposing the other sources. Therefore, it * is possible those other sources will never be able to run to completion (and thus not calling * {@code doOnComplete()}). This can also happen if the sources are exactly the same length; if * source A completes and B has been consumed and is about to complete, the operator detects A won't * be sending further values and it will dispose B immediately. For example: *

zip(range(1, 5).doOnComplete(action1), range(6, 5).doOnComplete(action2), (a, b) -> a + b)
* {@code action1} will be called but {@code action2} won't. *
To work around this termination property, * use {@link #doOnDispose(Action)} as well or use {@code using()} to do cleanup in case of completion * or a dispose() call. *
*
Scheduler:
*
{@code zip} does not operate by default on a particular {@link Scheduler}.
*
* * @param the value type of the first source * @param the value type of the second source * @param the zipped result type * @param source1 * the first source {@code ObservableSource} * @param source2 * a second source {@code ObservableSource} * @param zipper * a function that, when applied to an item emitted by each of the {@code ObservableSource}s, results * in an item that will be emitted by the resulting {@code Observable} * @return the new {@code Observable} instance * @throws NullPointerException if {@code source1}, {@code source2} or {@code zipper} is {@code null} * @see ReactiveX operators documentation: Zip */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public static Observable zip( @NonNull ObservableSource source1, @NonNull ObservableSource source2, @NonNull BiFunction zipper) { Objects.requireNonNull(source1, "source1 is null"); Objects.requireNonNull(source2, "source2 is null"); Objects.requireNonNull(zipper, "zipper is null"); return zipArray(Functions.toFunction(zipper), false, bufferSize(), source1, source2); } /** * Returns an {@code Observable} that emits the results of a specified combiner function applied to combinations of * two items emitted, in sequence, by two other {@link ObservableSource}s. *

* *

* {@code zip} applies this function in strict sequence, so the first item emitted by the resulting {@code Observable} * will be the result of the function applied to the first item emitted by {@code o1} and the first item * emitted by {@code o2}; the second item emitted by the resulting {@code Observable} will be the result of the function * applied to the second item emitted by {@code o1} and the second item emitted by {@code o2}; and so forth. *

* The resulting {@code Observable} returned from {@code zip} will invoke {@link Observer#onNext onNext} * as many times as the number of {@code onNext} invocations of the {@code ObservableSource} that emits the fewest * items. *

* The operator subscribes to its sources in order they are specified and completes eagerly if * one of the sources is shorter than the rest while disposing the other sources. Therefore, it * is possible those other sources will never be able to run to completion (and thus not calling * {@code doOnComplete()}). This can also happen if the sources are exactly the same length; if * source A completes and B has been consumed and is about to complete, the operator detects A won't * be sending further values and it will dispose B immediately. For example: *

zip(range(1, 5).doOnComplete(action1), range(6, 5).doOnComplete(action2), (a, b) -> a + b)
* {@code action1} will be called but {@code action2} won't. *
To work around this termination property, * use {@link #doOnDispose(Action)} as well or use {@code using()} to do cleanup in case of completion * or a dispose() call. *
*
Scheduler:
*
{@code zip} does not operate by default on a particular {@link Scheduler}.
*
* * @param the value type of the first source * @param the value type of the second source * @param the zipped result type * @param source1 * the first source {@code ObservableSource} * @param source2 * a second source {@code ObservableSource} * @param zipper * a function that, when applied to an item emitted by each of the {@code ObservableSource}s, results * in an item that will be emitted by the resulting {@code Observable} * @param delayError delay errors from any of the {@code ObservableSource}s till the other terminates * @return the new {@code Observable} instance * @throws NullPointerException if {@code source1}, {@code source2} or {@code zipper} is {@code null} * @see ReactiveX operators documentation: Zip */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public static Observable zip( @NonNull ObservableSource source1, @NonNull ObservableSource source2, @NonNull BiFunction zipper, boolean delayError) { Objects.requireNonNull(source1, "source1 is null"); Objects.requireNonNull(source2, "source2 is null"); Objects.requireNonNull(zipper, "zipper is null"); return zipArray(Functions.toFunction(zipper), delayError, bufferSize(), source1, source2); } /** * Returns an {@code Observable} that emits the results of a specified combiner function applied to combinations of * two items emitted, in sequence, by two other {@link ObservableSource}s. *

* *

* {@code zip} applies this function in strict sequence, so the first item emitted by the resulting {@code Observable} * will be the result of the function applied to the first item emitted by {@code o1} and the first item * emitted by {@code o2}; the second item emitted by the resulting {@code Observable} will be the result of the function * applied to the second item emitted by {@code o1} and the second item emitted by {@code o2}; and so forth. *

* The resulting {@code Observable} returned from {@code zip} will invoke {@link Observer#onNext onNext} * as many times as the number of {@code onNext} invocations of the {@code ObservableSource} that emits the fewest * items. *

* The operator subscribes to its sources in order they are specified and completes eagerly if * one of the sources is shorter than the rest while disposing the other sources. Therefore, it * is possible those other sources will never be able to run to completion (and thus not calling * {@code doOnComplete()}). This can also happen if the sources are exactly the same length; if * source A completes and B has been consumed and is about to complete, the operator detects A won't * be sending further values and it will dispose B immediately. For example: *

zip(range(1, 5).doOnComplete(action1), range(6, 5).doOnComplete(action2), (a, b) -> a + b)
* {@code action1} will be called but {@code action2} won't. *
To work around this termination property, * use {@link #doOnDispose(Action)} as well or use {@code using()} to do cleanup in case of completion * or a dispose() call. *
*
Scheduler:
*
{@code zip} does not operate by default on a particular {@link Scheduler}.
*
* * @param the value type of the first source * @param the value type of the second source * @param the zipped result type * @param source1 * the first source {@code ObservableSource} * @param source2 * a second source {@code ObservableSource} * @param zipper * a function that, when applied to an item emitted by each of the {@code ObservableSource}s, results * in an item that will be emitted by the resulting {@code Observable} * @param delayError delay errors from any of the {@code ObservableSource}s till the other terminates * @param bufferSize the number of elements expected from each source {@code ObservableSource} to be buffered * @return the new {@code Observable} instance * @throws NullPointerException if {@code source1}, {@code source2} or {@code zipper} is {@code null} * @throws IllegalArgumentException if {@code bufferSize} is non-positive * @see ReactiveX operators documentation: Zip */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public static Observable zip( @NonNull ObservableSource source1, @NonNull ObservableSource source2, @NonNull BiFunction zipper, boolean delayError, int bufferSize) { Objects.requireNonNull(source1, "source1 is null"); Objects.requireNonNull(source2, "source2 is null"); Objects.requireNonNull(zipper, "zipper is null"); return zipArray(Functions.toFunction(zipper), delayError, bufferSize, source1, source2); } /** * Returns an {@code Observable} that emits the results of a specified combiner function applied to combinations of * three items emitted, in sequence, by three other {@link ObservableSource}s. *

* *

* {@code zip} applies this function in strict sequence, so the first item emitted by the resulting {@code Observable} * will be the result of the function applied to the first item emitted by {@code o1}, the first item * emitted by {@code o2}, and the first item emitted by {@code o3}; the second item emitted by the resulting * {@code Observable} will be the result of the function applied to the second item emitted by {@code o1}, the * second item emitted by {@code o2}, and the second item emitted by {@code o3}; and so forth. *

* The resulting {@code Observable} returned from {@code zip} will invoke {@link Observer#onNext onNext} * as many times as the number of {@code onNext} invocations of the {@code ObservableSource} that emits the fewest * items. *

* The operator subscribes to its sources in order they are specified and completes eagerly if * one of the sources is shorter than the rest while disposing the other sources. Therefore, it * is possible those other sources will never be able to run to completion (and thus not calling * {@code doOnComplete()}). This can also happen if the sources are exactly the same length; if * source A completes and B has been consumed and is about to complete, the operator detects A won't * be sending further values and it will dispose B immediately. For example: *

zip(range(1, 5).doOnComplete(action1), range(6, 5).doOnComplete(action2), ..., (a, b, c) -> a + b)
* {@code action1} will be called but {@code action2} won't. *
To work around this termination property, * use {@link #doOnDispose(Action)} as well or use {@code using()} to do cleanup in case of completion * or a dispose() call. *
*
Scheduler:
*
{@code zip} does not operate by default on a particular {@link Scheduler}.
*
* * @param the value type of the first source * @param the value type of the second source * @param the value type of the third source * @param the zipped result type * @param source1 * the first source {@code ObservableSource} * @param source2 * a second source {@code ObservableSource} * @param source3 * a third source {@code ObservableSource} * @param zipper * a function that, when applied to an item emitted by each of the {@code ObservableSource}s, results in * an item that will be emitted by the resulting {@code Observable} * @return the new {@code Observable} instance * @throws NullPointerException if {@code source1}, {@code source2}, {@code source3} or {@code zipper} is {@code null} * @see ReactiveX operators documentation: Zip */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public static Observable zip( @NonNull ObservableSource source1, @NonNull ObservableSource source2, @NonNull ObservableSource source3, @NonNull Function3 zipper) { Objects.requireNonNull(source1, "source1 is null"); Objects.requireNonNull(source2, "source2 is null"); Objects.requireNonNull(source3, "source3 is null"); Objects.requireNonNull(zipper, "zipper is null"); return zipArray(Functions.toFunction(zipper), false, bufferSize(), source1, source2, source3); } /** * Returns an {@code Observable} that emits the results of a specified combiner function applied to combinations of * four items emitted, in sequence, by four other {@link ObservableSource}s. *

* *

* {@code zip} applies this function in strict sequence, so the first item emitted by the resulting {@code Observable} * will be the result of the function applied to the first item emitted by {@code o1}, the first item * emitted by {@code o2}, the first item emitted by {@code o3}, and the first item emitted by {@code 04}; * the second item emitted by the resulting {@code Observable} will be the result of the function applied to the second * item emitted by each of those {@code ObservableSource}s; and so forth. *

* The resulting {@code Observable} returned from {@code zip} will invoke {@link Observer#onNext onNext} * as many times as the number of {@code onNext} invocations of the {@code ObservableSource} that emits the fewest * items. *

* The operator subscribes to its sources in order they are specified and completes eagerly if * one of the sources is shorter than the rest while disposing the other sources. Therefore, it * is possible those other sources will never be able to run to completion (and thus not calling * {@code doOnComplete()}). This can also happen if the sources are exactly the same length; if * source A completes and B has been consumed and is about to complete, the operator detects A won't * be sending further values and it will dispose B immediately. For example: *

zip(range(1, 5).doOnComplete(action1), range(6, 5).doOnComplete(action2), ..., (a, b, c, d) -> a + b)
* {@code action1} will be called but {@code action2} won't. *
To work around this termination property, * use {@link #doOnDispose(Action)} as well or use {@code using()} to do cleanup in case of completion * or a dispose() call. *
*
Scheduler:
*
{@code zip} does not operate by default on a particular {@link Scheduler}.
*
* * @param the value type of the first source * @param the value type of the second source * @param the value type of the third source * @param the value type of the fourth source * @param the zipped result type * @param source1 * the first source {@code ObservableSource} * @param source2 * a second source {@code ObservableSource} * @param source3 * a third source {@code ObservableSource} * @param source4 * a fourth source {@code ObservableSource} * @param zipper * a function that, when applied to an item emitted by each of the {@code ObservableSource}s, results in * an item that will be emitted by the resulting {@code Observable} * @return the new {@code Observable} instance * @throws NullPointerException if {@code source1}, {@code source2}, {@code source3}, * {@code source4} or {@code zipper} is {@code null} * @see ReactiveX operators documentation: Zip */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public static Observable zip( @NonNull ObservableSource source1, @NonNull ObservableSource source2, @NonNull ObservableSource source3, @NonNull ObservableSource source4, @NonNull Function4 zipper) { Objects.requireNonNull(source1, "source1 is null"); Objects.requireNonNull(source2, "source2 is null"); Objects.requireNonNull(source3, "source3 is null"); Objects.requireNonNull(source4, "source4 is null"); Objects.requireNonNull(zipper, "zipper is null"); return zipArray(Functions.toFunction(zipper), false, bufferSize(), source1, source2, source3, source4); } /** * Returns an {@code Observable} that emits the results of a specified combiner function applied to combinations of * five items emitted, in sequence, by five other {@link ObservableSource}s. *

* *

* {@code zip} applies this function in strict sequence, so the first item emitted by the resulting {@code Observable} * will be the result of the function applied to the first item emitted by {@code o1}, the first item * emitted by {@code o2}, the first item emitted by {@code o3}, the first item emitted by {@code o4}, and * the first item emitted by {@code o5}; the second item emitted by the resulting {@code Observable} will be the result of * the function applied to the second item emitted by each of those {@code ObservableSource}s; and so forth. *

* The resulting {@code Observable} returned from {@code zip} will invoke {@link Observer#onNext onNext} * as many times as the number of {@code onNext} invocations of the {@code ObservableSource} that emits the fewest * items. *

* The operator subscribes to its sources in order they are specified and completes eagerly if * one of the sources is shorter than the rest while disposing the other sources. Therefore, it * is possible those other sources will never be able to run to completion (and thus not calling * {@code doOnComplete()}). This can also happen if the sources are exactly the same length; if * source A completes and B has been consumed and is about to complete, the operator detects A won't * be sending further values and it will dispose B immediately. For example: *

zip(range(1, 5).doOnComplete(action1), range(6, 5).doOnComplete(action2), ..., (a, b, c, d, e) -> a + b)
* {@code action1} will be called but {@code action2} won't. *
To work around this termination property, * use {@link #doOnDispose(Action)} as well or use {@code using()} to do cleanup in case of completion * or a dispose() call. *
*
Scheduler:
*
{@code zip} does not operate by default on a particular {@link Scheduler}.
*
* * @param the value type of the first source * @param the value type of the second source * @param the value type of the third source * @param the value type of the fourth source * @param the value type of the fifth source * @param the zipped result type * @param source1 * the first source {@code ObservableSource} * @param source2 * a second source {@code ObservableSource} * @param source3 * a third source {@code ObservableSource} * @param source4 * a fourth source {@code ObservableSource} * @param source5 * a fifth source {@code ObservableSource} * @param zipper * a function that, when applied to an item emitted by each of the {@code ObservableSource}s, results in * an item that will be emitted by the resulting {@code Observable} * @return the new {@code Observable} instance * @throws NullPointerException if {@code source1}, {@code source2}, {@code source3}, * {@code source4}, {@code source5} or {@code zipper} is {@code null} * @see ReactiveX operators documentation: Zip */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public static Observable zip( @NonNull ObservableSource source1, @NonNull ObservableSource source2, @NonNull ObservableSource source3, @NonNull ObservableSource source4, @NonNull ObservableSource source5, @NonNull Function5 zipper) { Objects.requireNonNull(source1, "source1 is null"); Objects.requireNonNull(source2, "source2 is null"); Objects.requireNonNull(source3, "source3 is null"); Objects.requireNonNull(source4, "source4 is null"); Objects.requireNonNull(source5, "source5 is null"); Objects.requireNonNull(zipper, "zipper is null"); return zipArray(Functions.toFunction(zipper), false, bufferSize(), source1, source2, source3, source4, source5); } /** * Returns an {@code Observable} that emits the results of a specified combiner function applied to combinations of * six items emitted, in sequence, by six other {@link ObservableSource}s. *

* *

* {@code zip} applies this function in strict sequence, so the first item emitted by the resulting {@code Observable} * will be the result of the function applied to the first item emitted by each source {@code ObservableSource}, the * second item emitted by the resulting {@code Observable} will be the result of the function applied to the second item * emitted by each of those {@code ObservableSource}s, and so forth. *

* The resulting {@code Observable} returned from {@code zip} will invoke {@link Observer#onNext onNext} * as many times as the number of {@code onNext} invocations of the {@code ObservableSource} that emits the fewest * items. *

* The operator subscribes to its sources in order they are specified and completes eagerly if * one of the sources is shorter than the rest while disposing the other sources. Therefore, it * is possible those other sources will never be able to run to completion (and thus not calling * {@code doOnComplete()}). This can also happen if the sources are exactly the same length; if * source A completes and B has been consumed and is about to complete, the operator detects A won't * be sending further values and it will dispose B immediately. For example: *

zip(range(1, 5).doOnComplete(action1), range(6, 5).doOnComplete(action2), ..., (a, b, c, d, e, f) -> a + b)
* {@code action1} will be called but {@code action2} won't. *
To work around this termination property, * use {@link #doOnDispose(Action)} as well or use {@code using()} to do cleanup in case of completion * or a dispose() call. *
*
Scheduler:
*
{@code zip} does not operate by default on a particular {@link Scheduler}.
*
* * @param the value type of the first source * @param the value type of the second source * @param the value type of the third source * @param the value type of the fourth source * @param the value type of the fifth source * @param the value type of the sixth source * @param the zipped result type * @param source1 * the first source {@code ObservableSource} * @param source2 * a second source {@code ObservableSource} * @param source3 * a third source {@code ObservableSource} * @param source4 * a fourth source {@code ObservableSource} * @param source5 * a fifth source {@code ObservableSource} * @param source6 * a sixth source {@code ObservableSource} * @param zipper * a function that, when applied to an item emitted by each of the {@code ObservableSource}s, results in * an item that will be emitted by the resulting {@code Observable} * @return the new {@code Observable} instance * @throws NullPointerException if {@code source1}, {@code source2}, {@code source3}, * {@code source4}, {@code source5}, {@code source6} or {@code zipper} is {@code null} * @see ReactiveX operators documentation: Zip */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public static Observable zip( @NonNull ObservableSource source1, @NonNull ObservableSource source2, @NonNull ObservableSource source3, @NonNull ObservableSource source4, @NonNull ObservableSource source5, @NonNull ObservableSource source6, @NonNull Function6 zipper) { Objects.requireNonNull(source1, "source1 is null"); Objects.requireNonNull(source2, "source2 is null"); Objects.requireNonNull(source3, "source3 is null"); Objects.requireNonNull(source4, "source4 is null"); Objects.requireNonNull(source5, "source5 is null"); Objects.requireNonNull(source6, "source6 is null"); Objects.requireNonNull(zipper, "zipper is null"); return zipArray(Functions.toFunction(zipper), false, bufferSize(), source1, source2, source3, source4, source5, source6); } /** * Returns an {@code Observable} that emits the results of a specified combiner function applied to combinations of * seven items emitted, in sequence, by seven other {@link ObservableSource}s. *

* *

* {@code zip} applies this function in strict sequence, so the first item emitted by the resulting {@code Observable} * will be the result of the function applied to the first item emitted by each source {@code ObservableSource}, the * second item emitted by the resulting {@code Observable} will be the result of the function applied to the second item * emitted by each of those {@code ObservableSource}s, and so forth. *

* The resulting {@code Observable} returned from {@code zip} will invoke {@link Observer#onNext onNext} * as many times as the number of {@code onNext} invocations of the {@code ObservableSource} that emits the fewest * items. *

* The operator subscribes to its sources in order they are specified and completes eagerly if * one of the sources is shorter than the rest while disposing the other sources. Therefore, it * is possible those other sources will never be able to run to completion (and thus not calling * {@code doOnComplete()}). This can also happen if the sources are exactly the same length; if * source A completes and B has been consumed and is about to complete, the operator detects A won't * be sending further values and it will dispose B immediately. For example: *

zip(range(1, 5).doOnComplete(action1), range(6, 5).doOnComplete(action2), ..., (a, b, c, d, e, f, g) -> a + b)
* {@code action1} will be called but {@code action2} won't. *
To work around this termination property, * use {@link #doOnDispose(Action)} as well or use {@code using()} to do cleanup in case of completion * or a dispose() call. *
*
Scheduler:
*
{@code zip} does not operate by default on a particular {@link Scheduler}.
*
* * @param the value type of the first source * @param the value type of the second source * @param the value type of the third source * @param the value type of the fourth source * @param the value type of the fifth source * @param the value type of the sixth source * @param the value type of the seventh source * @param the zipped result type * @param source1 * the first source {@code ObservableSource} * @param source2 * a second source {@code ObservableSource} * @param source3 * a third source {@code ObservableSource} * @param source4 * a fourth source {@code ObservableSource} * @param source5 * a fifth source {@code ObservableSource} * @param source6 * a sixth source {@code ObservableSource} * @param source7 * a seventh source {@code ObservableSource} * @param zipper * a function that, when applied to an item emitted by each of the {@code ObservableSource}s, results in * an item that will be emitted by the resulting {@code Observable} * @return the new {@code Observable} instance * @throws NullPointerException if {@code source1}, {@code source2}, {@code source3}, * {@code source4}, {@code source5}, {@code source6}, * {@code source7} or {@code zipper} is {@code null} * @see ReactiveX operators documentation: Zip */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public static Observable zip( @NonNull ObservableSource source1, @NonNull ObservableSource source2, @NonNull ObservableSource source3, @NonNull ObservableSource source4, @NonNull ObservableSource source5, @NonNull ObservableSource source6, @NonNull ObservableSource source7, @NonNull Function7 zipper) { Objects.requireNonNull(source1, "source1 is null"); Objects.requireNonNull(source2, "source2 is null"); Objects.requireNonNull(source3, "source3 is null"); Objects.requireNonNull(source4, "source4 is null"); Objects.requireNonNull(source5, "source5 is null"); Objects.requireNonNull(source6, "source6 is null"); Objects.requireNonNull(source7, "source7 is null"); Objects.requireNonNull(zipper, "zipper is null"); return zipArray(Functions.toFunction(zipper), false, bufferSize(), source1, source2, source3, source4, source5, source6, source7); } /** * Returns an {@code Observable} that emits the results of a specified combiner function applied to combinations of * eight items emitted, in sequence, by eight other {@link ObservableSource}s. *

* *

* {@code zip} applies this function in strict sequence, so the first item emitted by the resulting {@code Observable} * will be the result of the function applied to the first item emitted by each source {@code ObservableSource}, the * second item emitted by the resulting {@code Observable} will be the result of the function applied to the second item * emitted by each of those {@code ObservableSource}s, and so forth. *

* The resulting {@code Observable} returned from {@code zip} will invoke {@link Observer#onNext onNext} * as many times as the number of {@code onNext} invocations of the {@code ObservableSource} that emits the fewest * items. *

* The operator subscribes to its sources in order they are specified and completes eagerly if * one of the sources is shorter than the rest while disposing the other sources. Therefore, it * is possible those other sources will never be able to run to completion (and thus not calling * {@code doOnComplete()}). This can also happen if the sources are exactly the same length; if * source A completes and B has been consumed and is about to complete, the operator detects A won't * be sending further values and it will dispose B immediately. For example: *

zip(range(1, 5).doOnComplete(action1), range(6, 5).doOnComplete(action2), ..., (a, b, c, d, e, f, g, h) -> a + b)
* {@code action1} will be called but {@code action2} won't. *
To work around this termination property, * use {@link #doOnDispose(Action)} as well or use {@code using()} to do cleanup in case of completion * or a dispose() call. *
*
Scheduler:
*
{@code zip} does not operate by default on a particular {@link Scheduler}.
*
* * @param the value type of the first source * @param the value type of the second source * @param the value type of the third source * @param the value type of the fourth source * @param the value type of the fifth source * @param the value type of the sixth source * @param the value type of the seventh source * @param the value type of the eighth source * @param the zipped result type * @param source1 * the first source {@code ObservableSource} * @param source2 * a second source {@code ObservableSource} * @param source3 * a third source {@code ObservableSource} * @param source4 * a fourth source {@code ObservableSource} * @param source5 * a fifth source {@code ObservableSource} * @param source6 * a sixth source {@code ObservableSource} * @param source7 * a seventh source {@code ObservableSource} * @param source8 * an eighth source {@code ObservableSource} * @param zipper * a function that, when applied to an item emitted by each of the {@code ObservableSource}s, results in * an item that will be emitted by the resulting {@code Observable} * @return the new {@code Observable} instance * @throws NullPointerException if {@code source1}, {@code source2}, {@code source3}, * {@code source4}, {@code source5}, {@code source6}, * {@code source7}, {@code source8} or {@code zipper} is {@code null} * @see ReactiveX operators documentation: Zip */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public static Observable zip( @NonNull ObservableSource source1, @NonNull ObservableSource source2, @NonNull ObservableSource source3, @NonNull ObservableSource source4, @NonNull ObservableSource source5, @NonNull ObservableSource source6, @NonNull ObservableSource source7, @NonNull ObservableSource source8, @NonNull Function8 zipper) { Objects.requireNonNull(source1, "source1 is null"); Objects.requireNonNull(source2, "source2 is null"); Objects.requireNonNull(source3, "source3 is null"); Objects.requireNonNull(source4, "source4 is null"); Objects.requireNonNull(source5, "source5 is null"); Objects.requireNonNull(source6, "source6 is null"); Objects.requireNonNull(source7, "source7 is null"); Objects.requireNonNull(source8, "source8 is null"); Objects.requireNonNull(zipper, "zipper is null"); return zipArray(Functions.toFunction(zipper), false, bufferSize(), source1, source2, source3, source4, source5, source6, source7, source8); } /** * Returns an {@code Observable} that emits the results of a specified combiner function applied to combinations of * nine items emitted, in sequence, by nine other {@link ObservableSource}s. *

* *

* {@code zip} applies this function in strict sequence, so the first item emitted by the resulting {@code Observable} * will be the result of the function applied to the first item emitted by each source {@code ObservableSource}, the * second item emitted by the resulting {@code Observable} will be the result of the function applied to the second item * emitted by each of those {@code ObservableSource}s, and so forth. *

* The resulting {@code Observable} returned from {@code zip} will invoke {@link Observer#onNext onNext} * as many times as the number of {@code onNext} invocations of the {@code ObservableSource} that emits the fewest * items. *

* The operator subscribes to its sources in order they are specified and completes eagerly if * one of the sources is shorter than the rest while disposing the other sources. Therefore, it * is possible those other sources will never be able to run to completion (and thus not calling * {@code doOnComplete()}). This can also happen if the sources are exactly the same length; if * source A completes and B has been consumed and is about to complete, the operator detects A won't * be sending further values and it will dispose B immediately. For example: *

zip(range(1, 5).doOnComplete(action1), range(6, 5).doOnComplete(action2), ..., (a, b, c, d, e, f, g, h, i) -> a + b)
* {@code action1} will be called but {@code action2} won't. *
To work around this termination property, * use {@link #doOnDispose(Action)} as well or use {@code using()} to do cleanup in case of completion * or a dispose() call. *
*
Scheduler:
*
{@code zip} does not operate by default on a particular {@link Scheduler}.
*
* * @param the value type of the first source * @param the value type of the second source * @param the value type of the third source * @param the value type of the fourth source * @param the value type of the fifth source * @param the value type of the sixth source * @param the value type of the seventh source * @param the value type of the eighth source * @param the value type of the ninth source * @param the zipped result type * @param source1 * the first source {@code ObservableSource} * @param source2 * a second source {@code ObservableSource} * @param source3 * a third source {@code ObservableSource} * @param source4 * a fourth source {@code ObservableSource} * @param source5 * a fifth source {@code ObservableSource} * @param source6 * a sixth source {@code ObservableSource} * @param source7 * a seventh source {@code ObservableSource} * @param source8 * an eighth source {@code ObservableSource} * @param source9 * a ninth source {@code ObservableSource} * @param zipper * a function that, when applied to an item emitted by each of the {@code ObservableSource}s, results in * an item that will be emitted by the resulting {@code Observable} * @return the new {@code Observable} instance * @throws NullPointerException if {@code source1}, {@code source2}, {@code source3}, * {@code source4}, {@code source5}, {@code source6}, * {@code source7}, {@code source8}, {@code source9} or {@code zipper} is {@code null} * @see ReactiveX operators documentation: Zip */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public static Observable zip( @NonNull ObservableSource source1, @NonNull ObservableSource source2, @NonNull ObservableSource source3, @NonNull ObservableSource source4, @NonNull ObservableSource source5, @NonNull ObservableSource source6, @NonNull ObservableSource source7, @NonNull ObservableSource source8, @NonNull ObservableSource source9, @NonNull Function9 zipper) { Objects.requireNonNull(source1, "source1 is null"); Objects.requireNonNull(source2, "source2 is null"); Objects.requireNonNull(source3, "source3 is null"); Objects.requireNonNull(source4, "source4 is null"); Objects.requireNonNull(source5, "source5 is null"); Objects.requireNonNull(source6, "source6 is null"); Objects.requireNonNull(source7, "source7 is null"); Objects.requireNonNull(source8, "source8 is null"); Objects.requireNonNull(source9, "source9 is null"); Objects.requireNonNull(zipper, "zipper is null"); return zipArray(Functions.toFunction(zipper), false, bufferSize(), source1, source2, source3, source4, source5, source6, source7, source8, source9); } /** * Returns an {@code Observable} that emits the results of a specified combiner function applied to combinations of * items emitted, in sequence, by an array of other {@link ObservableSource}s. *

* {@code zip} applies this function in strict sequence, so the first item emitted by the resulting {@code Observable} * will be the result of the function applied to the first item emitted by each of the {@code ObservableSource}s; * the second item emitted by the resulting {@code Observable} will be the result of the function applied to the second * item emitted by each of those {@code ObservableSource}s; and so forth. *

* The resulting {@code Observable} returned from {@code zip} will invoke {@code onNext} as many times as * the number of {@code onNext} invocations of the {@code ObservableSource} that emits the fewest items. *

* The operator subscribes to its sources in order they are specified and completes eagerly if * one of the sources is shorter than the rest while disposing the other sources. Therefore, it * is possible those other sources will never be able to run to completion (and thus not calling * {@code doOnComplete()}). This can also happen if the sources are exactly the same length; if * source A completes and B has been consumed and is about to complete, the operator detects A won't * be sending further values and it will dispose B immediately. For example: *

zip(new ObservableSource[]{range(1, 5).doOnComplete(action1), range(6, 5).doOnComplete(action2)}, (a) ->
     * a)
* {@code action1} will be called but {@code action2} won't. *
To work around this termination property, * use {@link #doOnDispose(Action)} as well or use {@code using()} to do cleanup in case of completion * or a dispose() call. *

* Note on method signature: since Java doesn't allow creating a generic array with {@code new T[]}, the * implementation of this operator has to create an {@code Object[]} instead. Unfortunately, a * {@code Function} passed to the method would trigger a {@link ClassCastException}. * *

* *

*
Scheduler:
*
{@code zipArray} does not operate by default on a particular {@link Scheduler}.
*
* * @param the common element type * @param the result type * @param sources * an array of source {@code ObservableSource}s * @param zipper * a function that, when applied to an item emitted by each of the {@code ObservableSource}s, results in * an item that will be emitted by the resulting {@code Observable} * @param delayError * delay errors signaled by any of the {@code ObservableSource} until all {@code ObservableSource}s terminate * @param bufferSize * the number of elements expected from each source {@code ObservableSource} to be buffered * @return the new {@code Observable} instance * @throws NullPointerException if {@code sources} or {@code zipper} is {@code null} * @throws IllegalArgumentException if {@code bufferSize} is non-positive * @see ReactiveX operators documentation: Zip */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @SafeVarargs @NonNull public static Observable zipArray( @NonNull Function zipper, boolean delayError, int bufferSize, @NonNull ObservableSource... sources) { Objects.requireNonNull(sources, "sources is null"); if (sources.length == 0) { return empty(); } Objects.requireNonNull(zipper, "zipper is null"); ObjectHelper.verifyPositive(bufferSize, "bufferSize"); return RxJavaPlugins.onAssembly(new ObservableZip<>(sources, null, zipper, bufferSize, delayError)); } // *************************************************************************************************** // Instance operators // *************************************************************************************************** /** * Returns a {@link Single} that emits a {@link Boolean} that indicates whether all of the items emitted by the current * {@code Observable} satisfy a condition. *

* *

*
Scheduler:
*
{@code all} does not operate by default on a particular {@link Scheduler}.
*
* * @param predicate * a function that evaluates an item and returns a {@code Boolean} * @return the new {@code Single} instance * @throws NullPointerException if {@code predicate} is {@code null} * @see ReactiveX operators documentation: All */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Single all(@NonNull Predicate predicate) { Objects.requireNonNull(predicate, "predicate is null"); return RxJavaPlugins.onAssembly(new ObservableAllSingle<>(this, predicate)); } /** * Mirrors the current {@code Observable} or the other {@link ObservableSource} provided of which the first either emits an item or sends a termination * notification. *

* *

* When the current {@code Observable} signals an item or terminates first, the subscription to the other * {@code ObservableSource} is disposed. If the other {@code ObservableSource} signals an item or terminates first, * the subscription to the current {@code Observable} is disposed. *

*
Scheduler:
*
{@code ambWith} does not operate by default on a particular {@link Scheduler}.
*
Error handling:
*
* If the losing {@code ObservableSource} signals an error, the error is routed to the global * error handler via {@link RxJavaPlugins#onError(Throwable)}. *
*
* * @param other * an {@code ObservableSource} competing to react first. A subscription to this provided source will occur after * subscribing to the current source. * @return the new {@code Observable} instance * @throws NullPointerException if {@code other} is {@code null} * @see ReactiveX operators documentation: Amb */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable ambWith(@NonNull ObservableSource other) { Objects.requireNonNull(other, "other is null"); return ambArray(this, other); } /** * Returns a {@link Single} that emits {@code true} if any item emitted by the current {@code Observable} satisfies a * specified condition, otherwise {@code false}. Note: this always emits {@code false} if the * current {@code Observable} is empty. *

* *

* In Rx.Net this is the {@code any} {@link Observer} but we renamed it in RxJava to better match Java naming * idioms. *

*
Scheduler:
*
{@code any} does not operate by default on a particular {@link Scheduler}.
*
* * @param predicate * the condition to test items emitted by the current {@code Observable} * @return the new {@code Single} instance * @throws NullPointerException if {@code predicate} is {@code null} * @see ReactiveX operators documentation: Contains */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Single any(@NonNull Predicate predicate) { Objects.requireNonNull(predicate, "predicate is null"); return RxJavaPlugins.onAssembly(new ObservableAnySingle<>(this, predicate)); } /** * Returns the first item emitted by the current {@code Observable}, or throws * {@link NoSuchElementException} if it emits no items. *

* *

*
Scheduler:
*
{@code blockingFirst} does not operate by default on a particular {@link Scheduler}.
*
Error handling:
*
If the source signals an error, the operator wraps a checked {@link Exception} * into {@link RuntimeException} and throws that. Otherwise, {@code RuntimeException}s and * {@link Error}s are rethrown as they are.
*
* * @return the first item emitted by the current {@code Observable} * @throws NoSuchElementException * if the current {@code Observable} emits no items * @see ReactiveX documentation: First */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final T blockingFirst() { BlockingFirstObserver observer = new BlockingFirstObserver<>(); subscribe(observer); T v = observer.blockingGet(); if (v != null) { return v; } throw new NoSuchElementException(); } /** * Returns the first item emitted by the current {@code Observable}, or a default value if it emits no * items. *

* *

*
Scheduler:
*
{@code blockingFirst} does not operate by default on a particular {@link Scheduler}.
*
Error handling:
*
If the source signals an error, the operator wraps a checked {@link Exception} * into {@link RuntimeException} and throws that. Otherwise, {@code RuntimeException}s and * {@link Error}s are rethrown as they are.
*
* * @param defaultItem * a default value to return if the current {@code Observable} emits no items * @return the first item emitted by the current {@code Observable}, or the default value if it emits no * items * @throws NullPointerException if {@code defaultItem} is {@code null} * @see ReactiveX documentation: First */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final T blockingFirst(@NonNull T defaultItem) { Objects.requireNonNull(defaultItem, "defaultItem is null"); BlockingFirstObserver observer = new BlockingFirstObserver<>(); subscribe(observer); T v = observer.blockingGet(); return v != null ? v : defaultItem; } /** * Consumes the current {@code Observable} in a blocking fashion and invokes the given * {@link Consumer} with each upstream item on the current thread until the * upstream terminates. *

* *

* Note: the method will only return if the upstream terminates or the current * thread is interrupted. *

* This method executes the {@code Consumer} on the current thread while * {@link #subscribe(Consumer)} executes the consumer on the original caller thread of the * sequence. *

*
Scheduler:
*
{@code blockingForEach} does not operate by default on a particular {@link Scheduler}.
*
Error handling:
*
If the source signals an error, the operator wraps a checked {@link Exception} * into {@link RuntimeException} and throws that. Otherwise, {@code RuntimeException}s and * {@link Error}s are rethrown as they are.
*
* * @param onNext * the {@code Consumer} to invoke for each item emitted by the {@code Observable} * @throws NullPointerException if {@code onNext} is {@code null} * @throws RuntimeException * if an error occurs * @see ReactiveX documentation: Subscribe * @see #subscribe(Consumer) * @see #blockingForEach(Consumer, int) */ @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final void blockingForEach(@NonNull Consumer onNext) { blockingForEach(onNext, bufferSize()); } /** * Consumes the current {@code Observable} in a blocking fashion and invokes the given * {@link Consumer} with each upstream item on the current thread until the * upstream terminates. *

* *

* Note: the method will only return if the upstream terminates or the current * thread is interrupted. *

* This method executes the {@code Consumer} on the current thread while * {@link #subscribe(Consumer)} executes the consumer on the original caller thread of the * sequence. *

*
Scheduler:
*
{@code blockingForEach} does not operate by default on a particular {@link Scheduler}.
*
Error handling:
*
If the source signals an error, the operator wraps a checked {@link Exception} * into {@link RuntimeException} and throws that. Otherwise, {@code RuntimeException}s and * {@link Error}s are rethrown as they are.
*
* * @param onNext * the {@code Consumer} to invoke for each item emitted by the {@code Observable} * @param capacityHint * the number of items expected to be buffered (allows reducing buffer reallocations) * @throws NullPointerException if {@code onNext} is {@code null} * @throws IllegalArgumentException if {@code capacityHint} is non-positive * @throws RuntimeException * if an error occurs; {@code Error}s and {@code RuntimeException}s are rethrown * as they are, checked {@code Exception}s are wrapped into {@code RuntimeException}s * @see ReactiveX documentation: Subscribe * @see #subscribe(Consumer) */ @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final void blockingForEach(@NonNull Consumer onNext, int capacityHint) { Objects.requireNonNull(onNext, "onNext is null"); Iterator it = blockingIterable(capacityHint).iterator(); while (it.hasNext()) { try { onNext.accept(it.next()); } catch (Throwable e) { Exceptions.throwIfFatal(e); ((Disposable)it).dispose(); throw ExceptionHelper.wrapOrThrow(e); } } } /** * Exposes the current {@code Observable} as an {@link Iterable} which, when iterated, * subscribes to the current {@code Observable} and blocks * until the current {@code Observable} emits items or terminates. *

* *

*
Scheduler:
*
{@code blockingIterable} does not operate by default on a particular {@link Scheduler}.
*
* * @return the new {@code Iterable} instance * @see ReactiveX documentation: To */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Iterable blockingIterable() { return blockingIterable(bufferSize()); } /** * Exposes the current {@code Observable} as an {@link Iterable} which, when iterated, * subscribes to the current {@code Observable} and blocks * until the current {@code Observable} emits items or terminates. *

* *

*
Scheduler:
*
{@code blockingIterable} does not operate by default on a particular {@link Scheduler}.
*
* * @param capacityHint the expected number of items to be buffered * @return the new {@code Iterable} instance * @throws IllegalArgumentException if {@code capacityHint} is non-positive * @see ReactiveX documentation: To */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Iterable blockingIterable(int capacityHint) { ObjectHelper.verifyPositive(capacityHint, "capacityHint"); return new BlockingObservableIterable<>(this, capacityHint); } /** * Returns the last item emitted by the current {@code Observable}, or throws * {@link NoSuchElementException} if the current {@code Observable} emits no items. *

* *

*
Scheduler:
*
{@code blockingLast} does not operate by default on a particular {@link Scheduler}.
*
Error handling:
*
If the source signals an error, the operator wraps a checked {@link Exception} * into {@link RuntimeException} and throws that. Otherwise, {@code RuntimeException}s and * {@link Error}s are rethrown as they are.
*
* * @return the last item emitted by the current {@code Observable} * @throws NoSuchElementException * if the current {@code Observable} emits no items * @see ReactiveX documentation: Last */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final T blockingLast() { BlockingLastObserver observer = new BlockingLastObserver<>(); subscribe(observer); T v = observer.blockingGet(); if (v != null) { return v; } throw new NoSuchElementException(); } /** * Returns the last item emitted by the current {@code Observable}, or a default value if it emits no * items. *

* *

*
Scheduler:
*
{@code blockingLast} does not operate by default on a particular {@link Scheduler}.
*
Error handling:
*
If the source signals an error, the operator wraps a checked {@link Exception} * into {@link RuntimeException} and throws that. Otherwise, {@code RuntimeException}s and * {@link Error}s are rethrown as they are.
*
* * @param defaultItem * a default value to return if the current {@code Observable} emits no items * @return the last item emitted by the {@code Observable}, or the default value if it emits no * items * @throws NullPointerException if {@code defaultItem} is {@code null} * @see ReactiveX documentation: Last */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final T blockingLast(@NonNull T defaultItem) { Objects.requireNonNull(defaultItem, "defaultItem is null"); BlockingLastObserver observer = new BlockingLastObserver<>(); subscribe(observer); T v = observer.blockingGet(); return v != null ? v : defaultItem; } /** * Returns an {@link Iterable} that returns the latest item emitted by the current {@code Observable}, * waiting if necessary for one to become available. *

* *

* If the current {@code Observable} produces items faster than {@code Iterator.next} takes them, * {@code onNext} events might be skipped, but {@code onError} or {@code onComplete} events are not. *

* Note also that an {@code onNext} directly followed by {@code onComplete} might hide the {@code onNext} * event. *

*
Scheduler:
*
{@code blockingLatest} does not operate by default on a particular {@link Scheduler}.
*
* * @return the new {@code Iterable} instance * @see ReactiveX documentation: First */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Iterable blockingLatest() { return new BlockingObservableLatest<>(this); } /** * Returns an {@link Iterable} that always returns the item most recently emitted by the current * {@code Observable}. *

* *

*
Scheduler:
*
{@code blockingMostRecent} does not operate by default on a particular {@link Scheduler}.
*
* * @param initialItem * the initial value that the {@code Iterable} sequence will yield if the current * {@code Observable} has not yet emitted an item * @return the new {@code Iterable} instance * @throws NullPointerException if {@code initialItem} is {@code null} * @see ReactiveX documentation: First */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Iterable blockingMostRecent(@NonNull T initialItem) { Objects.requireNonNull(initialItem, "initialItem is null"); return new BlockingObservableMostRecent<>(this, initialItem); } /** * Returns an {@link Iterable} that blocks until the current {@code Observable} emits another item, then * returns that item. *

* *

*
Scheduler:
*
{@code blockingNext} does not operate by default on a particular {@link Scheduler}.
*
* * @return the new {@code Iterable} instance * @see ReactiveX documentation: TakeLast */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Iterable blockingNext() { return new BlockingObservableNext<>(this); } /** * If the current {@code Observable} completes after emitting a single item, return that item, otherwise * throw a {@link NoSuchElementException}. *

* *

*
Scheduler:
*
{@code blockingSingle} does not operate by default on a particular {@link Scheduler}.
*
Error handling:
*
If the source signals an error, the operator wraps a checked {@link Exception} * into {@link RuntimeException} and throws that. Otherwise, {@code RuntimeException}s and * {@link Error}s are rethrown as they are.
*
* * @return the single item emitted by the current {@code Observable} * @see ReactiveX documentation: First */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final T blockingSingle() { T v = singleElement().blockingGet(); if (v == null) { throw new NoSuchElementException(); } return v; } /** * If the current {@code Observable} completes after emitting a single item, return that item; if it emits * more than one item, throw an {@link IllegalArgumentException}; if it emits no items, return a default * value. *

* *

*
Scheduler:
*
{@code blockingSingle} does not operate by default on a particular {@link Scheduler}.
*
Error handling:
*
If the source signals an error, the operator wraps a checked {@link Exception} * into {@link RuntimeException} and throws that. Otherwise, {@code RuntimeException}s and * {@link Error}s are rethrown as they are.
*
* * @param defaultItem * a default value to return if the current {@code Observable} emits no items * @return the single item emitted by the current {@code Observable}, or the default value if it emits no * items * @throws NullPointerException if {@code defaultItem} is {@code null} * @see ReactiveX documentation: First */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final T blockingSingle(@NonNull T defaultItem) { return single(defaultItem).blockingGet(); } /** * Returns a {@link Future} representing the only value emitted by the current {@code Observable}. *

* *

* If the {@code Observable} emits more than one item, {@code Future} will receive an * {@link IndexOutOfBoundsException}. If the {@code Observable} is empty, {@code Future} * will receive an {@link NoSuchElementException}. The {@code Observable} source has to terminate in order * for the returned {@code Future} to terminate as well. *

* If the {@code Observable} may emit more than one item, use {@code Observable.toList().toFuture()}. *

*
Scheduler:
*
{@code toFuture} does not operate by default on a particular {@link Scheduler}.
*
* * @return the new {@code Future} instance * @see ReactiveX documentation: To * @see #singleOrErrorStage() */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Future toFuture() { return subscribeWith(new FutureObserver<>()); } /** * Runs the current {@code Observable} to a terminal event, ignoring any values and rethrowing any exception. *

* *

* Note that calling this method will block the caller thread until the upstream terminates * normally or with an error. Therefore, calling this method from special threads such as the * Android Main Thread or the Swing Event Dispatch Thread is not recommended. *

*
Scheduler:
*
{@code blockingSubscribe} does not operate by default on a particular {@link Scheduler}.
*
* @since 2.0 * @see #blockingSubscribe(Consumer) * @see #blockingSubscribe(Consumer, Consumer) * @see #blockingSubscribe(Consumer, Consumer, Action) */ @SchedulerSupport(SchedulerSupport.NONE) public final void blockingSubscribe() { ObservableBlockingSubscribe.subscribe(this); } /** * Subscribes to the source and calls the given callbacks on the current thread. *

* *

* If the {@code Observable} emits an error, it is wrapped into an * {@link OnErrorNotImplementedException} * and routed to the {@link RxJavaPlugins#onError(Throwable)} handler. * Using the overloads {@link #blockingSubscribe(Consumer, Consumer)} * or {@link #blockingSubscribe(Consumer, Consumer, Action)} instead is recommended. *

* Note that calling this method will block the caller thread until the upstream terminates * normally or with an error. Therefore, calling this method from special threads such as the * Android Main Thread or the Swing Event Dispatch Thread is not recommended. *

*
Scheduler:
*
{@code blockingSubscribe} does not operate by default on a particular {@link Scheduler}.
*
* @param onNext the callback action for each source value * @throws NullPointerException if {@code onNext} is {@code null} * @since 2.0 * @see #blockingSubscribe(Consumer, Consumer) * @see #blockingSubscribe(Consumer, Consumer, Action) */ @SchedulerSupport(SchedulerSupport.NONE) public final void blockingSubscribe(@NonNull Consumer onNext) { ObservableBlockingSubscribe.subscribe(this, onNext, Functions.ON_ERROR_MISSING, Functions.EMPTY_ACTION); } /** * Subscribes to the source and calls the given callbacks on the current thread. *

* *

* Note that calling this method will block the caller thread until the upstream terminates * normally or with an error. Therefore, calling this method from special threads such as the * Android Main Thread or the Swing Event Dispatch Thread is not recommended. *

*
Scheduler:
*
{@code blockingSubscribe} does not operate by default on a particular {@link Scheduler}.
*
* @param onNext the callback action for each source value * @param onError the callback action for an error event * @throws NullPointerException if {@code onNext} or {@code onError} is {@code null} * @since 2.0 * @see #blockingSubscribe(Consumer, Consumer, Action) */ @SchedulerSupport(SchedulerSupport.NONE) public final void blockingSubscribe(@NonNull Consumer onNext, @NonNull Consumer onError) { ObservableBlockingSubscribe.subscribe(this, onNext, onError, Functions.EMPTY_ACTION); } /** * Subscribes to the source and calls the given callbacks on the current thread. *

* *

* Note that calling this method will block the caller thread until the upstream terminates * normally or with an error. Therefore, calling this method from special threads such as the * Android Main Thread or the Swing Event Dispatch Thread is not recommended. *

*
Scheduler:
*
{@code blockingSubscribe} does not operate by default on a particular {@link Scheduler}.
*
* @param onNext the callback action for each source value * @param onError the callback action for an error event * @param onComplete the callback action for the completion event. * @throws NullPointerException if {@code onNext}, {@code onError} or {@code onComplete} is {@code null} * @since 2.0 */ @SchedulerSupport(SchedulerSupport.NONE) public final void blockingSubscribe(@NonNull Consumer onNext, @NonNull Consumer onError, @NonNull Action onComplete) { ObservableBlockingSubscribe.subscribe(this, onNext, onError, onComplete); } /** * Subscribes to the source and calls the {@link Observer} methods on the current thread. *

* Note that calling this method will block the caller thread until the upstream terminates * normally, with an error or the {@code Observer} disposes the {@link Disposable} it receives via * {@link Observer#onSubscribe(Disposable)}. * Therefore, calling this method from special threads such as the * Android Main Thread or the Swing Event Dispatch Thread is not recommended. *

*
Scheduler:
*
{@code blockingSubscribe} does not operate by default on a particular {@link Scheduler}.
*
* The a dispose() call is composed through. * @param observer the {@code Observer} instance to forward events and calls to in the current thread * @throws NullPointerException if {@code observer} is {@code null} * @since 2.0 */ @SchedulerSupport(SchedulerSupport.NONE) public final void blockingSubscribe(@NonNull Observer observer) { Objects.requireNonNull(observer, "observer is null"); ObservableBlockingSubscribe.subscribe(this, observer); } /** * Returns an {@code Observable} that emits buffers of items it collects from the current {@code Observable}. The resulting * {@code Observable} emits connected, non-overlapping buffers, each containing {@code count} items. When the current * {@code Observable} completes, the resulting {@code Observable} emits the current buffer and propagates the notification * from the current {@code Observable}. Note that if the current {@code Observable} issues an {@code onError} notification * the event is passed on immediately without first emitting the buffer it is in the process of assembling. *

* *

*
Scheduler:
*
This version of {@code buffer} does not operate by default on a particular {@link Scheduler}.
*
* * @param count * the maximum number of items in each buffer before it should be emitted * @return the new {@code Observable} instance * @throws IllegalArgumentException if {@code count} is non-positive * @see ReactiveX operators documentation: Buffer */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable<@NonNull List> buffer(int count) { return buffer(count, count); } /** * Returns an {@code Observable} that emits buffers of items it collects from the current {@code Observable}. The resulting * {@code Observable} emits buffers every {@code skip} items, each containing {@code count} items. When the current * {@code Observable} completes, the resulting {@code Observable} emits the current buffer and propagates the notification * from the current {@code Observable}. Note that if the current {@code Observable} issues an {@code onError} notification * the event is passed on immediately without first emitting the buffer it is in the process of assembling. *

* *

*
Scheduler:
*
This version of {@code buffer} does not operate by default on a particular {@link Scheduler}.
*
* * @param count * the maximum size of each buffer before it should be emitted * @param skip * how many items emitted by the current {@code Observable} should be skipped before starting a new * buffer. Note that when {@code skip} and {@code count} are equal, this is the same operation as * {@link #buffer(int)}. * @return the new {@code Observable} instance * @throws IllegalArgumentException if {@code count} or {@code skip} is non-positive * @see ReactiveX operators documentation: Buffer */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable<@NonNull List> buffer(int count, int skip) { return buffer(count, skip, ArrayListSupplier.asSupplier()); } /** * Returns an {@code Observable} that emits buffers of items it collects from the current {@code Observable}. The resulting * {@code Observable} emits buffers every {@code skip} items, each containing {@code count} items. When the current * {@code Observable} completes, the resulting {@code Observable} emits the current buffer and propagates the notification * from the current {@code Observable}. Note that if the current {@code Observable} issues an {@code onError} notification * the event is passed on immediately without first emitting the buffer it is in the process of assembling. *

* *

*
Scheduler:
*
This version of {@code buffer} does not operate by default on a particular {@link Scheduler}.
*
* * @param the collection subclass type to buffer into * @param count * the maximum size of each buffer before it should be emitted * @param skip * how many items emitted by the current {@code Observable} should be skipped before starting a new * buffer. Note that when {@code skip} and {@code count} are equal, this is the same operation as * {@link #buffer(int)}. * @param bufferSupplier * a factory function that returns an instance of the collection subclass to be used and returned * as the buffer * @return the new {@code Observable} instance * @throws NullPointerException if {@code bufferSupplier} is {@code null} * @throws IllegalArgumentException if {@code count} or {@code skip} is non-positive * @see ReactiveX operators documentation: Buffer */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final > Observable buffer(int count, int skip, @NonNull Supplier bufferSupplier) { ObjectHelper.verifyPositive(count, "count"); ObjectHelper.verifyPositive(skip, "skip"); Objects.requireNonNull(bufferSupplier, "bufferSupplier is null"); return RxJavaPlugins.onAssembly(new ObservableBuffer<>(this, count, skip, bufferSupplier)); } /** * Returns an {@code Observable} that emits buffers of items it collects from the current {@code Observable}. The resulting * {@code Observable} emits connected, non-overlapping buffers, each containing {@code count} items. When the current * {@code Observable} completes, the resulting {@code Observable} emits the current buffer and propagates the notification * from the current {@code Observable}. Note that if the current {@code Observable} issues an {@code onError} notification * the event is passed on immediately without first emitting the buffer it is in the process of assembling. *

* *

*
Scheduler:
*
This version of {@code buffer} does not operate by default on a particular {@link Scheduler}.
*
* * @param the collection subclass type to buffer into * @param count * the maximum number of items in each buffer before it should be emitted * @param bufferSupplier * a factory function that returns an instance of the collection subclass to be used and returned * as the buffer * @return the new {@code Observable} instance * @throws NullPointerException if {@code bufferSupplier} is {@code null} * @throws IllegalArgumentException if {@code count} is non-positive * @see ReactiveX operators documentation: Buffer */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final <@NonNull U extends Collection> Observable buffer(int count, @NonNull Supplier bufferSupplier) { return buffer(count, count, bufferSupplier); } /** * Returns an {@code Observable} that emits buffers of items it collects from the current {@code Observable}. The resulting * {@code Observable} starts a new buffer periodically, as determined by the {@code timeskip} argument. It emits * each buffer after a fixed timespan, specified by the {@code timespan} argument. When the current * {@code Observable} completes, the resulting {@code Observable} emits the current buffer and propagates the notification * from the current {@code Observable}. Note that if the current {@code Observable} issues an {@code onError} notification * the event is passed on immediately without first emitting the buffer it is in the process of assembling. *

* *

*
Scheduler:
*
This version of {@code buffer} operates by default on the {@code computation} {@link Scheduler}.
*
* * @param timespan * the period of time each buffer collects items before it is emitted * @param timeskip * the period of time after which a new buffer will be created * @param unit * the unit of time that applies to the {@code timespan} and {@code timeskip} arguments * @return the new {@code Observable} instance * @throws NullPointerException if {@code unit} is {@code null} * @see ReactiveX operators documentation: Buffer */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.COMPUTATION) @NonNull public final Observable<@NonNull List> buffer(long timespan, long timeskip, @NonNull TimeUnit unit) { return buffer(timespan, timeskip, unit, Schedulers.computation(), ArrayListSupplier.asSupplier()); } /** * Returns an {@code Observable} that emits buffers of items it collects from the current {@code Observable}. The resulting * {@code Observable} starts a new buffer periodically, as determined by the {@code timeskip} argument, and on the * specified {@code scheduler}. It emits each buffer after a fixed timespan, specified by the * {@code timespan} argument. When the current {@code Observable} completes, the resulting {@code Observable} emits the * current buffer and propagates the notification from the current {@code Observable}. Note that if the current * {@code Observable} issues an {@code onError} notification the event is passed on immediately without first emitting the * buffer it is in the process of assembling. *

* *

*
Scheduler:
*
You specify which {@link Scheduler} this operator will use.
*
* * @param timespan * the period of time each buffer collects items before it is emitted * @param timeskip * the period of time after which a new buffer will be created * @param unit * the unit of time that applies to the {@code timespan} and {@code timeskip} arguments * @param scheduler * the {@code Scheduler} to use when determining the end and start of a buffer * @return the new {@code Observable} instance * @throws NullPointerException if {@code unit} or {@code scheduler} is {@code null} * @see ReactiveX operators documentation: Buffer */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.CUSTOM) @NonNull public final Observable<@NonNull List> buffer(long timespan, long timeskip, @NonNull TimeUnit unit, @NonNull Scheduler scheduler) { return buffer(timespan, timeskip, unit, scheduler, ArrayListSupplier.asSupplier()); } /** * Returns an {@code Observable} that emits buffers of items it collects from the current {@code Observable}. The resulting * {@code Observable} starts a new buffer periodically, as determined by the {@code timeskip} argument, and on the * specified {@code scheduler}. It emits each buffer after a fixed timespan, specified by the * {@code timespan} argument. When the current {@code Observable} completes, the resulting {@code Observable} emits the * current buffer and propagates the notification from the current {@code Observable}. Note that if the current * {@code Observable} issues an {@code onError} notification the event is passed on immediately without first emitting the * buffer it is in the process of assembling. *

* *

*
Scheduler:
*
You specify which {@link Scheduler} this operator will use.
*
* * @param the collection subclass type to buffer into * @param timespan * the period of time each buffer collects items before it is emitted * @param timeskip * the period of time after which a new buffer will be created * @param unit * the unit of time that applies to the {@code timespan} and {@code timeskip} arguments * @param scheduler * the {@code Scheduler} to use when determining the end and start of a buffer * @param bufferSupplier * a factory function that returns an instance of the collection subclass to be used and returned * as the buffer * @return the new {@code Observable} instance * @throws NullPointerException if {@code unit}, {@code scheduler} or {@code bufferSupplier} is {@code null} * @see ReactiveX operators documentation: Buffer */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.CUSTOM) @NonNull public final <@NonNull U extends Collection> Observable buffer(long timespan, long timeskip, @NonNull TimeUnit unit, @NonNull Scheduler scheduler, @NonNull Supplier bufferSupplier) { Objects.requireNonNull(unit, "unit is null"); Objects.requireNonNull(scheduler, "scheduler is null"); Objects.requireNonNull(bufferSupplier, "bufferSupplier is null"); return RxJavaPlugins.onAssembly(new ObservableBufferTimed<>(this, timespan, timeskip, unit, scheduler, bufferSupplier, Integer.MAX_VALUE, false)); } /** * Returns an {@code Observable} that emits buffers of items it collects from the current {@code Observable}. The resulting * {@code Observable} emits connected, non-overlapping buffers, each of a fixed duration specified by the * {@code timespan} argument. When the current {@code Observable} completes, the resulting {@code Observable} emits the * current buffer and propagates the notification from the current {@code Observable}. Note that if the current * {@code Observable} issues an {@code onError} notification the event is passed on immediately without first emitting the * buffer it is in the process of assembling. *

* *

*
Scheduler:
*
This version of {@code buffer} operates by default on the {@code computation} {@link Scheduler}.
*
* * @param timespan * the period of time each buffer collects items before it is emitted and replaced with a new * buffer * @param unit * the unit of time that applies to the {@code timespan} argument * @return the new {@code Observable} instance * @throws NullPointerException if {@code unit} is {@code null} * @see ReactiveX operators documentation: Buffer */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.COMPUTATION) @NonNull public final Observable<@NonNull List> buffer(long timespan, @NonNull TimeUnit unit) { return buffer(timespan, unit, Schedulers.computation(), Integer.MAX_VALUE); } /** * Returns an {@code Observable} that emits buffers of items it collects from the current {@code Observable}. The resulting * {@code Observable} emits connected, non-overlapping buffers, each of a fixed duration specified by the * {@code timespan} argument or a maximum size specified by the {@code count} argument (whichever is reached * first). When the current {@code Observable} completes, the resulting {@code Observable} emits the current buffer and * propagates the notification from the current {@code Observable}. Note that if the current {@code Observable} issues an * {@code onError} notification the event is passed on immediately without first emitting the buffer it is in the process of * assembling. *

* *

*
Scheduler:
*
This version of {@code buffer} operates by default on the {@code computation} {@link Scheduler}.
*
* * @param timespan * the period of time each buffer collects items before it is emitted and replaced with a new * buffer * @param unit * the unit of time which applies to the {@code timespan} argument * @param count * the maximum size of each buffer before it is emitted * @return the new {@code Observable} instance * @throws NullPointerException if {@code unit} is {@code null} * @throws IllegalArgumentException if {@code count} is non-positive * @see ReactiveX operators documentation: Buffer */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.COMPUTATION) @NonNull public final Observable<@NonNull List> buffer(long timespan, @NonNull TimeUnit unit, int count) { return buffer(timespan, unit, Schedulers.computation(), count); } /** * Returns an {@code Observable} that emits buffers of items it collects from the current {@code Observable}. The resulting * {@code Observable} emits connected, non-overlapping buffers, each of a fixed duration specified by the * {@code timespan} argument as measured on the specified {@code scheduler}, or a maximum size specified by * the {@code count} argument (whichever is reached first). When the current {@code Observable} completes, the resulting * {@code Observable} emits the current buffer and propagates the notification from the current {@code Observable}. Note * that if the current {@code Observable} issues an {@code onError} notification the event is passed on immediately without * first emitting the buffer it is in the process of assembling. *

* *

*
Scheduler:
*
You specify which {@link Scheduler} this operator will use.
*
* * @param timespan * the period of time each buffer collects items before it is emitted and replaced with a new * buffer * @param unit * the unit of time which applies to the {@code timespan} argument * @param scheduler * the {@code Scheduler} to use when determining the end and start of a buffer * @param count * the maximum size of each buffer before it is emitted * @return the new {@code Observable} instance * @throws NullPointerException if {@code unit} or {@code scheduler} is {@code null} * @throws IllegalArgumentException if {@code count} is non-positive * @see ReactiveX operators documentation: Buffer */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.CUSTOM) @NonNull public final Observable<@NonNull List> buffer(long timespan, @NonNull TimeUnit unit, @NonNull Scheduler scheduler, int count) { return buffer(timespan, unit, scheduler, count, ArrayListSupplier.asSupplier(), false); } /** * Returns an {@code Observable} that emits buffers of items it collects from the current {@code Observable}. The resulting * {@code Observable} emits connected, non-overlapping buffers, each of a fixed duration specified by the * {@code timespan} argument as measured on the specified {@code scheduler}, or a maximum size specified by * the {@code count} argument (whichever is reached first). When the current {@code Observable} completes, the resulting * {@code Observable} emits the current buffer and propagates the notification from the current {@code Observable}. Note * that if the current {@code Observable} issues an {@code onError} notification the event is passed on immediately without * first emitting the buffer it is in the process of assembling. *

* *

*
Scheduler:
*
You specify which {@link Scheduler} this operator will use.
*
* * @param the collection subclass type to buffer into * @param timespan * the period of time each buffer collects items before it is emitted and replaced with a new * buffer * @param unit * the unit of time which applies to the {@code timespan} argument * @param scheduler * the {@code Scheduler} to use when determining the end and start of a buffer * @param count * the maximum size of each buffer before it is emitted * @param bufferSupplier * a factory function that returns an instance of the collection subclass to be used and returned * as the buffer * @param restartTimerOnMaxSize if {@code true}, the time window is restarted when the max capacity of the current buffer * is reached * @return the new {@code Observable} instance * @throws NullPointerException if {@code unit}, {@code scheduler} or {@code bufferSupplier} is {@code null} * @throws IllegalArgumentException if {@code count} is non-positive * @see ReactiveX operators documentation: Buffer */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.CUSTOM) @NonNull public final <@NonNull U extends Collection> Observable buffer( long timespan, @NonNull TimeUnit unit, @NonNull Scheduler scheduler, int count, @NonNull Supplier bufferSupplier, boolean restartTimerOnMaxSize) { Objects.requireNonNull(unit, "unit is null"); Objects.requireNonNull(scheduler, "scheduler is null"); Objects.requireNonNull(bufferSupplier, "bufferSupplier is null"); ObjectHelper.verifyPositive(count, "count"); return RxJavaPlugins.onAssembly(new ObservableBufferTimed<>(this, timespan, timespan, unit, scheduler, bufferSupplier, count, restartTimerOnMaxSize)); } /** * Returns an {@code Observable} that emits buffers of items it collects from the current {@code Observable}. The resulting * {@code Observable} emits connected, non-overlapping buffers, each of a fixed duration specified by the * {@code timespan} argument and on the specified {@code scheduler}. When the current {@code Observable} completes, * the resulting {@code Observable} emits the current buffer and propagates the notification from the current * {@code Observable}. Note that if the current {@code Observable} issues an {@code onError} notification the event is passed on * immediately without first emitting the buffer it is in the process of assembling. *

* *

*
Scheduler:
*
You specify which {@link Scheduler} this operator will use.
*
* * @param timespan * the period of time each buffer collects items before it is emitted and replaced with a new * buffer * @param unit * the unit of time which applies to the {@code timespan} argument * @param scheduler * the {@code Scheduler} to use when determining the end and start of a buffer * @return the new {@code Observable} instance * @throws NullPointerException if {@code unit} or {@code scheduler} is {@code null} * @see ReactiveX operators documentation: Buffer */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.CUSTOM) @NonNull public final Observable<@NonNull List> buffer(long timespan, @NonNull TimeUnit unit, @NonNull Scheduler scheduler) { return buffer(timespan, unit, scheduler, Integer.MAX_VALUE, ArrayListSupplier.asSupplier(), false); } /** * Returns an {@code Observable} that emits buffers of items it collects from the current {@code Observable}. The resulting * {@code Observable} emits buffers that it creates when the specified {@code openingIndicator} {@link ObservableSource} emits an * item, and closes when the {@code ObservableSource} returned from {@code closingIndicator} emits an item. If any of the * current {@code Observable}, {@code openingIndicator} or {@code closingIndicator} issues an {@code onError} notification the * event is passed on immediately without first emitting the buffer it is in the process of assembling. *

* *

*
Scheduler:
*
This version of {@code buffer} does not operate by default on a particular {@link Scheduler}.
*
* * @param the element type of the buffer-opening {@code ObservableSource} * @param the element type of the individual buffer-closing {@code ObservableSource}s * @param openingIndicator * the {@code ObservableSource} that, when it emits an item, causes a new buffer to be created * @param closingIndicator * the {@link Function} that is used to produce an {@code ObservableSource} for every buffer created. When this indicator * {@code ObservableSource} emits an item, the associated buffer is emitted. * @return the new {@code Observable} instance * @throws NullPointerException if {@code openingIndicator} or {@code closingIndicator} is {@code null} * @see ReactiveX operators documentation: Buffer */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable<@NonNull List> buffer( @NonNull ObservableSource openingIndicator, @NonNull Function> closingIndicator) { return buffer(openingIndicator, closingIndicator, ArrayListSupplier.asSupplier()); } /** * Returns an {@code Observable} that emits buffers of items it collects from the current {@code Observable}. The resulting * {@code Observable} emits buffers that it creates when the specified {@code openingIndicator} {@link ObservableSource} emits an * item, and closes when the {@code ObservableSource} returned from {@code closingIndicator} emits an item. If any of the * current {@code Observable}, {@code openingIndicator} or {@code closingIndicator} issues an {@code onError} notification the * event is passed on immediately without first emitting the buffer it is in the process of assembling. *

* *

*
Scheduler:
*
This version of {@code buffer} does not operate by default on a particular {@link Scheduler}.
*
* * @param the collection subclass type to buffer into * @param the element type of the buffer-opening {@code ObservableSource} * @param the element type of the individual buffer-closing {@code ObservableSource}s * @param openingIndicator * the {@code ObservableSource} that, when it emits an item, causes a new buffer to be created * @param closingIndicator * the {@link Function} that is used to produce an {@code ObservableSource} for every buffer created. When this indicator * {@code ObservableSource} emits an item, the associated buffer is emitted. * @param bufferSupplier * a factory function that returns an instance of the collection subclass to be used and returned * as the buffer * @return the new {@code Observable} instance * @throws NullPointerException if {@code openingIndicator}, {@code closingIndicator} or {@code bufferSupplier} is {@code null} * @see ReactiveX operators documentation: Buffer */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final > Observable buffer( @NonNull ObservableSource openingIndicator, @NonNull Function> closingIndicator, @NonNull Supplier bufferSupplier) { Objects.requireNonNull(openingIndicator, "openingIndicator is null"); Objects.requireNonNull(closingIndicator, "closingIndicator is null"); Objects.requireNonNull(bufferSupplier, "bufferSupplier is null"); return RxJavaPlugins.onAssembly(new ObservableBufferBoundary(this, openingIndicator, closingIndicator, bufferSupplier)); } /** * Returns an {@code Observable} that emits non-overlapping buffered items from the current {@code Observable} each time the * specified boundary {@link ObservableSource} emits an item. *

* *

* Completion of either the source or the boundary {@code ObservableSource} causes the returned {@code ObservableSource} to emit the * latest buffer and complete. If either the current {@code Observable} or the boundary {@code ObservableSource} issues an * {@code onError} notification the event is passed on immediately without first emitting the buffer it is in the process of * assembling. *

*
Scheduler:
*
This version of {@code buffer} does not operate by default on a particular {@link Scheduler}.
*
* * @param * the boundary value type (ignored) * @param boundaryIndicator * the boundary {@code ObservableSource} * @return the new {@code Observable} instance * @throws NullPointerException if {@code boundaryIndicator} is {@code null} * @see #buffer(ObservableSource, int) * @see ReactiveX operators documentation: Buffer */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable<@NonNull List> buffer(@NonNull ObservableSource boundaryIndicator) { return buffer(boundaryIndicator, ArrayListSupplier.asSupplier()); } /** * Returns an {@code Observable} that emits non-overlapping buffered items from the current {@code Observable} each time the * specified boundary {@link ObservableSource} emits an item. *

* *

* Completion of either the source or the boundary {@code ObservableSource} causes the returned {@code ObservableSource} to emit the * latest buffer and complete. If either the current {@code Observable} or the boundary {@code ObservableSource} issues an * {@code onError} notification the event is passed on immediately without first emitting the buffer it is in the process of * assembling. *

*
Scheduler:
*
This version of {@code buffer} does not operate by default on a particular {@link Scheduler}.
*
* * @param * the boundary value type (ignored) * @param boundaryIndicator * the boundary {@code ObservableSource} * @param initialCapacity * the initial capacity of each buffer chunk * @return the new {@code Observable} instance * @see ReactiveX operators documentation: Buffer * @throws NullPointerException if {@code boundaryIndicator} is {@code null} * @throws IllegalArgumentException if {@code initialCapacity} is non-positive * @see #buffer(ObservableSource) */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable<@NonNull List> buffer(@NonNull ObservableSource boundaryIndicator, int initialCapacity) { ObjectHelper.verifyPositive(initialCapacity, "initialCapacity"); return buffer(boundaryIndicator, Functions.createArrayList(initialCapacity)); } /** * Returns an {@code Observable} that emits non-overlapping buffered items from the current {@code Observable} each time the * specified boundary {@link ObservableSource} emits an item. *

* *

* Completion of either the source or the boundary {@code ObservableSource} causes the returned {@code ObservableSource} to emit the * latest buffer and complete. If either the current {@code Observable} or the boundary {@code ObservableSource} issues an * {@code onError} notification the event is passed on immediately without first emitting the buffer it is in the process of * assembling. *

*
Scheduler:
*
This version of {@code buffer} does not operate by default on a particular {@link Scheduler}.
*
* * @param the collection subclass type to buffer into * @param * the boundary value type (ignored) * @param boundaryIndicator * the boundary {@code ObservableSource} * @param bufferSupplier * a factory function that returns an instance of the collection subclass to be used and returned * as the buffer * @return the new {@code Observable} instance * @throws NullPointerException if {@code boundaryIndicator} or {@code bufferSupplier} is {@code null} * @see #buffer(ObservableSource, int) * @see ReactiveX operators documentation: Buffer */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final > Observable buffer(@NonNull ObservableSource boundaryIndicator, @NonNull Supplier bufferSupplier) { Objects.requireNonNull(boundaryIndicator, "boundaryIndicator is null"); Objects.requireNonNull(bufferSupplier, "bufferSupplier is null"); return RxJavaPlugins.onAssembly(new ObservableBufferExactBoundary<>(this, boundaryIndicator, bufferSupplier)); } /** * Returns an {@code Observable} that subscribes to the current {@code Observable} lazily, caches all of its events * and replays them, in the same order as received, to all the downstream observers. *

* *

* This is useful when you want an {@code Observable} to cache responses and you can't control the * subscribe/dispose behavior of all the {@link Observer}s. *

* The operator subscribes only when the first downstream observer subscribes and maintains * a single subscription towards the current {@code Observable}. In contrast, the operator family of {@link #replay()} * that return a {@link ConnectableObservable} require an explicit call to {@link ConnectableObservable#connect()}. *

* Note: You sacrifice the ability to dispose the origin when you use the {@code cache} * operator so be careful not to use this operator on {@code Observable}s that emit an infinite or very large number * of items that will use up memory. * A possible workaround is to apply {@code takeUntil} with a predicate or * another source before (and perhaps after) the application of {@code cache()}. *


     * AtomicBoolean shouldStop = new AtomicBoolean();
     *
     * source.takeUntil(v -> shouldStop.get())
     *       .cache()
     *       .takeUntil(v -> shouldStop.get())
     *       .subscribe(...);
     * 
* Since the operator doesn't allow clearing the cached values either, the possible workaround is * to forget all references to it via {@link #onTerminateDetach()} applied along with the previous * workaround: *

     * AtomicBoolean shouldStop = new AtomicBoolean();
     *
     * source.takeUntil(v -> shouldStop.get())
     *       .onTerminateDetach()
     *       .cache()
     *       .takeUntil(v -> shouldStop.get())
     *       .onTerminateDetach()
     *       .subscribe(...);
     * 
*
*
Scheduler:
*
{@code cache} does not operate by default on a particular {@link Scheduler}.
*
* * @return the new {@code Observable} instance * @see ReactiveX operators documentation: Replay * @see #takeUntil(Predicate) * @see #takeUntil(ObservableSource) */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable cache() { return cacheWithInitialCapacity(16); } /** * Returns an {@code Observable} that subscribes to the current {@code Observable} lazily, caches all of its events * and replays them, in the same order as received, to all the downstream observers. *

* *

* This is useful when you want an {@code Observable} to cache responses and you can't control the * subscribe/dispose behavior of all the {@link Observer}s. *

* The operator subscribes only when the first downstream observer subscribes and maintains * a single subscription towards the current {@code Observable}. In contrast, the operator family of {@link #replay()} * that return a {@link ConnectableObservable} require an explicit call to {@link ConnectableObservable#connect()}. *

* Note: You sacrifice the ability to dispose the origin when you use the {@code cache} * operator so be careful not to use this operator on {@code Observable}s that emit an infinite or very large number * of items that will use up memory. * A possible workaround is to apply `takeUntil` with a predicate or * another source before (and perhaps after) the application of {@code cache()}. *


     * AtomicBoolean shouldStop = new AtomicBoolean();
     *
     * source.takeUntil(v -> shouldStop.get())
     *       .cache()
     *       .takeUntil(v -> shouldStop.get())
     *       .subscribe(...);
     * 
* Since the operator doesn't allow clearing the cached values either, the possible workaround is * to forget all references to it via {@link #onTerminateDetach()} applied along with the previous * workaround: *

     * AtomicBoolean shouldStop = new AtomicBoolean();
     *
     * source.takeUntil(v -> shouldStop.get())
     *       .onTerminateDetach()
     *       .cache()
     *       .takeUntil(v -> shouldStop.get())
     *       .onTerminateDetach()
     *       .subscribe(...);
     * 
*
*
Scheduler:
*
{@code cacheWithInitialCapacity} does not operate by default on a particular {@link Scheduler}.
*
*

* Note: The capacity hint is not an upper bound on cache size. For that, consider * {@link #replay(int)} in combination with {@link ConnectableObservable#autoConnect()} or similar. * * @param initialCapacity hint for number of items to cache (for optimizing underlying data structure) * @return the new {@code Observable} instance * @throws IllegalArgumentException if {@code initialCapacity} is non-positive * @see ReactiveX operators documentation: Replay * @see #takeUntil(Predicate) * @see #takeUntil(ObservableSource) */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable cacheWithInitialCapacity(int initialCapacity) { ObjectHelper.verifyPositive(initialCapacity, "initialCapacity"); return RxJavaPlugins.onAssembly(new ObservableCache<>(this, initialCapacity)); } /** * Returns an {@code Observable} that emits the items emitted by the current {@code Observable}, converted to the specified * type. *

* *

*
Scheduler:
*
{@code cast} does not operate by default on a particular {@link Scheduler}.
*
* * @param the output value type cast to * @param clazz * the target class type that {@code cast} will cast the items emitted by the current {@code Observable} * into before emitting them from the resulting {@code Observable} * @return the new {@code Observable} instance * @throws NullPointerException if {@code clazz} is {@code null} * @see ReactiveX operators documentation: Map */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable cast(@NonNull Class clazz) { Objects.requireNonNull(clazz, "clazz is null"); return map(Functions.castFunction(clazz)); } /** * Collects items emitted by the finite source {@code Observable} into a single mutable data structure and returns * a {@link Single} that emits this structure. *

* *

* This is a simplified version of {@code reduce} that does not need to return the state on each pass. *

* Note that this operator requires the upstream to signal {@code onComplete} for the accumulator object to * be emitted. Sources that are infinite and never complete will never emit anything through this * operator and an infinite source may lead to a fatal {@link OutOfMemoryError}. *

*
Scheduler:
*
{@code collect} does not operate by default on a particular {@link Scheduler}.
*
* * @param the accumulator and output type * @param initialItemSupplier * the mutable data structure that will collect the items * @param collector * a function that accepts the {@code state} and an emitted item, and modifies the accumulator accordingly * accordingly * @return the new {@code Single} instance * @throws NullPointerException if {@code initialItemSupplier} or {@code collector} is {@code null} * @see ReactiveX operators documentation: Reduce */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Single collect(@NonNull Supplier initialItemSupplier, @NonNull BiConsumer collector) { Objects.requireNonNull(initialItemSupplier, "initialItemSupplier is null"); Objects.requireNonNull(collector, "collector is null"); return RxJavaPlugins.onAssembly(new ObservableCollectSingle<>(this, initialItemSupplier, collector)); } /** * Collects items emitted by the finite source {@code Observable} into a single mutable data structure and returns * a {@link Single} that emits this structure. *

* *

* This is a simplified version of {@code reduce} that does not need to return the state on each pass. *

* Note that this operator requires the upstream to signal {@code onComplete} for the accumulator object to * be emitted. Sources that are infinite and never complete will never emit anything through this * operator and an infinite source may lead to a fatal {@link OutOfMemoryError}. *

*
Scheduler:
*
{@code collectInto} does not operate by default on a particular {@link Scheduler}.
*
* * @param the accumulator and output type * @param initialItem * the mutable data structure that will collect the items * @param collector * a function that accepts the {@code state} and an emitted item, and modifies the accumulator accordingly * accordingly * @return the new {@code Single} instance * @throws NullPointerException if {@code initialItem} or {@code collector} is {@code null} * @see ReactiveX operators documentation: Reduce */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Single collectInto(@NonNull U initialItem, @NonNull BiConsumer collector) { Objects.requireNonNull(initialItem, "initialItem is null"); return collect(Functions.justSupplier(initialItem), collector); } /** * Transform the current {@code Observable} by applying a particular {@link ObservableTransformer} function to it. *

* This method operates on the {@code Observable} itself whereas {@link #lift} operates on the {@link ObservableSource}'s * {@link Observer}s. *

* If the operator you are creating is designed to act on the individual items emitted by the current * {@code Observable}, use {@link #lift}. If your operator is designed to transform the current {@code Observable} as a whole * (for instance, by applying a particular set of existing RxJava operators to it) use {@code compose}. *

*
Scheduler:
*
{@code compose} does not operate by default on a particular {@link Scheduler}.
*
* * @param the value type of the output {@code ObservableSource} * @param composer implements the function that transforms the current {@code Observable} * @return the new {@code Observable} instance * @throws NullPointerException if {@code composer} is {@code null} * @see RxJava wiki: Implementing Your Own Operators */ @SuppressWarnings("unchecked") @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable compose(@NonNull ObservableTransformer composer) { return wrap(((ObservableTransformer) Objects.requireNonNull(composer, "composer is null")).apply(this)); } /** * Returns a new {@code Observable} that emits items resulting from applying a function that you supply to each item * emitted by the current {@code Observable}, where that function returns an {@link ObservableSource}, and then emitting the items * that result from concatenating those returned {@code ObservableSource}s. *

* *

* Note that there is no guarantee where the given {@code mapper} function will be executed; it could be on the subscribing thread, * on the upstream thread signaling the new item to be mapped or on the thread where the inner source terminates. To ensure * the {@code mapper} function is confined to a known thread, use the {@link #concatMap(Function, int, Scheduler)} overload. *

*
Scheduler:
*
{@code concatMap} does not operate by default on a particular {@link Scheduler}.
*
* * @param the type of the inner {@code ObservableSource} sources and thus the output type * @param mapper * a function that, when applied to an item emitted by the current {@code Observable}, returns an * {@code ObservableSource} * @return the new {@code Observable} instance * @throws NullPointerException if {@code mapper} is {@code null} * @see ReactiveX operators documentation: FlatMap * @see #concatMap(Function, int, Scheduler) */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable concatMap(@NonNull Function> mapper) { return concatMap(mapper, 2); } /** * Returns a new {@code Observable} that emits items resulting from applying a function that you supply to each item * emitted by the current {@code Observable}, where that function returns an {@link ObservableSource}, and then emitting the items * that result from concatenating those returned {@code ObservableSource}s. *

* *

* Note that there is no guarantee where the given {@code mapper} function will be executed; it could be on the subscribing thread, * on the upstream thread signaling the new item to be mapped or on the thread where the inner source terminates. To ensure * the {@code mapper} function is confined to a known thread, use the {@link #concatMap(Function, int, Scheduler)} overload. *

*
Scheduler:
*
{@code concatMap} does not operate by default on a particular {@link Scheduler}.
*
* * @param the type of the inner {@code ObservableSource} sources and thus the output type * @param mapper * a function that, when applied to an item emitted by the current {@code Observable}, returns an * {@code ObservableSource} * @param bufferSize * the number of elements expected from the current {@code Observable} to be buffered * @return the new {@code Observable} instance * @throws NullPointerException if {@code mapper} is {@code null} * @throws IllegalArgumentException if {@code bufferSize} is non-positive * @see ReactiveX operators documentation: FlatMap * @see #concatMap(Function, int, Scheduler) */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable concatMap(@NonNull Function> mapper, int bufferSize) { Objects.requireNonNull(mapper, "mapper is null"); ObjectHelper.verifyPositive(bufferSize, "bufferSize"); if (this instanceof ScalarSupplier) { @SuppressWarnings("unchecked") T v = ((ScalarSupplier)this).get(); if (v == null) { return empty(); } return ObservableScalarXMap.scalarXMap(v, mapper); } return RxJavaPlugins.onAssembly(new ObservableConcatMap<>(this, mapper, bufferSize, ErrorMode.IMMEDIATE)); } /** * Returns a new {@code Observable} that emits items resulting from applying a function that you supply to each item * emitted by the current {@code Observable}, where that function returns an {@link ObservableSource}, and then emitting the items * that result from concatenating those returned {@code ObservableSource}s. *

* *

* The difference between {@link #concatMap(Function, int)} and this operator is that this operator guarantees the {@code mapper} * function is executed on the specified scheduler. *

*
Scheduler:
*
{@code concatMap} executes the given {@code mapper} function on the provided {@link Scheduler}.
*
* * @param the type of the inner {@code ObservableSource} sources and thus the output type * @param mapper * a function that, when applied to an item emitted by the current {@code Observable}, returns an * {@code ObservableSource} * @param bufferSize * the number of elements expected from the current {@code Observable} to be buffered * @param scheduler * the scheduler where the {@code mapper} function will be executed * @return the new {@code Observable} instance * @throws NullPointerException if {@code mapper} or {@code scheduler} is {@code null} * @throws IllegalArgumentException if {@code bufferSize} is non-positive * @since 3.0.0 * @see ReactiveX operators documentation: FlatMap */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.CUSTOM) @NonNull public final Observable concatMap(@NonNull Function> mapper, int bufferSize, @NonNull Scheduler scheduler) { Objects.requireNonNull(mapper, "mapper is null"); ObjectHelper.verifyPositive(bufferSize, "bufferSize"); Objects.requireNonNull(scheduler, "scheduler is null"); return RxJavaPlugins.onAssembly(new ObservableConcatMapScheduler<>(this, mapper, bufferSize, ErrorMode.IMMEDIATE, scheduler)); } /** * Maps each of the items into an {@link ObservableSource}, subscribes to them one after the other, * one at a time and emits their values in order * while delaying any error from either this or any of the inner {@code ObservableSource}s * till all of them terminate. *

* *

* Note that there is no guarantee where the given {@code mapper} function will be executed; it could be on the subscribing thread, * on the upstream thread signaling the new item to be mapped or on the thread where the inner source terminates. To ensure * the {@code mapper} function is confined to a known thread, use the {@link #concatMapDelayError(Function, boolean, int, Scheduler)} overload. *

*
Scheduler:
*
{@code concatMapDelayError} does not operate by default on a particular {@link Scheduler}.
*
* * @param the result value type * @param mapper the function that maps the items of the current {@code Observable} into the inner {@code ObservableSource}s. * @return the new {@code Observable} instance with the concatenation behavior * @throws NullPointerException if {@code mapper} is {@code null} * @see #concatMapDelayError(Function, boolean, int, Scheduler) */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable concatMapDelayError(@NonNull Function> mapper) { return concatMapDelayError(mapper, true, bufferSize()); } /** * Maps each of the items into an {@link ObservableSource}, subscribes to them one after the other, * one at a time and emits their values in order * while delaying any error from either this or any of the inner {@code ObservableSource}s * till all of them terminate. *

* *

* Note that there is no guarantee where the given {@code mapper} function will be executed; it could be on the subscribing thread, * on the upstream thread signaling the new item to be mapped or on the thread where the inner source terminates. To ensure * the {@code mapper} function is confined to a known thread, use the {@link #concatMapDelayError(Function, boolean, int, Scheduler)} overload. *

*
Scheduler:
*
{@code concatMapDelayError} does not operate by default on a particular {@link Scheduler}.
*
* * @param the result value type * @param mapper the function that maps the items of the current {@code Observable} into the inner {@code ObservableSource}s. * @param tillTheEnd * if {@code true}, all errors from the outer and inner {@code ObservableSource} sources are delayed until the end, * if {@code false}, an error from the main source is signaled when the current {@code Observable} source terminates * @param bufferSize * the number of elements expected from the current {@code Observable} to be buffered * @return the new {@code Observable} instance with the concatenation behavior * @throws NullPointerException if {@code mapper} is {@code null} * @throws IllegalArgumentException if {@code bufferSize} is non-positive * @see #concatMapDelayError(Function, boolean, int, Scheduler) */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable concatMapDelayError(@NonNull Function> mapper, boolean tillTheEnd, int bufferSize) { Objects.requireNonNull(mapper, "mapper is null"); ObjectHelper.verifyPositive(bufferSize, "bufferSize"); if (this instanceof ScalarSupplier) { @SuppressWarnings("unchecked") T v = ((ScalarSupplier)this).get(); if (v == null) { return empty(); } return ObservableScalarXMap.scalarXMap(v, mapper); } return RxJavaPlugins.onAssembly(new ObservableConcatMap<>(this, mapper, bufferSize, tillTheEnd ? ErrorMode.END : ErrorMode.BOUNDARY)); } /** * Maps each of the items into an {@link ObservableSource}, subscribes to them one after the other, * one at a time and emits their values in order * while delaying any error from either this or any of the inner {@code ObservableSource}s * till all of them terminate. *

* *

*
Scheduler:
*
{@code concatMapDelayError} does not operate by default on a particular {@link Scheduler}.
*
* * @param the result value type * @param mapper the function that maps the items of the current {@code Observable} into the inner {@code ObservableSource}s. * @param tillTheEnd * if {@code true}, all errors from the outer and inner {@code ObservableSource} sources are delayed until the end, * if {@code false}, an error from the main source is signaled when the current {@code Observable} source terminates * @param bufferSize * the number of elements expected from the current {@code Observable} to be buffered * @param scheduler * the scheduler where the {@code mapper} function will be executed * @return the new {@code Observable} instance with the concatenation behavior * @throws NullPointerException if {@code mapper} or {@code scheduler} is {@code null} * @throws IllegalArgumentException if {@code bufferSize} is non-positive * @see #concatMapDelayError(Function, boolean, int) * @since 3.0.0 */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.CUSTOM) @NonNull public final Observable concatMapDelayError(@NonNull Function> mapper, boolean tillTheEnd, int bufferSize, @NonNull Scheduler scheduler) { Objects.requireNonNull(mapper, "mapper is null"); ObjectHelper.verifyPositive(bufferSize, "bufferSize"); Objects.requireNonNull(scheduler, "scheduler is null"); return RxJavaPlugins.onAssembly(new ObservableConcatMapScheduler<>(this, mapper, bufferSize, tillTheEnd ? ErrorMode.END : ErrorMode.BOUNDARY, scheduler)); } /** * Maps a sequence of values into {@link ObservableSource}s and concatenates these {@code ObservableSource}s eagerly into a single * {@code Observable} sequence. *

* Eager concatenation means that once a subscriber subscribes, this operator subscribes to all of the * current {@code Observable}s. The operator buffers the values emitted by these {@code ObservableSource}s and then drains them in * order, each one after the previous one completes. *

* *

*
Scheduler:
*
This method does not operate by default on a particular {@link Scheduler}.
*
* @param the value type * @param mapper the function that maps a sequence of values into a sequence of {@code ObservableSource}s that will be * eagerly concatenated * @return the new {@code Observable} instance with the specified concatenation behavior * @throws NullPointerException if {@code mapper} is {@code null} * @since 2.0 */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable concatMapEager(@NonNull Function> mapper) { return concatMapEager(mapper, Integer.MAX_VALUE, bufferSize()); } /** * Maps a sequence of values into {@link ObservableSource}s and concatenates these {@code ObservableSource}s eagerly into a single * {@code Observable} sequence. *

* Eager concatenation means that once a subscriber subscribes, this operator subscribes to all of the * current {@code Observable}s. The operator buffers the values emitted by these {@code ObservableSource}s and then drains them in * order, each one after the previous one completes. *

* *

*
Scheduler:
*
This method does not operate by default on a particular {@link Scheduler}.
*
* @param the value type * @param mapper the function that maps a sequence of values into a sequence of {@code ObservableSource}s that will be * eagerly concatenated * @param maxConcurrency the maximum number of concurrent subscribed {@code ObservableSource}s * @param bufferSize hints about the number of expected items from each inner {@code ObservableSource}, must be positive * @return the new {@code Observable} instance with the specified concatenation behavior * @throws NullPointerException if {@code mapper} is {@code null} * @throws IllegalArgumentException if {@code maxConcurrency} or {@code bufferSize} is non-positive * @since 2.0 */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable concatMapEager(@NonNull Function> mapper, int maxConcurrency, int bufferSize) { Objects.requireNonNull(mapper, "mapper is null"); ObjectHelper.verifyPositive(maxConcurrency, "maxConcurrency"); ObjectHelper.verifyPositive(bufferSize, "bufferSize"); return RxJavaPlugins.onAssembly(new ObservableConcatMapEager<>(this, mapper, ErrorMode.IMMEDIATE, maxConcurrency, bufferSize)); } /** * Maps a sequence of values into {@link ObservableSource}s and concatenates these {@code ObservableSource}s eagerly into a single * {@code Observable} sequence. *

* Eager concatenation means that once a subscriber subscribes, this operator subscribes to all of the * current {@code Observable}s. The operator buffers the values emitted by these {@code ObservableSource}s and then drains them in * order, each one after the previous one completes. *

* *

*
Scheduler:
*
This method does not operate by default on a particular {@link Scheduler}.
*
* @param the value type * @param mapper the function that maps a sequence of values into a sequence of {@code ObservableSource}s that will be * eagerly concatenated * @param tillTheEnd * if {@code true}, all errors from the outer and inner {@code ObservableSource} sources are delayed until the end, * if {@code false}, an error from the main source is signaled when the current {@code Observable} source terminates * @return the new {@code Observable} instance with the specified concatenation behavior * @throws NullPointerException if {@code mapper} is {@code null} * @since 2.0 */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable concatMapEagerDelayError(@NonNull Function> mapper, boolean tillTheEnd) { return concatMapEagerDelayError(mapper, tillTheEnd, Integer.MAX_VALUE, bufferSize()); } /** * Maps a sequence of values into {@link ObservableSource}s and concatenates these {@code ObservableSource}s eagerly into a single * {@code Observable} sequence. *

* Eager concatenation means that once a subscriber subscribes, this operator subscribes to all of the * current {@code Observable}s. The operator buffers the values emitted by these {@code ObservableSource}s and then drains them in * order, each one after the previous one completes. *

* *

*
Scheduler:
*
This method does not operate by default on a particular {@link Scheduler}.
*
* @param the value type * @param mapper the function that maps a sequence of values into a sequence of {@code ObservableSource}s that will be * eagerly concatenated * @param tillTheEnd * if {@code true}, exceptions from the current {@code Observable} and all the inner {@code ObservableSource}s are delayed until * all of them terminate, if {@code false}, exception from the current {@code Observable} is delayed until the * currently running {@code ObservableSource} terminates * @param maxConcurrency the maximum number of concurrent subscribed {@code ObservableSource}s * @param bufferSize * the number of elements expected from the current {@code Observable} and each inner {@code ObservableSource} to be buffered * @return the new {@code Observable} instance with the specified concatenation behavior * @throws NullPointerException if {@code mapper} is {@code null} * @throws IllegalArgumentException if {@code maxConcurrency} or {@code bufferSize} is non-positive * @since 2.0 */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable concatMapEagerDelayError(@NonNull Function> mapper, boolean tillTheEnd, int maxConcurrency, int bufferSize) { Objects.requireNonNull(mapper, "mapper is null"); ObjectHelper.verifyPositive(maxConcurrency, "maxConcurrency"); ObjectHelper.verifyPositive(bufferSize, "bufferSize"); return RxJavaPlugins.onAssembly(new ObservableConcatMapEager<>(this, mapper, tillTheEnd ? ErrorMode.END : ErrorMode.BOUNDARY, maxConcurrency, bufferSize)); } /** * Maps each element of the current {@code Observable} into {@link CompletableSource}s, subscribes to them one at a time in * order and waits until the upstream and all {@code CompletableSource}s complete. *

* *

*
Scheduler:
*
{@code concatMapCompletable} does not operate by default on a particular {@link Scheduler}.
*
*

History: 2.1.6 - experimental * @param mapper * a function that, when applied to an item emitted by the current {@code Observable}, returns a {@code CompletableSource} * @return the new {@link Completable} instance * @throws NullPointerException if {@code mapper} is {@code null} * @since 2.2 */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Completable concatMapCompletable(@NonNull Function mapper) { return concatMapCompletable(mapper, 2); } /** * Maps each element of the current {@code Observable} into {@link CompletableSource}s, subscribes to them one at a time in * order and waits until the upstream and all {@code CompletableSource}s complete. *

* *

*
Scheduler:
*
{@code concatMapCompletable} does not operate by default on a particular {@link Scheduler}.
*
*

History: 2.1.6 - experimental * @param mapper * a function that, when applied to an item emitted by the current {@code Observable}, returns a {@code CompletableSource} * * @param capacityHint * the number of upstream items expected to be buffered until the current {@code CompletableSource}, mapped from * the current item, completes. * @return the new {@link Completable} instance * @throws NullPointerException if {@code mapper} is {@code null} * @throws IllegalArgumentException if {@code capacityHint} is non-positive * @since 2.2 */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Completable concatMapCompletable(@NonNull Function mapper, int capacityHint) { Objects.requireNonNull(mapper, "mapper is null"); ObjectHelper.verifyPositive(capacityHint, "capacityHint"); return RxJavaPlugins.onAssembly(new ObservableConcatMapCompletable<>(this, mapper, ErrorMode.IMMEDIATE, capacityHint)); } /** * Maps the upstream items into {@link CompletableSource}s and subscribes to them one after the * other terminates, delaying all errors till both the current {@code Observable} and all * inner {@code CompletableSource}s terminate. *

* *

*
Scheduler:
*
{@code concatMapCompletableDelayError} does not operate by default on a particular {@link Scheduler}.
*
*

History: 2.1.11 - experimental * @param mapper the function called with the upstream item and should return * a {@code CompletableSource} to become the next source to * be subscribed to * @return the new {@link Completable} instance * @throws NullPointerException if {@code mapper} is {@code null} * @see #concatMapCompletable(Function, int) * @since 2.2 */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Completable concatMapCompletableDelayError(@NonNull Function mapper) { return concatMapCompletableDelayError(mapper, true, 2); } /** * Maps the upstream items into {@link CompletableSource}s and subscribes to them one after the * other terminates, optionally delaying all errors till both the current {@code Observable} and all * inner {@code CompletableSource}s terminate. *

* *

*
Scheduler:
*
{@code concatMapCompletableDelayError} does not operate by default on a particular {@link Scheduler}.
*
*

History: 2.1.11 - experimental * @param mapper the function called with the upstream item and should return * a {@code CompletableSource} to become the next source to * be subscribed to * @param tillTheEnd If {@code true}, errors from the current {@code Observable} or any of the * inner {@code CompletableSource}s are delayed until all * of them terminate. If {@code false}, an error from the current * {@code Observable} is delayed until the current inner * {@code CompletableSource} terminates and only then is * it emitted to the downstream. * @return the new {@link Completable} instance * @throws NullPointerException if {@code mapper} is {@code null} * @see #concatMapCompletable(Function) * @since 2.2 */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Completable concatMapCompletableDelayError(@NonNull Function mapper, boolean tillTheEnd) { return concatMapCompletableDelayError(mapper, tillTheEnd, 2); } /** * Maps the upstream items into {@link CompletableSource}s and subscribes to them one after the * other terminates, optionally delaying all errors till both the current {@code Observable} and all * inner {@code CompletableSource}s terminate. *

* *

*
Scheduler:
*
{@code concatMapCompletableDelayError} does not operate by default on a particular {@link Scheduler}.
*
*

History: 2.1.11 - experimental * @param mapper the function called with the upstream item and should return * a {@code CompletableSource} to become the next source to * be subscribed to * @param tillTheEnd If {@code true}, errors from the current {@code Observable} or any of the * inner {@code CompletableSource}s are delayed until all * of them terminate. If {@code false}, an error from the current * {@code Observable} is delayed until the current inner * {@code CompletableSource} terminates and only then is * it emitted to the downstream. * @param bufferSize The number of upstream items expected to be buffered so that fresh items are * ready to be mapped when a previous {@code CompletableSource} terminates. * @return the new {@link Completable} instance * @throws NullPointerException if {@code mapper} is {@code null} * @throws IllegalArgumentException if {@code bufferSize} is non-positive * @see #concatMapCompletable(Function, int) * @since 2.2 */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Completable concatMapCompletableDelayError(@NonNull Function mapper, boolean tillTheEnd, int bufferSize) { Objects.requireNonNull(mapper, "mapper is null"); ObjectHelper.verifyPositive(bufferSize, "bufferSize"); return RxJavaPlugins.onAssembly(new ObservableConcatMapCompletable<>(this, mapper, tillTheEnd ? ErrorMode.END : ErrorMode.BOUNDARY, bufferSize)); } /** * Returns an {@code Observable} that concatenate each item emitted by the current {@code Observable} with the values in an * {@link Iterable} corresponding to that item that is generated by a selector. *

* * *

*
Scheduler:
*
{@code concatMapIterable} does not operate by default on a particular {@link Scheduler}.
*
* * @param * the type of item emitted by the resulting {@code Observable} * @param mapper * a function that returns an {@code Iterable} sequence of values for when given an item emitted by the * current {@code Observable} * @return the new {@code Observable} instance * @throws NullPointerException if {@code mapper} is {@code null} * @see ReactiveX operators documentation: FlatMap */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable concatMapIterable(@NonNull Function> mapper) { Objects.requireNonNull(mapper, "mapper is null"); return RxJavaPlugins.onAssembly(new ObservableFlattenIterable<>(this, mapper)); } /** * Maps the upstream items into {@link MaybeSource}s and subscribes to them one after the * other succeeds or completes, emits their success value if available or terminates immediately if * either the current {@code Observable} or the current inner {@code MaybeSource} fail. *

* *

*
Scheduler:
*
{@code concatMapMaybe} does not operate by default on a particular {@link Scheduler}.
*
*

History: 2.1.11 - experimental * @param the result type of the inner {@code MaybeSource}s * @param mapper the function called with the upstream item and should return * a {@code MaybeSource} to become the next source to * be subscribed to * @return the new {@code Observable} instance * @throws NullPointerException if {@code mapper} is {@code null} * @see #concatMapMaybeDelayError(Function) * @see #concatMapMaybe(Function, int) * @since 2.2 */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable concatMapMaybe(@NonNull Function> mapper) { return concatMapMaybe(mapper, 2); } /** * Maps the upstream items into {@link MaybeSource}s and subscribes to them one after the * other succeeds or completes, emits their success value if available or terminates immediately if * either the current {@code Observable} or the current inner {@code MaybeSource} fail. *

* *

*
Scheduler:
*
{@code concatMapMaybe} does not operate by default on a particular {@link Scheduler}.
*
*

History: 2.1.11 - experimental * @param the result type of the inner {@code MaybeSource}s * @param mapper the function called with the upstream item and should return * a {@code MaybeSource} to become the next source to * be subscribed to * @param bufferSize The number of upstream items expected to be buffered so that fresh items are * ready to be mapped when a previous {@code MaybeSource} terminates. * @return the new {@code Observable} instance * @throws NullPointerException if {@code mapper} is {@code null} * @throws IllegalArgumentException if {@code bufferSize} is non-positive * @see #concatMapMaybe(Function) * @see #concatMapMaybeDelayError(Function, boolean, int) * @since 2.2 */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable concatMapMaybe(@NonNull Function> mapper, int bufferSize) { Objects.requireNonNull(mapper, "mapper is null"); ObjectHelper.verifyPositive(bufferSize, "bufferSize"); return RxJavaPlugins.onAssembly(new ObservableConcatMapMaybe<>(this, mapper, ErrorMode.IMMEDIATE, bufferSize)); } /** * Maps the upstream items into {@link MaybeSource}s and subscribes to them one after the * other terminates, emits their success value if available and delaying all errors * till both the current {@code Observable} and all inner {@code MaybeSource}s terminate. *

* *

*
Scheduler:
*
{@code concatMapMaybeDelayError} does not operate by default on a particular {@link Scheduler}.
*
*

History: 2.1.11 - experimental * @param the result type of the inner {@code MaybeSource}s * @param mapper the function called with the upstream item and should return * a {@code MaybeSource} to become the next source to * be subscribed to * @return the new {@code Observable} instance * @throws NullPointerException if {@code mapper} is {@code null} * @see #concatMapMaybe(Function) * @see #concatMapMaybeDelayError(Function, boolean) * @since 2.2 */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable concatMapMaybeDelayError(@NonNull Function> mapper) { return concatMapMaybeDelayError(mapper, true, 2); } /** * Maps the upstream items into {@link MaybeSource}s and subscribes to them one after the * other terminates, emits their success value if available and optionally delaying all errors * till both the current {@code Observable} and all inner {@code MaybeSource}s terminate. *

* *

*
Scheduler:
*
{@code concatMapMaybeDelayError} does not operate by default on a particular {@link Scheduler}.
*
*

History: 2.1.11 - experimental * @param the result type of the inner {@code MaybeSource}s * @param mapper the function called with the upstream item and should return * a {@code MaybeSource} to become the next source to * be subscribed to * @param tillTheEnd If {@code true}, errors from the current {@code Observable} or any of the * inner {@code MaybeSource}s are delayed until all * of them terminate. If {@code false}, an error from the current * {@code Observable} is delayed until the current inner * {@code MaybeSource} terminates and only then is * it emitted to the downstream. * @return the new {@code Observable} instance * @throws NullPointerException if {@code mapper} is {@code null} * @see #concatMapMaybe(Function, int) * @see #concatMapMaybeDelayError(Function, boolean, int) * @since 2.2 */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable concatMapMaybeDelayError(@NonNull Function> mapper, boolean tillTheEnd) { return concatMapMaybeDelayError(mapper, tillTheEnd, 2); } /** * Maps the upstream items into {@link MaybeSource}s and subscribes to them one after the * other terminates, emits their success value if available and optionally delaying all errors * till both the current {@code Observable} and all inner {@code MaybeSource}s terminate. *

* *

*
Scheduler:
*
{@code concatMapMaybeDelayError} does not operate by default on a particular {@link Scheduler}.
*
*

History: 2.1.11 - experimental * @param the result type of the inner {@code MaybeSource}s * @param mapper the function called with the upstream item and should return * a {@code MaybeSource} to become the next source to * be subscribed to * @param tillTheEnd If {@code true}, errors from the current {@code Observable} or any of the * inner {@code MaybeSource}s are delayed until all * of them terminate. If {@code false}, an error from the current * {@code Observable} is delayed until the current inner * {@code MaybeSource} terminates and only then is * it emitted to the downstream. * @param bufferSize The number of upstream items expected to be buffered so that fresh items are * ready to be mapped when a previous {@code MaybeSource} terminates. * @return the new {@code Observable} instance * @throws NullPointerException if {@code mapper} is {@code null} * @throws IllegalArgumentException if {@code bufferSize} is non-positive * @see #concatMapMaybe(Function, int) * @since 2.2 */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable concatMapMaybeDelayError(@NonNull Function> mapper, boolean tillTheEnd, int bufferSize) { Objects.requireNonNull(mapper, "mapper is null"); ObjectHelper.verifyPositive(bufferSize, "bufferSize"); return RxJavaPlugins.onAssembly(new ObservableConcatMapMaybe<>(this, mapper, tillTheEnd ? ErrorMode.END : ErrorMode.BOUNDARY, bufferSize)); } /** * Maps the upstream items into {@link SingleSource}s and subscribes to them one after the * other succeeds, emits their success values or terminates immediately if * either the current {@code Observable} or the current inner {@code SingleSource} fail. *

* *

*
Scheduler:
*
{@code concatMapSingle} does not operate by default on a particular {@link Scheduler}.
*
*

History: 2.1.11 - experimental * @param the result type of the inner {@code SingleSource}s * @param mapper the function called with the upstream item and should return * a {@code SingleSource} to become the next source to * be subscribed to * @return the new {@code Observable} instance * @throws NullPointerException if {@code mapper} is {@code null} * @see #concatMapSingleDelayError(Function) * @see #concatMapSingle(Function, int) * @since 2.2 */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable concatMapSingle(@NonNull Function> mapper) { return concatMapSingle(mapper, 2); } /** * Maps the upstream items into {@link SingleSource}s and subscribes to them one after the * other succeeds, emits their success values or terminates immediately if * either the current {@code Observable} or the current inner {@code SingleSource} fail. *

* *

*
Scheduler:
*
{@code concatMapSingle} does not operate by default on a particular {@link Scheduler}.
*
*

History: 2.1.11 - experimental * @param the result type of the inner {@code SingleSource}s * @param mapper the function called with the upstream item and should return * a {@code SingleSource} to become the next source to * be subscribed to * @param bufferSize The number of upstream items expected to be buffered so that fresh items are * ready to be mapped when a previous {@code SingleSource} terminates. * @return the new {@code Observable} instance * @throws NullPointerException if {@code mapper} is {@code null} * @throws IllegalArgumentException if {@code bufferSize} is non-positive * @see #concatMapSingle(Function) * @see #concatMapSingleDelayError(Function, boolean, int) * @since 2.2 */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable concatMapSingle(@NonNull Function> mapper, int bufferSize) { Objects.requireNonNull(mapper, "mapper is null"); ObjectHelper.verifyPositive(bufferSize, "bufferSize"); return RxJavaPlugins.onAssembly(new ObservableConcatMapSingle<>(this, mapper, ErrorMode.IMMEDIATE, bufferSize)); } /** * Maps the upstream items into {@link SingleSource}s and subscribes to them one after the * other succeeds or fails, emits their success values and delays all errors * till both the current {@code Observable} and all inner {@code SingleSource}s terminate. *

* *

*
Scheduler:
*
{@code concatMapSingleDelayError} does not operate by default on a particular {@link Scheduler}.
*
*

History: 2.1.11 - experimental * @param the result type of the inner {@code SingleSource}s * @param mapper the function called with the upstream item and should return * a {@code SingleSource} to become the next source to * be subscribed to * @return the new {@code Observable} instance * @throws NullPointerException if {@code mapper} is {@code null} * @see #concatMapSingle(Function) * @see #concatMapSingleDelayError(Function, boolean) * @since 2.2 */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable concatMapSingleDelayError(@NonNull Function> mapper) { return concatMapSingleDelayError(mapper, true, 2); } /** * Maps the upstream items into {@link SingleSource}s and subscribes to them one after the * other succeeds or fails, emits their success values and optionally delays all errors * till both the current {@code Observable} and all inner {@code SingleSource}s terminate. *

* *

*
Scheduler:
*
{@code concatMapSingleDelayError} does not operate by default on a particular {@link Scheduler}.
*
*

History: 2.1.11 - experimental * @param the result type of the inner {@code SingleSource}s * @param mapper the function called with the upstream item and should return * a {@code SingleSource} to become the next source to * be subscribed to * @param tillTheEnd If {@code true}, errors from the current {@code Observable} or any of the * inner {@code SingleSource}s are delayed until all * of them terminate. If {@code false}, an error from the current * {@code Observable} is delayed until the current inner * {@code SingleSource} terminates and only then is * it emitted to the downstream. * @return the new {@code Observable} instance * @throws NullPointerException if {@code mapper} is {@code null} * @see #concatMapSingle(Function, int) * @see #concatMapSingleDelayError(Function, boolean, int) * @since 2.2 */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable concatMapSingleDelayError(@NonNull Function> mapper, boolean tillTheEnd) { return concatMapSingleDelayError(mapper, tillTheEnd, 2); } /** * Maps the upstream items into {@link SingleSource}s and subscribes to them one after the * other succeeds or fails, emits their success values and optionally delays errors * till both the current {@code Observable} and all inner {@code SingleSource}s terminate. *

* *

*
Scheduler:
*
{@code concatMapSingleDelayError} does not operate by default on a particular {@link Scheduler}.
*
*

History: 2.1.11 - experimental * @param the result type of the inner {@code SingleSource}s * @param mapper the function called with the upstream item and should return * a {@code SingleSource} to become the next source to * be subscribed to * @param tillTheEnd If {@code true}, errors from the current {@code Observable} or any of the * inner {@code SingleSource}s are delayed until all * of them terminate. If {@code false}, an error from the current * {@code Observable} is delayed until the current inner * {@code SingleSource} terminates and only then is * it emitted to the downstream. * @param bufferSize The number of upstream items expected to be buffered so that fresh items are * ready to be mapped when a previous {@code SingleSource} terminates. * @return the new {@code Observable} instance * @throws NullPointerException if {@code mapper} is {@code null} * @throws IllegalArgumentException if {@code bufferSize} is non-positive * @see #concatMapSingle(Function, int) * @since 2.2 */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable concatMapSingleDelayError(@NonNull Function> mapper, boolean tillTheEnd, int bufferSize) { Objects.requireNonNull(mapper, "mapper is null"); ObjectHelper.verifyPositive(bufferSize, "bufferSize"); return RxJavaPlugins.onAssembly(new ObservableConcatMapSingle<>(this, mapper, tillTheEnd ? ErrorMode.END : ErrorMode.BOUNDARY, bufferSize)); } /** * Returns an {@code Observable} that first emits the items emitted from the current {@code Observable}, then items * from the {@code other} {@link ObservableSource} without interleaving them. *

* *

*
Scheduler:
*
{@code concatWith} does not operate by default on a particular {@link Scheduler}.
*
* * @param other * an {@code ObservableSource} to be concatenated after the current * @return the new {@code Observable} instance * @throws NullPointerException if {@code other} is {@code null} * @see ReactiveX operators documentation: Concat */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable concatWith(@NonNull ObservableSource other) { Objects.requireNonNull(other, "other is null"); return concat(this, other); } /** * Returns an {@code Observable} that emits the items from the current {@code Observable} followed by the success item or error event * of the {@code other} {@link SingleSource}. *

* *

*
Scheduler:
*
{@code concatWith} does not operate by default on a particular {@link Scheduler}.
*
*

History: 2.1.10 - experimental * @param other the {@code SingleSource} whose signal should be emitted after the current {@code Observable} completes normally. * @return the new {@code Observable} instance * @throws NullPointerException if {@code other} is {@code null} * @since 2.2 */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable concatWith(@NonNull SingleSource other) { Objects.requireNonNull(other, "other is null"); return RxJavaPlugins.onAssembly(new ObservableConcatWithSingle<>(this, other)); } /** * Returns an {@code Observable} that emits the items from the current {@code Observable} followed by the success item or terminal events * of the other {@link MaybeSource}. *

* *

*
Scheduler:
*
{@code concatWith} does not operate by default on a particular {@link Scheduler}.
*
*

History: 2.1.10 - experimental * @param other the {@code MaybeSource} whose signal should be emitted after the current {@code Observable} completes normally. * @return the new {@code Observable} instance * @throws NullPointerException if {@code other} is {@code null} * @since 2.2 */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable concatWith(@NonNull MaybeSource other) { Objects.requireNonNull(other, "other is null"); return RxJavaPlugins.onAssembly(new ObservableConcatWithMaybe<>(this, other)); } /** * Returns an {@code Observable} that emits items from the current {@code Observable} and when it completes normally, the * other {@link CompletableSource} is subscribed to and the returned {@code Observable} emits its terminal events. *

* *

*
Scheduler:
*
{@code concatWith} does not operate by default on a particular {@link Scheduler}.
*
*

History: 2.1.10 - experimental * @param other the {@code CompletableSource} to subscribe to once the current {@code Observable} completes normally * @return the new {@code Observable} instance * @throws NullPointerException if {@code other} is {@code null} * @since 2.2 */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable concatWith(@NonNull CompletableSource other) { Objects.requireNonNull(other, "other is null"); return RxJavaPlugins.onAssembly(new ObservableConcatWithCompletable<>(this, other)); } /** * Returns a {@link Single} that emits a {@link Boolean} that indicates whether the current {@code Observable} emitted a * specified item. *

* *

*
Scheduler:
*
{@code contains} does not operate by default on a particular {@link Scheduler}.
*
* * @param item * the item to search for in the emissions from the current {@code Observable} * @return the new {@code Single} instance * @throws NullPointerException if {@code item} is {@code null} * @see ReactiveX operators documentation: Contains */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Single contains(@NonNull Object item) { Objects.requireNonNull(item, "item is null"); return any(Functions.equalsWith(item)); } /** * Returns a {@link Single} that counts the total number of items emitted by the current {@code Observable} and emits * this count as a 64-bit {@link Long}. *

* *

*
Scheduler:
*
{@code count} does not operate by default on a particular {@link Scheduler}.
*
* * @return the new {@code Single} instance * @see ReactiveX operators documentation: Count */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Single count() { return RxJavaPlugins.onAssembly(new ObservableCountSingle<>(this)); } /** * Returns an {@code Observable} that mirrors the current {@code Observable}, except that it drops items emitted by the * current {@code Observable} that are followed by another item within a computed debounce duration * denoted by an item emission or completion from a generated inner {@link ObservableSource} for that original item. *

* *

* The delivery of the item happens on the thread of the first {@code onNext} or {@code onComplete} * signal of the generated {@code ObservableSource} sequence, * which if takes too long, a newer item may arrive from the upstream, causing the * generated sequence to get disposed, which may also interrupt any downstream blocking operation * (yielding an {@code InterruptedException}). It is recommended processing items * that may take long time to be moved to another thread via {@link #observeOn} applied after * {@code debounce} itself. *

*
Scheduler:
*
This version of {@code debounce} does not operate by default on a particular {@link Scheduler}.
*
* * @param * the debounce value type (ignored) * @param debounceIndicator * function to return a sequence that indicates the throttle duration for each item via its own emission or completion * @return the new {@code Observable} instance * @throws NullPointerException if {@code debounceIndicator} is {@code null} * @see ReactiveX operators documentation: Debounce */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable debounce(@NonNull Function> debounceIndicator) { Objects.requireNonNull(debounceIndicator, "debounceIndicator is null"); return RxJavaPlugins.onAssembly(new ObservableDebounce<>(this, debounceIndicator)); } /** * Returns an {@code Observable} that mirrors the current {@code Observable}, except that it drops items emitted by the * current {@code Observable} that are followed by newer items before a timeout value expires. The timer resets on * each emission. *

* Note: If items keep being emitted by the current {@code Observable} faster than the timeout then no items * will be emitted by the resulting {@code Observable}. *

* *

* Delivery of the item after the grace period happens on the {@code computation} {@link Scheduler}'s * {@code Worker} which if takes too long, a newer item may arrive from the upstream, causing the * {@code Worker}'s task to get disposed, which may also interrupt any downstream blocking operation * (yielding an {@code InterruptedException}). It is recommended processing items * that may take long time to be moved to another thread via {@link #observeOn} applied after * {@code debounce} itself. *

*
Scheduler:
*
{@code debounce} operates by default on the {@code computation} {@code Scheduler}.
*
* * @param timeout * the length of the window of time that must pass after the emission of an item from the current * {@code Observable} in which the {@code Observable} emits no items in order for the item to be emitted by the * resulting {@code Observable} * @param unit * the unit of time for the specified {@code timeout} * @return the new {@code Observable} instance * @throws NullPointerException if {@code unit} is {@code null} * @see ReactiveX operators documentation: Debounce * @see #throttleWithTimeout(long, TimeUnit) */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.COMPUTATION) @NonNull public final Observable debounce(long timeout, @NonNull TimeUnit unit) { return debounce(timeout, unit, Schedulers.computation()); } /** * Returns an {@code Observable} that mirrors the current {@code Observable}, except that it drops items emitted by the * current {@code Observable} that are followed by newer items before a timeout value expires on a specified * {@link Scheduler}. The timer resets on each emission. *

* Note: If items keep being emitted by the current {@code Observable} faster than the timeout then no items * will be emitted by the resulting {@code Observable}. *

* *

* Delivery of the item after the grace period happens on the given {@code Scheduler}'s * {@code Worker} which if takes too long, a newer item may arrive from the upstream, causing the * {@code Worker}'s task to get disposed, which may also interrupt any downstream blocking operation * (yielding an {@code InterruptedException}). It is recommended processing items * that may take long time to be moved to another thread via {@link #observeOn} applied after * {@code debounce} itself. *

*
Scheduler:
*
You specify which {@code Scheduler} this operator will use.
*
* * @param timeout * the time each item has to be "the most recent" of those emitted by the current {@code Observable} to * ensure that it's not dropped * @param unit * the unit of time for the specified {@code timeout} * @param scheduler * the {@code Scheduler} to use internally to manage the timers that handle the timeout for each * item * @return the new {@code Observable} instance * @throws NullPointerException if {@code unit} or {@code scheduler} is {@code null} * @see ReactiveX operators documentation: Debounce * @see #throttleWithTimeout(long, TimeUnit, Scheduler) */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.CUSTOM) @NonNull public final Observable debounce(long timeout, @NonNull TimeUnit unit, @NonNull Scheduler scheduler) { Objects.requireNonNull(unit, "unit is null"); Objects.requireNonNull(scheduler, "scheduler is null"); return RxJavaPlugins.onAssembly(new ObservableDebounceTimed<>(this, timeout, unit, scheduler)); } /** * Returns an {@code Observable} that emits the items emitted by the current {@code Observable} or a specified default item * if the current {@code Observable} is empty. *

* *

*
Scheduler:
*
{@code defaultIfEmpty} does not operate by default on a particular {@link Scheduler}.
*
* * @param defaultItem * the item to emit if the current {@code Observable} emits no items * @return the new {@code Observable} instance * @throws NullPointerException if {@code defaultItem} is {@code null} * @see ReactiveX operators documentation: DefaultIfEmpty */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable defaultIfEmpty(@NonNull T defaultItem) { Objects.requireNonNull(defaultItem, "defaultItem is null"); return switchIfEmpty(just(defaultItem)); } /** * Returns an {@code Observable} that delays the emissions of the current {@code Observable} via * a per-item derived {@link ObservableSource}'s item emission or termination, on a per source item basis. *

* *

* Note: the resulting {@code Observable} will immediately propagate any {@code onError} notification * from the current {@code Observable}. *

*
Scheduler:
*
This version of {@code delay} does not operate by default on a particular {@link Scheduler}.
*
* * @param * the item delay value type (ignored) * @param itemDelayIndicator * a function that returns an {@code ObservableSource} for each item emitted by the current {@code Observable}, which is * then used to delay the emission of that item by the resulting {@code Observable} until the {@code ObservableSource} * returned from {@code itemDelay} emits an item * @return the new {@code Observable} instance * @throws NullPointerException if {@code itemDelayIndicator} is {@code null} * @see ReactiveX operators documentation: Delay */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable delay(@NonNull Function> itemDelayIndicator) { Objects.requireNonNull(itemDelayIndicator, "itemDelayIndicator is null"); return flatMap(ObservableInternalHelper.itemDelay(itemDelayIndicator)); } /** * Returns an {@code Observable} that emits the items emitted by the current {@code Observable} shifted forward in time by a * specified delay. An error notification from the current {@code Observable} is not delayed. *

* *

*
Scheduler:
*
This version of {@code delay} operates by default on the {@code computation} {@link Scheduler}.
*
* * @param time * the delay to shift the source by * @param unit * the {@link TimeUnit} in which {@code period} is defined * @return the new {@code Observable} instance * @throws NullPointerException if {@code unit} is {@code null} * @see ReactiveX operators documentation: Delay * @see #delay(long, TimeUnit, boolean) * @see #delay(long, TimeUnit, Scheduler) */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.COMPUTATION) @NonNull public final Observable delay(long time, @NonNull TimeUnit unit) { return delay(time, unit, Schedulers.computation(), false); } /** * Returns an {@code Observable} that emits the items emitted by the current {@code Observable} shifted forward in time by a * specified delay. If {@code delayError} is {@code true}, error notifications will also be delayed. *

* *

*
Scheduler:
*
This version of {@code delay} operates by default on the {@code computation} {@link Scheduler}.
*
* * @param time * the delay to shift the source by * @param unit * the {@link TimeUnit} in which {@code period} is defined * @param delayError * if {@code true}, the upstream exception is signaled with the given delay, after all preceding normal elements, * if {@code false}, the upstream exception is signaled immediately * @return the new {@code Observable} instance * @throws NullPointerException if {@code unit} is {@code null} * @see ReactiveX operators documentation: Delay * @see #delay(long, TimeUnit, Scheduler, boolean) */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.COMPUTATION) @NonNull public final Observable delay(long time, @NonNull TimeUnit unit, boolean delayError) { return delay(time, unit, Schedulers.computation(), delayError); } /** * Returns an {@code Observable} that emits the items emitted by the current {@code Observable} shifted forward in time by a * specified delay. An error notification from the current {@code Observable} is not delayed. *

* *

*
Scheduler:
*
You specify which {@link Scheduler} this operator will use.
*
* * @param time * the delay to shift the source by * @param unit * the time unit of {@code delay} * @param scheduler * the {@code Scheduler} to use for delaying * @return the new {@code Observable} instance * @throws NullPointerException if {@code unit} or {@code scheduler} is {@code null} * @see ReactiveX operators documentation: Delay */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.CUSTOM) @NonNull public final Observable delay(long time, @NonNull TimeUnit unit, @NonNull Scheduler scheduler) { return delay(time, unit, scheduler, false); } /** * Returns an {@code Observable} that emits the items emitted by the current {@code Observable} shifted forward in time by a * specified delay. If {@code delayError} is {@code true}, error notifications will also be delayed. *

* *

*
Scheduler:
*
You specify which {@link Scheduler} this operator will use.
*
* * @param time * the delay to shift the source by * @param unit * the time unit of {@code delay} * @param scheduler * the {@code Scheduler} to use for delaying * @param delayError * if {@code true}, the upstream exception is signaled with the given delay, after all preceding normal elements, * if {@code false}, the upstream exception is signaled immediately * @return the new {@code Observable} instance * @throws NullPointerException if {@code unit} or {@code scheduler} is {@code null} * @see ReactiveX operators documentation: Delay */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.CUSTOM) @NonNull public final Observable delay(long time, @NonNull TimeUnit unit, @NonNull Scheduler scheduler, boolean delayError) { Objects.requireNonNull(unit, "unit is null"); Objects.requireNonNull(scheduler, "scheduler is null"); return RxJavaPlugins.onAssembly(new ObservableDelay<>(this, time, unit, scheduler, delayError)); } /** * Returns an {@code Observable} that delays the subscription to and emissions from the current {@code Observable} via * {@link ObservableSource}s for the subscription itself and on a per-item basis. *

* *

* Note: the resulting {@code Observable} will immediately propagate any {@code onError} notification * from the current {@code Observable}. *

*
Scheduler:
*
This version of {@code delay} does not operate by default on a particular {@link Scheduler}.
*
* * @param * the subscription delay value type (ignored) * @param * the item delay value type (ignored) * @param subscriptionIndicator * a function that returns an {@code ObservableSource} that triggers the subscription to the current {@code Observable} * once it emits any item * @param itemDelayIndicator * a function that returns an {@code ObservableSource} for each item emitted by the current {@code Observable}, which is * then used to delay the emission of that item by the resulting {@code Observable} until the {@code ObservableSource} * returned from {@code itemDelay} emits an item * @return the new {@code Observable} instance * @throws NullPointerException if {@code subscriptionIndicator} or {@code itemDelayIndicator} is {@code null} * @see ReactiveX operators documentation: Delay */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable delay(@NonNull ObservableSource subscriptionIndicator, @NonNull Function> itemDelayIndicator) { return delaySubscription(subscriptionIndicator).delay(itemDelayIndicator); } /** * Returns an {@code Observable} that delays the subscription to the current {@code Observable} * until the other {@link ObservableSource} emits an element or completes normally. *

* *

*
Scheduler:
*
This method does not operate by default on a particular {@link Scheduler}.
*
* * @param the value type of the other {@code Observable}, irrelevant * @param subscriptionIndicator the other {@code ObservableSource} that should trigger the subscription * to the current {@code Observable}. * @return the new {@code Observable} instance * @throws NullPointerException if {@code subscriptionIndicator} is {@code null} * @since 2.0 */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable delaySubscription(@NonNull ObservableSource subscriptionIndicator) { Objects.requireNonNull(subscriptionIndicator, "subscriptionIndicator is null"); return RxJavaPlugins.onAssembly(new ObservableDelaySubscriptionOther<>(this, subscriptionIndicator)); } /** * Returns an {@code Observable} that delays the subscription to the current {@code Observable} by a given amount of time. *

* *

*
Scheduler:
*
This version of {@code delaySubscription} operates by default on the {@code computation} {@link Scheduler}.
*
* * @param time * the time to delay the subscription * @param unit * the time unit of {@code delay} * @return the new {@code Observable} instance * @throws NullPointerException if {@code unit} is {@code null} * @see ReactiveX operators documentation: Delay */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.COMPUTATION) @NonNull public final Observable delaySubscription(long time, @NonNull TimeUnit unit) { return delaySubscription(time, unit, Schedulers.computation()); } /** * Returns an {@code Observable} that delays the subscription to the current {@code Observable} by a given amount of time, * both waiting and subscribing on a given {@link Scheduler}. *

* *

*
Scheduler:
*
You specify which {@code Scheduler} this operator will use.
*
* * @param time * the time to delay the subscription * @param unit * the time unit of {@code delay} * @param scheduler * the {@code Scheduler} on which the waiting and subscription will happen * @return the new {@code Observable} instance * @throws NullPointerException if {@code unit} or {@code scheduler} is {@code null} * @see ReactiveX operators documentation: Delay */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.CUSTOM) @NonNull public final Observable delaySubscription(long time, @NonNull TimeUnit unit, @NonNull Scheduler scheduler) { return delaySubscription(timer(time, unit, scheduler)); } /** * Returns an {@code Observable} that reverses the effect of {@link #materialize materialize} by transforming the * {@link Notification} objects extracted from the source items via a selector function * into their respective {@link Observer} signal types. *

* *

* The intended use of the {@code selector} function is to perform a * type-safe identity mapping (see example) on a source that is already of type * {@code Notification}. The Java language doesn't allow * limiting instance methods to a certain generic argument shape, therefore, * a function is used to ensure the conversion remains type safe. *

* When the upstream signals an {@link Notification#createOnError(Throwable) onError} or * {@link Notification#createOnComplete() onComplete} item, the * returned {@code Observable} disposes of the flow and terminates with that type of terminal event: *


     * Observable.just(createOnNext(1), createOnComplete(), createOnNext(2))
     * .doOnDispose(() -> System.out.println("Disposed!"));
     * .dematerialize(notification -> notification)
     * .test()
     * .assertResult(1);
     * 
* If the upstream signals {@code onError} or {@code onComplete} directly, the flow is terminated * with the same event. *

     * Observable.just(createOnNext(1), createOnNext(2))
     * .dematerialize(notification -> notification)
     * .test()
     * .assertResult(1, 2);
     * 
* If this behavior is not desired, the completion can be suppressed by applying {@link #concatWith(ObservableSource)} * with a {@link #never()} source. *
*
Scheduler:
*
{@code dematerialize} does not operate by default on a particular {@link Scheduler}.
*
*

History: 2.2.4 - experimental * * @param the output value type * @param selector function that returns the upstream item and should return a {@code Notification} to signal * the corresponding {@code Observer} event to the downstream. * @return the new {@code Observable} instance * @throws NullPointerException if {@code selector} is {@code null} * @see ReactiveX operators documentation: Dematerialize * @since 3.0.0 */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable dematerialize(@NonNull Function> selector) { Objects.requireNonNull(selector, "selector is null"); return RxJavaPlugins.onAssembly(new ObservableDematerialize<>(this, selector)); } /** * Returns an {@code Observable} that emits all items emitted by the current {@code Observable} that are distinct * based on {@link Object#equals(Object)} comparison. *

* *

* It is recommended the elements' class {@code T} in the flow overrides the default {@code Object.equals()} * and {@link Object#hashCode()} to provide meaningful comparison between items as the default Java * implementation only considers reference equivalence. *

* By default, {@code distinct()} uses an internal {@link HashSet} per {@link Observer} to remember * previously seen items and uses {@link java.util.Set#add(Object)} returning {@code false} as the * indicator for duplicates. *

* Note that this internal {@code HashSet} may grow unbounded as items won't be removed from it by * the operator. Therefore, using very long or infinite upstream (with very distinct elements) may lead * to {@link OutOfMemoryError}. *

* Customizing the retention policy can happen only by providing a custom {@link java.util.Collection} implementation * to the {@link #distinct(Function, Supplier)} overload. *

*
Scheduler:
*
{@code distinct} does not operate by default on a particular {@link Scheduler}.
*
* * @return the new {@code Observable} instance * @see ReactiveX operators documentation: Distinct * @see #distinct(Function) * @see #distinct(Function, Supplier) */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable distinct() { return distinct(Functions.identity(), Functions.createHashSet()); } /** * Returns an {@code Observable} that emits all items emitted by the current {@code Observable} that are distinct according * to a key selector function and based on {@link Object#equals(Object)} comparison of the objects * returned by the key selector function. *

* *

* It is recommended the keys' class {@code K} overrides the default {@code Object.equals()} * and {@link Object#hashCode()} to provide meaningful comparison between the key objects as the default * Java implementation only considers reference equivalence. *

* By default, {@code distinct()} uses an internal {@link HashSet} per {@link Observer} to remember * previously seen keys and uses {@link java.util.Set#add(Object)} returning {@code false} as the * indicator for duplicates. *

* Note that this internal {@code HashSet} may grow unbounded as keys won't be removed from it by * the operator. Therefore, using very long or infinite upstream (with very distinct keys) may lead * to {@link OutOfMemoryError}. *

* Customizing the retention policy can happen only by providing a custom {@link java.util.Collection} implementation * to the {@link #distinct(Function, Supplier)} overload. *

*
Scheduler:
*
{@code distinct} does not operate by default on a particular {@link Scheduler}.
*
* * @param the key type * @param keySelector * a function that projects an emitted item to a key value that is used to decide whether an item * is distinct from another one or not * @return the new {@code Observable} instance * @throws NullPointerException if {@code keySelector} is {@code null} * @see ReactiveX operators documentation: Distinct * @see #distinct(Function, Supplier) */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable distinct(@NonNull Function keySelector) { return distinct(keySelector, Functions.createHashSet()); } /** * Returns an {@code Observable} that emits all items emitted by the current {@code Observable} that are distinct according * to a key selector function and based on {@link Object#equals(Object)} comparison of the objects * returned by the key selector function. *

* *

* It is recommended the keys' class {@code K} overrides the default {@code Object.equals()} * and {@link Object#hashCode()} to provide meaningful comparison between the key objects as * the default Java implementation only considers reference equivalence. *

*
Scheduler:
*
{@code distinct} does not operate by default on a particular {@link Scheduler}.
*
* * @param the key type * @param keySelector * a function that projects an emitted item to a key value that is used to decide whether an item * is distinct from another one or not * @param collectionSupplier * function called for each individual {@link Observer} to return a {@link Collection} subtype for holding the extracted * keys and whose {@code add()} method's return indicates uniqueness. * @return the new {@code Observable} instance * @throws NullPointerException if {@code keySelector} or {@code collectionSupplier} is {@code null} * @see ReactiveX operators documentation: Distinct */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable distinct(@NonNull Function keySelector, @NonNull Supplier> collectionSupplier) { Objects.requireNonNull(keySelector, "keySelector is null"); Objects.requireNonNull(collectionSupplier, "collectionSupplier is null"); return RxJavaPlugins.onAssembly(new ObservableDistinct<>(this, keySelector, collectionSupplier)); } /** * Returns an {@code Observable} that emits all items emitted by the current {@code Observable} that are distinct from their * immediate predecessors based on {@link Object#equals(Object)} comparison. *

* *

* It is recommended the elements' class {@code T} in the flow overrides the default {@code Object.equals()} to provide * meaningful comparison between items as the default Java implementation only considers reference equivalence. * Alternatively, use the {@link #distinctUntilChanged(BiPredicate)} overload and provide a comparison function * in case the class {@code T} can't be overridden with custom {@code equals()} or the comparison itself * should happen on different terms or properties of the class {@code T}. *

* Note that the operator always retains the latest item from upstream regardless of the comparison result * and uses it in the next comparison with the next upstream item. *

* Note that if element type {@code T} in the flow is mutable, the comparison of the previous and current * item may yield unexpected results if the items are mutated externally. Common cases are mutable * {@link CharSequence}s or {@link List}s where the objects will actually have the same * references when they are modified and {@code distinctUntilChanged} will evaluate subsequent items as same. * To avoid such situation, it is recommended that mutable data is converted to an immutable one, * for example using {@code map(CharSequence::toString)} or {@code map(list -> Collections.unmodifiableList(new ArrayList<>(list)))}. *

*
Scheduler:
*
{@code distinctUntilChanged} does not operate by default on a particular {@link Scheduler}.
*
* * @return the new {@code Observable} instance * @see ReactiveX operators documentation: Distinct * @see #distinctUntilChanged(BiPredicate) */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable distinctUntilChanged() { return distinctUntilChanged(Functions.identity()); } /** * Returns an {@code Observable} that emits all items emitted by the current {@code Observable} that are distinct from their * immediate predecessors, according to a key selector function and based on {@link Object#equals(Object)} comparison * of those objects returned by the key selector function. *

* *

* It is recommended the keys' class {@code K} overrides the default {@code Object.equals()} to provide * meaningful comparison between the key objects as the default Java implementation only considers reference equivalence. * Alternatively, use the {@link #distinctUntilChanged(BiPredicate)} overload and provide a comparison function * in case the class {@code K} can't be overridden with custom {@code equals()} or the comparison itself * should happen on different terms or properties of the item class {@code T} (for which the keys can be * derived via a similar selector). *

* Note that the operator always retains the latest key from upstream regardless of the comparison result * and uses it in the next comparison with the next key derived from the next upstream item. *

* Note that if element type {@code T} in the flow is mutable, the comparison of the previous and current * item may yield unexpected results if the items are mutated externally. Common cases are mutable * {@link CharSequence}s or {@link List}s where the objects will actually have the same * references when they are modified and {@code distinctUntilChanged} will evaluate subsequent items as same. * To avoid such situation, it is recommended that mutable data is converted to an immutable one, * for example using {@code map(CharSequence::toString)} or {@code map(list -> Collections.unmodifiableList(new ArrayList<>(list)))}. *

*
Scheduler:
*
{@code distinctUntilChanged} does not operate by default on a particular {@link Scheduler}.
*
* * @param the key type * @param keySelector * a function that projects an emitted item to a key value that is used to decide whether an item * is distinct from another one or not * @return the new {@code Observable} instance * @throws NullPointerException if {@code keySelector} is {@code null} * @see ReactiveX operators documentation: Distinct */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable distinctUntilChanged(@NonNull Function keySelector) { Objects.requireNonNull(keySelector, "keySelector is null"); return RxJavaPlugins.onAssembly(new ObservableDistinctUntilChanged<>(this, keySelector, ObjectHelper.equalsPredicate())); } /** * Returns an {@code Observable} that emits all items emitted by the current {@code Observable} that are distinct from their * immediate predecessors when compared with each other via the provided comparator function. *

* *

* Note that the operator always retains the latest item from upstream regardless of the comparison result * and uses it in the next comparison with the next upstream item. *

* Note that if element type {@code T} in the flow is mutable, the comparison of the previous and current * item may yield unexpected results if the items are mutated externally. Common cases are mutable * {@link CharSequence}s or {@link List}s where the objects will actually have the same * references when they are modified and {@code distinctUntilChanged} will evaluate subsequent items as same. * To avoid such situation, it is recommended that mutable data is converted to an immutable one, * for example using {@code map(CharSequence::toString)} or {@code map(list -> Collections.unmodifiableList(new ArrayList<>(list)))}. *

*
Scheduler:
*
{@code distinctUntilChanged} does not operate by default on a particular {@link Scheduler}.
*
* * @param comparer the function that receives the previous item and the current item and is * expected to return {@code true} if the two are equal, thus skipping the current value. * @return the new {@code Observable} instance * @throws NullPointerException if {@code comparer} is {@code null} * @see ReactiveX operators documentation: Distinct * @since 2.0 */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable distinctUntilChanged(@NonNull BiPredicate comparer) { Objects.requireNonNull(comparer, "comparer is null"); return RxJavaPlugins.onAssembly(new ObservableDistinctUntilChanged<>(this, Functions.identity(), comparer)); } /** * Calls the specified {@link Consumer} with the current item after this item has been emitted to the downstream. *

* Note that the {@code onAfterNext} action is shared between subscriptions and as such * should be thread-safe. *

* *

*
Scheduler:
*
{@code doAfterNext} does not operate by default on a particular {@link Scheduler}.
*
Operator-fusion:
*
This operator supports boundary-limited synchronous or asynchronous queue-fusion.
*
*

History: 2.0.1 - experimental * @param onAfterNext the {@code Consumer} that will be called after emitting an item from upstream to the downstream * @return the new {@code Observable} instance * @throws NullPointerException if {@code onAfterNext} is {@code null} * @since 2.1 */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable doAfterNext(@NonNull Consumer onAfterNext) { Objects.requireNonNull(onAfterNext, "onAfterNext is null"); return RxJavaPlugins.onAssembly(new ObservableDoAfterNext<>(this, onAfterNext)); } /** * Registers an {@link Action} to be called when the current {@code Observable} invokes either * {@link Observer#onComplete onComplete} or {@link Observer#onError onError}. *

* *

*
Scheduler:
*
{@code doAfterTerminate} does not operate by default on a particular {@link Scheduler}.
*
* * @param onAfterTerminate * an {@code Action} to be invoked after the current {@code Observable} finishes * @return the new {@code Observable} instance * @throws NullPointerException if {@code onAfterTerminate} is {@code null} * @see ReactiveX operators documentation: Do * @see #doOnTerminate(Action) */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable doAfterTerminate(@NonNull Action onAfterTerminate) { Objects.requireNonNull(onAfterTerminate, "onAfterTerminate is null"); return doOnEach(Functions.emptyConsumer(), Functions.emptyConsumer(), Functions.EMPTY_ACTION, onAfterTerminate); } /** * Calls the specified action after the current {@code Observable} signals {@code onError} or {@code onCompleted} or gets disposed by * the downstream. *

In case of a race between a terminal event and a dispose call, the provided {@code onFinally} action * is executed once per subscription. *

Note that the {@code onFinally} action is shared between subscriptions and as such * should be thread-safe. *

* *

*
Scheduler:
*
{@code doFinally} does not operate by default on a particular {@link Scheduler}.
*
Operator-fusion:
*
This operator supports boundary-limited synchronous or asynchronous queue-fusion.
*
*

History: 2.0.1 - experimental * @param onFinally the action called when the current {@code Observable} terminates or gets disposed * @return the new {@code Observable} instance * @throws NullPointerException if {@code onFinally} is {@code null} * @since 2.1 */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable doFinally(@NonNull Action onFinally) { Objects.requireNonNull(onFinally, "onFinally is null"); return RxJavaPlugins.onAssembly(new ObservableDoFinally<>(this, onFinally)); } /** * Calls the given shared {@link Action} if the downstream disposes the sequence. *

* The action is shared between subscriptions and thus may be called concurrently from multiple * threads; the action must be thread safe. *

* If the action throws a runtime exception, that exception is rethrown by the {@code dispose()} call, * sometimes as a {@link CompositeException} if there were multiple exceptions along the way. *

* *

*
Scheduler:
*
{@code doOnDispose} does not operate by default on a particular {@link Scheduler}.
*
* * @param onDispose * the action that gets called when the current {@code Observable}'s {@link Disposable} is disposed * @return the new {@code Observable} instance * @throws NullPointerException if {@code onDispose} is {@code null} * @see ReactiveX operators documentation: Do */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable doOnDispose(@NonNull Action onDispose) { return doOnLifecycle(Functions.emptyConsumer(), onDispose); } /** * Returns an {@code Observable} that invokes an {@link Action} when the current {@code Observable} calls {@code onComplete}. *

* *

*
Scheduler:
*
{@code doOnComplete} does not operate by default on a particular {@link Scheduler}.
*
* * @param onComplete * the action to invoke when the current {@code Observable} calls {@code onComplete} * @return the new {@code Observable} instance * @throws NullPointerException if {@code onComplete} is {@code null} * @see ReactiveX operators documentation: Do */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable doOnComplete(@NonNull Action onComplete) { return doOnEach(Functions.emptyConsumer(), Functions.emptyConsumer(), onComplete, Functions.EMPTY_ACTION); } /** * Calls the appropriate {@code onXXX} consumer (shared between all {@link Observer}s) whenever a signal with the same type * passes through, before forwarding them to the downstream. *

* *

*
Scheduler:
*
{@code doOnEach} does not operate by default on a particular {@link Scheduler}.
*
* * @return the new {@code Observable} instance * @throws NullPointerException if {@code onNext}, {@code onError}, {@code onComplete} or {@code onAfterTerminate} is {@code null} * @see ReactiveX operators documentation: Do */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull private Observable doOnEach(@NonNull Consumer onNext, @NonNull Consumer onError, @NonNull Action onComplete, @NonNull Action onAfterTerminate) { Objects.requireNonNull(onNext, "onNext is null"); Objects.requireNonNull(onError, "onError is null"); Objects.requireNonNull(onComplete, "onComplete is null"); Objects.requireNonNull(onAfterTerminate, "onAfterTerminate is null"); return RxJavaPlugins.onAssembly(new ObservableDoOnEach<>(this, onNext, onError, onComplete, onAfterTerminate)); } /** * Returns an {@code Observable} that invokes a {@link Consumer} with the appropriate {@link Notification} * object when the current {@code Observable} signals an item or terminates. *

* *

*
Scheduler:
*
{@code doOnEach} does not operate by default on a particular {@link Scheduler}.
*
* * @param onNotification * the action to invoke for each item emitted by the current {@code Observable} * @return the new {@code Observable} instance * @throws NullPointerException if {@code onNotification} is {@code null} * @see ReactiveX operators documentation: Do */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable doOnEach(@NonNull Consumer> onNotification) { Objects.requireNonNull(onNotification, "onNotification is null"); return doOnEach( Functions.notificationOnNext(onNotification), Functions.notificationOnError(onNotification), Functions.notificationOnComplete(onNotification), Functions.EMPTY_ACTION ); } /** * Returns an {@code Observable} that forwards the items and terminal events of the current * {@code Observable} to its {@link Observer}s and to the given shared {@code Observer} instance. *

* In case the {@code onError} of the supplied observer throws, the downstream will receive a composite * exception containing the original exception and the exception thrown by {@code onError}. If either the * {@code onNext} or the {@code onComplete} method of the supplied observer throws, the downstream will be * terminated and will receive this thrown exception. *

* *

*
Scheduler:
*
{@code doOnEach} does not operate by default on a particular {@link Scheduler}.
*
* * @param observer * the observer to be notified about {@code onNext}, {@code onError} and {@code onComplete} events on its * respective methods before the actual downstream {@code Observer} gets notified. * @return the new {@code Observable} instance * @throws NullPointerException if {@code observer} is {@code null} * @see ReactiveX operators documentation: Do */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable doOnEach(@NonNull Observer observer) { Objects.requireNonNull(observer, "observer is null"); return doOnEach( ObservableInternalHelper.observerOnNext(observer), ObservableInternalHelper.observerOnError(observer), ObservableInternalHelper.observerOnComplete(observer), Functions.EMPTY_ACTION); } /** * Calls the given {@link Consumer} with the error {@link Throwable} if the current {@code Observable} failed before forwarding it to * the downstream. *

* In case the {@code onError} action throws, the downstream will receive a composite exception containing * the original exception and the exception thrown by {@code onError}. *

* *

*
Scheduler:
*
{@code doOnError} does not operate by default on a particular {@link Scheduler}.
*
* * @param onError * the action to invoke if the current {@code Observable} calls {@code onError} * @return the new {@code Observable} instance * @throws NullPointerException if {@code onError} is {@code null} * @see ReactiveX operators documentation: Do */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable doOnError(@NonNull Consumer onError) { return doOnEach(Functions.emptyConsumer(), onError, Functions.EMPTY_ACTION, Functions.EMPTY_ACTION); } /** * Calls the appropriate {@code onXXX} method (shared between all {@link Observer}s) for the lifecycle events of * the sequence (subscription, disposal). *

* *

*
Scheduler:
*
{@code doOnLifecycle} does not operate by default on a particular {@link Scheduler}.
*
* * @param onSubscribe * a {@link Consumer} called with the {@link Disposable} sent via {@link Observer#onSubscribe(Disposable)} * @param onDispose * called when the downstream disposes the {@code Disposable} via {@code dispose()} * @return the new {@code Observable} instance * @throws NullPointerException if {@code onSubscribe} or {@code onDispose} is {@code null} * @see ReactiveX operators documentation: Do */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable doOnLifecycle(@NonNull Consumer onSubscribe, @NonNull Action onDispose) { Objects.requireNonNull(onSubscribe, "onSubscribe is null"); Objects.requireNonNull(onDispose, "onDispose is null"); return RxJavaPlugins.onAssembly(new ObservableDoOnLifecycle<>(this, onSubscribe, onDispose)); } /** * Calls the given {@link Consumer} with the value emitted by the current {@code Observable} before forwarding it to the downstream. *

* *

*
Scheduler:
*
{@code doOnNext} does not operate by default on a particular {@link Scheduler}.
*
* * @param onNext * the action to invoke when the current {@code Observable} calls {@code onNext} * @return the new {@code Observable} instance * @throws NullPointerException if {@code onNext} is {@code null} * @see ReactiveX operators documentation: Do */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable doOnNext(@NonNull Consumer onNext) { return doOnEach(onNext, Functions.emptyConsumer(), Functions.EMPTY_ACTION, Functions.EMPTY_ACTION); } /** * Returns an {@code Observable} so that it invokes the given {@link Consumer} when the current {@code Observable} is subscribed from * its {@link Observer}s. Each subscription will result in an invocation of the given action except when the * current {@code Observable} is reference counted, in which case the current {@code Observable} will invoke * the given action for the first subscription. *

* *

*
Scheduler:
*
{@code doOnSubscribe} does not operate by default on a particular {@link Scheduler}.
*
* * @param onSubscribe * the {@code Consumer} that gets called when an {@code Observer} subscribes to the current {@code Observable} * @return the new {@code Observable} instance * @throws NullPointerException if {@code onSubscribe} is {@code null} * @see ReactiveX operators documentation: Do */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable doOnSubscribe(@NonNull Consumer onSubscribe) { return doOnLifecycle(onSubscribe, Functions.EMPTY_ACTION); } /** * Returns an {@code Observable} so that it invokes an action when the current {@code Observable} calls {@code onComplete} or * {@code onError}. *

* *

* This differs from {@code doAfterTerminate} in that this happens before the {@code onComplete} or * {@code onError} notification. *

*
Scheduler:
*
{@code doOnTerminate} does not operate by default on a particular {@link Scheduler}.
*
* * @param onTerminate * the action to invoke when the current {@code Observable} calls {@code onComplete} or {@code onError} * @return the new {@code Observable} instance * @throws NullPointerException if {@code onTerminate} is {@code null} * @see ReactiveX operators documentation: Do * @see #doAfterTerminate(Action) */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable doOnTerminate(@NonNull Action onTerminate) { Objects.requireNonNull(onTerminate, "onTerminate is null"); return doOnEach(Functions.emptyConsumer(), Functions.actionConsumer(onTerminate), onTerminate, Functions.EMPTY_ACTION); } /** * Returns a {@link Maybe} that emits the single item at a specified index in a sequence of emissions from * the current {@code Observable} or completes if the current {@code Observable} signals fewer elements than index. *

* *

*
Scheduler:
*
{@code elementAt} does not operate by default on a particular {@link Scheduler}.
*
* * @param index * the zero-based index of the item to retrieve * @return the new {@code Maybe} instance * @throws IndexOutOfBoundsException * if {@code index} is negative * @see ReactiveX operators documentation: ElementAt */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Maybe elementAt(long index) { if (index < 0) { throw new IndexOutOfBoundsException("index >= 0 required but it was " + index); } return RxJavaPlugins.onAssembly(new ObservableElementAtMaybe<>(this, index)); } /** * Returns a {@link Single} that emits the item found at a specified index in a sequence of emissions from * the current {@code Observable}, or a default item if that index is out of range. *

* *

*
Scheduler:
*
{@code elementAt} does not operate by default on a particular {@link Scheduler}.
*
* * @param index * the zero-based index of the item to retrieve * @param defaultItem * the default item * @return the new {@code Single} instance * @throws NullPointerException if {@code defaultItem} is {@code null} * @throws IndexOutOfBoundsException * if {@code index} is negative * @see ReactiveX operators documentation: ElementAt */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Single elementAt(long index, @NonNull T defaultItem) { if (index < 0) { throw new IndexOutOfBoundsException("index >= 0 required but it was " + index); } Objects.requireNonNull(defaultItem, "defaultItem is null"); return RxJavaPlugins.onAssembly(new ObservableElementAtSingle<>(this, index, defaultItem)); } /** * Returns a {@link Single} that emits the item found at a specified index in a sequence of emissions from the current {@code Observable} * or signals a {@link NoSuchElementException} if the current {@code Observable} signals fewer elements than index. *

* *

*
Scheduler:
*
{@code elementAtOrError} does not operate by default on a particular {@link Scheduler}.
*
* * @param index * the zero-based index of the item to retrieve * @return the new {@code Single} instance * @throws IndexOutOfBoundsException * if {@code index} is negative * @see ReactiveX operators documentation: ElementAt */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Single elementAtOrError(long index) { if (index < 0) { throw new IndexOutOfBoundsException("index >= 0 required but it was " + index); } return RxJavaPlugins.onAssembly(new ObservableElementAtSingle<>(this, index, null)); } /** * Filters items emitted by the current {@code Observable} by only emitting those that satisfy a specified {@link Predicate}. *

* *

*
Scheduler:
*
{@code filter} does not operate by default on a particular {@link Scheduler}.
*
* * @param predicate * a function that evaluates each item emitted by the current {@code Observable}, returning {@code true} * if it passes the filter * @return the new {@code Observable} instance * @throws NullPointerException if {@code predicate} is {@code null} * @see ReactiveX operators documentation: Filter */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable filter(@NonNull Predicate predicate) { Objects.requireNonNull(predicate, "predicate is null"); return RxJavaPlugins.onAssembly(new ObservableFilter<>(this, predicate)); } /** * Returns a {@link Maybe} that emits only the very first item emitted by the current {@code Observable}, or * completes if the current {@code Observable} is empty. *

* *

*
Scheduler:
*
{@code firstElement} does not operate by default on a particular {@link Scheduler}.
*
* * @return the new {@code Maybe} instance * @see ReactiveX operators documentation: First */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Maybe firstElement() { return elementAt(0L); } /** * Returns a {@link Single} that emits only the very first item emitted by the current {@code Observable}, or a default item * if the current {@code Observable} completes without emitting any items. *

* *

*
Scheduler:
*
{@code first} does not operate by default on a particular {@link Scheduler}.
*
* * @param defaultItem * the default item to emit if the current {@code Observable} doesn't emit anything * @return the new {@code Single} instance * @throws NullPointerException if {@code defaultItem} is {@code null} * @see ReactiveX operators documentation: First */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Single first(@NonNull T defaultItem) { return elementAt(0L, defaultItem); } /** * Returns a {@link Single} that emits only the very first item emitted by the current {@code Observable} or * signals a {@link NoSuchElementException} if the current {@code Observable} is empty. *

* *

*
Scheduler:
*
{@code firstOrError} does not operate by default on a particular {@link Scheduler}.
*
* * @return the new {@code Single} instance * @see ReactiveX operators documentation: First */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Single firstOrError() { return elementAtOrError(0L); } /** * Returns an {@code Observable} that emits items based on applying a function that you supply to each item emitted * by the current {@code Observable}, where that function returns an {@link ObservableSource}, and then merging those returned * {@code ObservableSource}s and emitting the results of this merger. *

* *

*
Scheduler:
*
{@code flatMap} does not operate by default on a particular {@link Scheduler}.
*
* * @param the value type of the inner {@code ObservableSource}s and the output type * @param mapper * a function that, when applied to an item emitted by the current {@code Observable}, returns an * {@code ObservableSource} * @return the new {@code Observable} instance * @throws NullPointerException if {@code mapper} is {@code null} * @see ReactiveX operators documentation: FlatMap */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable flatMap(@NonNull Function> mapper) { return flatMap(mapper, false); } /** * Returns an {@code Observable} that emits items based on applying a function that you supply to each item emitted * by the current {@code Observable}, where that function returns an {@link ObservableSource}, and then merging those returned * {@code ObservableSource}s and emitting the results of this merger. *

* *

*
Scheduler:
*
{@code flatMap} does not operate by default on a particular {@link Scheduler}.
*
* * @param the value type of the inner {@code ObservableSource}s and the output type * @param mapper * a function that, when applied to an item emitted by the current {@code Observable}, returns an * {@code ObservableSource} * @param delayErrors * if {@code true}, exceptions from the current {@code Observable} and all inner {@code ObservableSource}s are delayed until all of them terminate * if {@code false}, the first one signaling an exception will terminate the whole sequence immediately * @return the new {@code Observable} instance * @throws NullPointerException if {@code mapper} is {@code null} * @see ReactiveX operators documentation: FlatMap */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable flatMap(@NonNull Function> mapper, boolean delayErrors) { return flatMap(mapper, delayErrors, Integer.MAX_VALUE); } /** * Returns an {@code Observable} that emits items based on applying a function that you supply to each item emitted * by the current {@code Observable}, where that function returns an {@link ObservableSource}, and then merging those returned * {@code ObservableSource}s and emitting the results of this merger, while limiting the maximum number of concurrent * subscriptions to these {@code ObservableSource}s. *

* *

*
Scheduler:
*
{@code flatMap} does not operate by default on a particular {@link Scheduler}.
*
* * @param the value type of the inner {@code ObservableSource}s and the output type * @param mapper * a function that, when applied to an item emitted by the current {@code Observable}, returns an * {@code ObservableSource} * @param maxConcurrency * the maximum number of {@code ObservableSource}s that may be subscribed to concurrently * @param delayErrors * if {@code true}, exceptions from the current {@code Observable} and all inner {@code ObservableSource}s are delayed until all of them terminate * if {@code false}, the first one signaling an exception will terminate the whole sequence immediately * @return the new {@code Observable} instance * @throws NullPointerException if {@code mapper} is {@code null} * @throws IllegalArgumentException if {@code maxConcurrency} is non-positive * @see ReactiveX operators documentation: FlatMap * @since 2.0 */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable flatMap(@NonNull Function> mapper, boolean delayErrors, int maxConcurrency) { return flatMap(mapper, delayErrors, maxConcurrency, bufferSize()); } /** * Returns an {@code Observable} that emits items based on applying a function that you supply to each item emitted * by the current {@code Observable}, where that function returns an {@link ObservableSource}, and then merging those returned * {@code ObservableSource}s and emitting the results of this merger, while limiting the maximum number of concurrent * subscriptions to these {@code ObservableSource}s. *

* *

*
Scheduler:
*
{@code flatMap} does not operate by default on a particular {@link Scheduler}.
*
* * @param the value type of the inner {@code ObservableSource}s and the output type * @param mapper * a function that, when applied to an item emitted by the current {@code Observable}, returns an * {@code ObservableSource} * @param maxConcurrency * the maximum number of {@code ObservableSource}s that may be subscribed to concurrently * @param delayErrors * if {@code true}, exceptions from the current {@code Observable} and all inner {@code ObservableSource}s are delayed until all of them terminate * if {@code false}, the first one signaling an exception will terminate the whole sequence immediately * @param bufferSize * the number of elements expected from each inner {@code ObservableSource} to be buffered * @return the new {@code Observable} instance * @throws NullPointerException if {@code mapper} is {@code null} * @throws IllegalArgumentException if {@code maxConcurrency} or {@code bufferSize} is non-positive * @see ReactiveX operators documentation: FlatMap * @since 2.0 */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable flatMap(@NonNull Function> mapper, boolean delayErrors, int maxConcurrency, int bufferSize) { Objects.requireNonNull(mapper, "mapper is null"); ObjectHelper.verifyPositive(maxConcurrency, "maxConcurrency"); ObjectHelper.verifyPositive(bufferSize, "bufferSize"); if (this instanceof ScalarSupplier) { @SuppressWarnings("unchecked") T v = ((ScalarSupplier)this).get(); if (v == null) { return empty(); } return ObservableScalarXMap.scalarXMap(v, mapper); } return RxJavaPlugins.onAssembly(new ObservableFlatMap<>(this, mapper, delayErrors, maxConcurrency, bufferSize)); } /** * Returns an {@code Observable} that applies a function to each item emitted or notification raised by the current * {@code Observable} and then flattens the {@link ObservableSource}s returned from these functions and emits the resulting items. *

* *

*
Scheduler:
*
{@code flatMap} does not operate by default on a particular {@link Scheduler}.
*
* * @param * the result type * @param onNextMapper * a function that returns an {@code ObservableSource} to merge for each item emitted by the current {@code Observable} * @param onErrorMapper * a function that returns an {@code ObservableSource} to merge for an {@code onError} notification from the current * {@code Observable} * @param onCompleteSupplier * a function that returns an {@code ObservableSource} to merge for an {@code onComplete} notification from the current * {@code Observable} * @return the new {@code Observable} instance * @throws NullPointerException if {@code onNextMapper} or {@code onErrorMapper} or {@code onCompleteSupplier} is {@code null} * @see ReactiveX operators documentation: FlatMap */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable flatMap( @NonNull Function> onNextMapper, @NonNull Function> onErrorMapper, @NonNull Supplier> onCompleteSupplier) { Objects.requireNonNull(onNextMapper, "onNextMapper is null"); Objects.requireNonNull(onErrorMapper, "onErrorMapper is null"); Objects.requireNonNull(onCompleteSupplier, "onCompleteSupplier is null"); return merge(new ObservableMapNotification<>(this, onNextMapper, onErrorMapper, onCompleteSupplier)); } /** * Returns an {@code Observable} that applies a function to each item emitted or notification raised by the current * {@code Observable} and then flattens the {@link ObservableSource}s returned from these functions and emits the resulting items, * while limiting the maximum number of concurrent subscriptions to these {@code ObservableSource}s. *

* *

*
Scheduler:
*
{@code flatMap} does not operate by default on a particular {@link Scheduler}.
*
* * @param * the result type * @param onNextMapper * a function that returns an {@code ObservableSource} to merge for each item emitted by the current {@code Observable} * @param onErrorMapper * a function that returns an {@code ObservableSource} to merge for an {@code onError} notification from the current * {@code Observable} * @param onCompleteSupplier * a function that returns an {@code ObservableSource} to merge for an {@code onComplete} notification from the current * {@code Observable} * @param maxConcurrency * the maximum number of {@code ObservableSource}s that may be subscribed to concurrently * @return the new {@code Observable} instance * @throws NullPointerException if {@code onNextMapper} or {@code onErrorMapper} or {@code onCompleteSupplier} is {@code null} * @throws IllegalArgumentException if {@code maxConcurrency} is non-positive * @see ReactiveX operators documentation: FlatMap * @since 2.0 */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable flatMap( @NonNull Function> onNextMapper, @NonNull Function> onErrorMapper, @NonNull Supplier> onCompleteSupplier, int maxConcurrency) { Objects.requireNonNull(onNextMapper, "onNextMapper is null"); Objects.requireNonNull(onErrorMapper, "onErrorMapper is null"); Objects.requireNonNull(onCompleteSupplier, "onCompleteSupplier is null"); return merge(new ObservableMapNotification<>(this, onNextMapper, onErrorMapper, onCompleteSupplier), maxConcurrency); } /** * Returns an {@code Observable} that emits items based on applying a function that you supply to each item emitted * by the current {@code Observable}, where that function returns an {@link ObservableSource}, and then merging those returned * {@code ObservableSource}s and emitting the results of this merger, while limiting the maximum number of concurrent * subscriptions to these {@code ObservableSource}s. *

* *

*
Scheduler:
*
{@code flatMap} does not operate by default on a particular {@link Scheduler}.
*
* * @param the value type of the inner {@code ObservableSource}s and the output type * @param mapper * a function that, when applied to an item emitted by the current {@code Observable}, returns an * {@code ObservableSource} * @param maxConcurrency * the maximum number of {@code ObservableSource}s that may be subscribed to concurrently * @return the new {@code Observable} instance * @throws NullPointerException if {@code mapper} is {@code null} * @throws IllegalArgumentException if {@code maxConcurrency} is non-positive * @see ReactiveX operators documentation: FlatMap * @since 2.0 */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable flatMap(@NonNull Function> mapper, int maxConcurrency) { return flatMap(mapper, false, maxConcurrency, bufferSize()); } /** * Returns an {@code Observable} that emits the results of a specified function to the pair of values emitted by the * current {@code Observable} and the mapped inner {@link ObservableSource}. *

* *

*
Scheduler:
*
{@code flatMap} does not operate by default on a particular {@link Scheduler}.
*
* * @param * the type of items emitted by the collection {@code ObservableSource} * @param * the type of items emitted by the resulting {@code Observable} * @param mapper * a function that returns an {@code ObservableSource} for each item emitted by the current {@code Observable} * @param combiner * a function that combines one item emitted by each of the source and collection {@code ObservableSource}s and * returns an item to be emitted by the resulting {@code Observable} * @return the new {@code Observable} instance * @throws NullPointerException if {@code mapper} or {@code combiner} is {@code null} * @see ReactiveX operators documentation: FlatMap */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable flatMap(@NonNull Function> mapper, @NonNull BiFunction combiner) { return flatMap(mapper, combiner, false, bufferSize(), bufferSize()); } /** * Returns an {@code Observable} that emits the results of a specified function to the pair of values emitted by the * current {@code Observable} and the mapped inner {@link ObservableSource}. *

* *

*
Scheduler:
*
{@code flatMap} does not operate by default on a particular {@link Scheduler}.
*
* * @param * the type of items emitted by the collection {@code ObservableSource} * @param * the type of items emitted by the resulting {@code Observable} * @param mapper * a function that returns an {@code ObservableSource} for each item emitted by the current {@code Observable} * @param combiner * a function that combines one item emitted by each of the source and collection {@code ObservableSource}s and * returns an item to be emitted by the resulting {@code Observable} * @param delayErrors * if {@code true}, exceptions from the current {@code Observable} and all inner {@code ObservableSource}s are delayed until all of them terminate * if {@code false}, the first one signaling an exception will terminate the whole sequence immediately * @return the new {@code Observable} instance * @throws NullPointerException if {@code mapper} or {@code combiner} is {@code null} * @see ReactiveX operators documentation: FlatMap */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable flatMap(@NonNull Function> mapper, @NonNull BiFunction combiner, boolean delayErrors) { return flatMap(mapper, combiner, delayErrors, bufferSize(), bufferSize()); } /** * Returns an {@code Observable} that emits the results of a specified function to the pair of values emitted by the * current {@code Observable} and the mapped inner {@link ObservableSource}, while limiting the maximum number of concurrent * subscriptions to these {@code ObservableSource}s. *

* *

*
Scheduler:
*
{@code flatMap} does not operate by default on a particular {@link Scheduler}.
*
* * @param * the type of items emitted by the collection {@code ObservableSource} * @param * the type of items emitted by the resulting {@code Observable} * @param mapper * a function that returns an {@code ObservableSource} for each item emitted by the current {@code Observable} * @param combiner * a function that combines one item emitted by each of the source and collection {@code ObservableSource}s and * returns an item to be emitted by the resulting {@code Observable} * @param maxConcurrency * the maximum number of {@code ObservableSource}s that may be subscribed to concurrently * @param delayErrors * if {@code true}, exceptions from the current {@code Observable} and all inner {@code ObservableSource}s are delayed until all of them terminate * if {@code false}, the first one signaling an exception will terminate the whole sequence immediately * @return the new {@code Observable} instance * @throws NullPointerException if {@code mapper} or {@code combiner} is {@code null} * @throws IllegalArgumentException if {@code maxConcurrency} is non-positive * @see ReactiveX operators documentation: FlatMap * @since 2.0 */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable flatMap(@NonNull Function> mapper, @NonNull BiFunction combiner, boolean delayErrors, int maxConcurrency) { return flatMap(mapper, combiner, delayErrors, maxConcurrency, bufferSize()); } /** * Returns an {@code Observable} that emits the results of a specified function to the pair of values emitted by the * current {@code Observable} and the mapped inner {@link ObservableSource}, while limiting the maximum number of concurrent * subscriptions to these {@code ObservableSource}s. *

* *

*
Scheduler:
*
{@code flatMap} does not operate by default on a particular {@link Scheduler}.
*
* * @param * the type of items emitted by the collection {@code ObservableSource} * @param * the type of items emitted by the resulting {@code Observable} * @param mapper * a function that returns an {@code ObservableSource} for each item emitted by the current {@code Observable} * @param combiner * a function that combines one item emitted by each of the source and collection {@code ObservableSource}s and * returns an item to be emitted by the resulting {@code Observable} * @param maxConcurrency * the maximum number of {@code ObservableSource}s that may be subscribed to concurrently * @param delayErrors * if {@code true}, exceptions from the current {@code Observable} and all inner {@code ObservableSource}s are delayed until all of them terminate * if {@code false}, the first one signaling an exception will terminate the whole sequence immediately * @param bufferSize * the number of elements expected from the inner {@code ObservableSource} to be buffered * @return the new {@code Observable} instance * @throws NullPointerException if {@code mapper} or {@code combiner} is {@code null} * @throws IllegalArgumentException if {@code maxConcurrency} or {@code bufferSize} is non-positive * @see ReactiveX operators documentation: FlatMap * @since 2.0 */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable flatMap(@NonNull Function> mapper, @NonNull BiFunction combiner, boolean delayErrors, int maxConcurrency, int bufferSize) { Objects.requireNonNull(mapper, "mapper is null"); Objects.requireNonNull(combiner, "combiner is null"); return flatMap(ObservableInternalHelper.flatMapWithCombiner(mapper, combiner), delayErrors, maxConcurrency, bufferSize); } /** * Returns an {@code Observable} that emits the results of a specified function to the pair of values emitted by the * current {@code Observable} and the mapped inner {@link ObservableSource}, while limiting the maximum number of concurrent * subscriptions to these {@code ObservableSource}s. *

* *

*
Scheduler:
*
{@code flatMap} does not operate by default on a particular {@link Scheduler}.
*
* * @param * the type of items emitted by the collection {@code ObservableSource} * @param * the type of items emitted by the resulting {@code Observable} * @param mapper * a function that returns an {@code ObservableSource} for each item emitted by the current {@code Observable} * @param combiner * a function that combines one item emitted by each of the source and collection {@code ObservableSource}s and * returns an item to be emitted by the resulting {@code Observable} * @param maxConcurrency * the maximum number of {@code ObservableSource}s that may be subscribed to concurrently * @return the new {@code Observable} instance * @throws NullPointerException if {@code mapper} or {@code combiner} is {@code null} * @throws IllegalArgumentException if {@code maxConcurrency} is non-positive * @see ReactiveX operators documentation: FlatMap * @since 2.0 */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable flatMap(@NonNull Function> mapper, @NonNull BiFunction combiner, int maxConcurrency) { return flatMap(mapper, combiner, false, maxConcurrency, bufferSize()); } /** * Maps each element of the current {@code Observable} into {@link CompletableSource}s, subscribes to them and * waits until the upstream and all {@code CompletableSource}s complete. *

* *

*
Scheduler:
*
{@code flatMapCompletable} does not operate by default on a particular {@link Scheduler}.
*
* @param mapper the function that received each source value and transforms them into {@code CompletableSource}s. * @throws NullPointerException if {@code mapper} is {@code null} * @return the new {@link Completable} instance */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Completable flatMapCompletable(@NonNull Function mapper) { return flatMapCompletable(mapper, false); } /** * Maps each element of the current {@code Observable} into {@link CompletableSource}s, subscribes to them and * waits until the upstream and all {@code CompletableSource}s complete, optionally delaying all errors. *

* *

*
Scheduler:
*
{@code flatMapCompletable} does not operate by default on a particular {@link Scheduler}.
*
* @param mapper the function that received each source value and transforms them into {@code CompletableSource}s. * @param delayErrors if {@code true}, errors from the upstream and inner {@code CompletableSource}s are delayed until all of them * terminate. * @return the new {@link Completable} instance * @throws NullPointerException if {@code mapper} is {@code null} */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Completable flatMapCompletable(@NonNull Function mapper, boolean delayErrors) { Objects.requireNonNull(mapper, "mapper is null"); return RxJavaPlugins.onAssembly(new ObservableFlatMapCompletableCompletable<>(this, mapper, delayErrors)); } /** * Merges {@link Iterable}s generated by a mapper {@link Function} for each individual item emitted by * the current {@code Observable} into a single {@code Observable} sequence. *

* *

*
Scheduler:
*
{@code flatMapIterable} does not operate by default on a particular {@link Scheduler}.
*
* * @param * the output type and the element type of the {@code Iterable}s * @param mapper * a function that returns an {@code Iterable} sequence of values for when given an item emitted by the * current {@code Observable} * @return the new {@code Observable} instance * @throws NullPointerException if {@code mapper} is {@code null} * @see ReactiveX operators documentation: FlatMap */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable flatMapIterable(@NonNull Function> mapper) { Objects.requireNonNull(mapper, "mapper is null"); return RxJavaPlugins.onAssembly(new ObservableFlattenIterable<>(this, mapper)); } /** * Merges {@link Iterable}s generated by a mapper {@link Function} for each individual item emitted by * the current {@code Observable} into a single {@code Observable} sequence where the resulting items will * be the combination of the original item and each inner item of the respective {@code Iterable} as returned * by the {@code resultSelector} {@link BiFunction}. *

* *

*
Scheduler:
*
{@code flatMapIterable} does not operate by default on a particular {@link Scheduler}.
*
* * @param * the element type of the {@code Iterable}s * @param * the output type as determined by the {@code resultSelector} function * @param mapper * a function that returns an {@code Iterable} sequence of values for each item emitted by the current * {@code Observable} * @param combiner * a function that returns an item based on the item emitted by the current {@code Observable} and the * next item of the {@code Iterable} returned for that original item by the {@code mapper} * @return the new {@code Observable} instance * @throws NullPointerException if {@code mapper} or {@code combiner} is {@code null} * @see ReactiveX operators documentation: FlatMap */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable flatMapIterable(@NonNull Function> mapper, @NonNull BiFunction combiner) { Objects.requireNonNull(mapper, "mapper is null"); Objects.requireNonNull(combiner, "combiner is null"); return flatMap(ObservableInternalHelper.flatMapIntoIterable(mapper), combiner, false, bufferSize(), bufferSize()); } /** * Maps each element of the current {@code Observable} into {@link MaybeSource}s, subscribes to all of them * and merges their {@code onSuccess} values, in no particular order, into a single {@code Observable} sequence. *

* *

*
Scheduler:
*
{@code flatMapMaybe} does not operate by default on a particular {@link Scheduler}.
*
* @param the result value type * @param mapper the function that received each source value and transforms them into {@code MaybeSource}s. * @return the new {@code Observable} instance * @throws NullPointerException if {@code mapper} is {@code null} */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable flatMapMaybe(@NonNull Function> mapper) { return flatMapMaybe(mapper, false); } /** * Maps each element of the current {@code Observable} into {@link MaybeSource}s, subscribes to them * and merges their {@code onSuccess} values, in no particular order, into a single {@code Observable} sequence, * optionally delaying all errors. *

* *

*
Scheduler:
*
{@code flatMapMaybe} does not operate by default on a particular {@link Scheduler}.
*
* @param the result value type * @param mapper the function that received each source value and transforms them into {@code MaybeSource}s. * @param delayErrors if {@code true}, errors from the upstream and inner {@code MaybeSource}s are delayed until all of them * terminate. * @return the new {@code Observable} instance * @throws NullPointerException if {@code mapper} is {@code null} */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable flatMapMaybe(@NonNull Function> mapper, boolean delayErrors) { Objects.requireNonNull(mapper, "mapper is null"); return RxJavaPlugins.onAssembly(new ObservableFlatMapMaybe<>(this, mapper, delayErrors)); } /** * Maps each element of the current {@code Observable} into {@link SingleSource}s, subscribes to all of them * and merges their {@code onSuccess} values, in no particular order, into a single {@code Observable} sequence. *

* *

*
Scheduler:
*
{@code flatMapSingle} does not operate by default on a particular {@link Scheduler}.
*
* @param the result value type * @param mapper the function that received each source value and transforms them into {@code SingleSource}s. * @return the new {@code Observable} instance * @throws NullPointerException if {@code mapper} is {@code null} */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable flatMapSingle(@NonNull Function> mapper) { return flatMapSingle(mapper, false); } /** * Maps each element of the current {@code Observable} into {@link SingleSource}s, subscribes to them * and merges their {@code onSuccess} values, in no particular order, into a single {@code Observable} sequence, * optionally delaying all errors. *

* *

*
Scheduler:
*
{@code flatMapSingle} does not operate by default on a particular {@link Scheduler}.
*
* @param the result value type * @param mapper the function that received each source value and transforms them into {@code SingleSource}s. * @param delayErrors if {@code true}, errors from the upstream and inner {@code SingleSource}s are delayed until each of them * terminates. * @return the new {@code Observable} instance * @throws NullPointerException if {@code mapper} is {@code null} */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable flatMapSingle(@NonNull Function> mapper, boolean delayErrors) { Objects.requireNonNull(mapper, "mapper is null"); return RxJavaPlugins.onAssembly(new ObservableFlatMapSingle<>(this, mapper, delayErrors)); } /** * Subscribes to the {@link ObservableSource} and calls a {@link Consumer} for each item of the current {@code Observable} * on its emission thread. *

* *

* Alias to {@link #subscribe(Consumer)} *

*
Scheduler:
*
{@code forEach} does not operate by default on a particular {@link Scheduler}.
*
* * @param onNext * the {@code Consumer} to execute for each item. * @return * a {@link Disposable} that allows disposing the sequence if the current {@code Observable} runs asynchronously * @throws NullPointerException * if {@code onNext} is {@code null} * @see ReactiveX operators documentation: Subscribe */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Disposable forEach(@NonNull Consumer onNext) { return subscribe(onNext); } /** * Subscribes to the {@link ObservableSource} and calls a {@link Predicate} for each item of the current {@code Observable}, * on its emission thread, until the predicate returns {@code false}. *

* *

* If the {@code Observable} emits an error, it is wrapped into an * {@link OnErrorNotImplementedException} * and routed to the {@link RxJavaPlugins#onError(Throwable)} handler. *

*
Scheduler:
*
{@code forEachWhile} does not operate by default on a particular {@link Scheduler}.
*
* * @param onNext * the {@code Predicate} to execute for each item. * @return * a {@link Disposable} that allows disposing the sequence if the current {@code Observable} runs asynchronously * @throws NullPointerException * if {@code onNext} is {@code null} * @see ReactiveX operators documentation: Subscribe */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Disposable forEachWhile(@NonNull Predicate onNext) { return forEachWhile(onNext, Functions.ON_ERROR_MISSING, Functions.EMPTY_ACTION); } /** * Subscribes to the {@link ObservableSource} and calls a {@link Predicate} for each item or a {@link Consumer} with the error * of the current {@code Observable}, on their original emission threads, until the predicate returns {@code false}. *
*
Scheduler:
*
{@code forEachWhile} does not operate by default on a particular {@link Scheduler}.
*
* * @param onNext * the {@code Predicate} to execute for each item. * @param onError * the {@code Consumer} to execute when an error is emitted. * @return * a {@link Disposable} that allows disposing the sequence if the current {@code Observable} runs asynchronously * @throws NullPointerException * if {@code onNext} or {@code onError} is {@code null} * @see ReactiveX operators documentation: Subscribe */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Disposable forEachWhile(@NonNull Predicate onNext, @NonNull Consumer onError) { return forEachWhile(onNext, onError, Functions.EMPTY_ACTION); } /** * Subscribes to the {@link ObservableSource} and calls a {@link Predicate} for each item, a {@link Consumer} with the error * or an {@link Action} upon completion of the current {@code Observable}, on their original emission threads, * until the predicate returns {@code false}. *
*
Scheduler:
*
{@code forEachWhile} does not operate by default on a particular {@link Scheduler}.
*
* * @param onNext * the {@code Predicate} to execute for each item. * @param onError * the {@code Consumer} to execute when an error is emitted. * @param onComplete * the {@code Action} to execute when completion is signaled. * @return * a {@link Disposable} that allows disposing the sequence if the current {@code Observable} runs asynchronously * @throws NullPointerException * if {@code onNext} or {@code onError} or {@code onComplete} is {@code null} * @see ReactiveX operators documentation: Subscribe */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Disposable forEachWhile(@NonNull Predicate onNext, @NonNull Consumer onError, @NonNull Action onComplete) { Objects.requireNonNull(onNext, "onNext is null"); Objects.requireNonNull(onError, "onError is null"); Objects.requireNonNull(onComplete, "onComplete is null"); ForEachWhileObserver o = new ForEachWhileObserver<>(onNext, onError, onComplete); subscribe(o); return o; } /** * Groups the items emitted by the current {@code Observable} according to a specified criterion, and emits these * grouped items as {@link GroupedObservable}s. *

* *

* Each emitted {@code GroupedObservable} allows only a single {@link Observer} to subscribe to it during its * lifetime and if this {@code Observer} calls {@code dispose()} before the * source terminates, the next emission by the source having the same key will trigger a new * {@code GroupedObservable} emission. *

* Note: A {@code GroupedObservable} will cache the items it is to emit until such time as it * is subscribed to. For this reason, in order to avoid memory leaks, you should not simply ignore those * {@code GroupedObservable}s that do not concern you. Instead, you can signal to them that they may * discard their buffers by applying an operator like {@link #ignoreElements} to them. *

* Note also that ignoring groups or subscribing later (i.e., on another thread) will result in * so-called group abandonment where a group will only contain one element and the group will be * re-created over and over as new upstream items trigger a new group. The behavior is * a trade-off between no-dataloss, upstream cancellation and excessive group creation. * *

*
Scheduler:
*
{@code groupBy} does not operate by default on a particular {@link Scheduler}.
*
* * @param keySelector * a function that extracts the key for each item * @param * the key type * @return the new {@code Observable} instance * @throws NullPointerException if {@code keySelector} is {@code null} * @see ReactiveX operators documentation: GroupBy */ @SuppressWarnings({ "unchecked", "rawtypes" }) @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable> groupBy(@NonNull Function keySelector) { return groupBy(keySelector, (Function)Functions.identity(), false, bufferSize()); } /** * Groups the items emitted by the current {@code Observable} according to a specified criterion, and emits these * grouped items as {@link GroupedObservable}s. *

* *

* Each emitted {@code GroupedObservable} allows only a single {@link Observer} to subscribe to it during its * lifetime and if this {@code Observer} calls {@code dispose()} before the * source terminates, the next emission by the source having the same key will trigger a new * {@code GroupedObservable} emission. *

* Note: A {@code GroupedObservable} will cache the items it is to emit until such time as it * is subscribed to. For this reason, in order to avoid memory leaks, you should not simply ignore those * {@code GroupedObservable}s that do not concern you. Instead, you can signal to them that they may * discard their buffers by applying an operator like {@link #ignoreElements} to them. *

* Note also that ignoring groups or subscribing later (i.e., on another thread) will result in * so-called group abandonment where a group will only contain one element and the group will be * re-created over and over as new upstream items trigger a new group. The behavior is * a trade-off between no-dataloss, upstream cancellation and excessive group creation. * *

*
Scheduler:
*
{@code groupBy} does not operate by default on a particular {@link Scheduler}.
*
* * @param keySelector * a function that extracts the key for each item * @param * the key type * @param delayError * if {@code true}, the exception from the current {@code Observable} is delayed in each group until that specific group emitted * the normal values; if {@code false}, the exception bypasses values in the groups and is reported immediately. * @return the new {@code Observable} instance * @throws NullPointerException if {@code keySelector} is {@code null} * @see ReactiveX operators documentation: GroupBy */ @SuppressWarnings({ "unchecked", "rawtypes" }) @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable> groupBy(@NonNull Function keySelector, boolean delayError) { return groupBy(keySelector, (Function)Functions.identity(), delayError, bufferSize()); } /** * Groups the items emitted by the current {@code Observable} according to a specified criterion, and emits these * grouped items as {@link GroupedObservable}s. *

* *

* Each emitted {@code GroupedObservable} allows only a single {@link Observer} to subscribe to it during its * lifetime and if this {@code Observer} calls {@code dispose()} before the * source terminates, the next emission by the source having the same key will trigger a new * {@code GroupedObservable} emission. *

* Note: A {@code GroupedObservable} will cache the items it is to emit until such time as it * is subscribed to. For this reason, in order to avoid memory leaks, you should not simply ignore those * {@code GroupedObservable}s that do not concern you. Instead, you can signal to them that they may * discard their buffers by applying an operator like {@link #ignoreElements} to them. *

* Note also that ignoring groups or subscribing later (i.e., on another thread) will result in * so-called group abandonment where a group will only contain one element and the group will be * re-created over and over as new upstream items trigger a new group. The behavior is * a trade-off between no-dataloss, upstream cancellation and excessive group creation. * *

*
Scheduler:
*
{@code groupBy} does not operate by default on a particular {@link Scheduler}.
*
* * @param keySelector * a function that extracts the key for each item * @param valueSelector * a function that extracts the return element for each item * @param * the key type * @param * the element type * @return the new {@code Observable} instance * @throws NullPointerException if {@code keySelector} or {@code valueSelector} is {@code null} * @see ReactiveX operators documentation: GroupBy */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable> groupBy(@NonNull Function keySelector, Function valueSelector) { return groupBy(keySelector, valueSelector, false, bufferSize()); } /** * Groups the items emitted by the current {@code Observable} according to a specified criterion, and emits these * grouped items as {@link GroupedObservable}s. *

* *

* Each emitted {@code GroupedObservable} allows only a single {@link Observer} to subscribe to it during its * lifetime and if this {@code Observer} calls {@code dispose()} before the * source terminates, the next emission by the source having the same key will trigger a new * {@code GroupedObservable} emission. *

* Note: A {@code GroupedObservable} will cache the items it is to emit until such time as it * is subscribed to. For this reason, in order to avoid memory leaks, you should not simply ignore those * {@code GroupedObservable}s that do not concern you. Instead, you can signal to them that they may * discard their buffers by applying an operator like {@link #ignoreElements} to them. *

* Note also that ignoring groups or subscribing later (i.e., on another thread) will result in * so-called group abandonment where a group will only contain one element and the group will be * re-created over and over as new upstream items trigger a new group. The behavior is * a trade-off between no-dataloss, upstream cancellation and excessive group creation. * *

*
Scheduler:
*
{@code groupBy} does not operate by default on a particular {@link Scheduler}.
*
* * @param keySelector * a function that extracts the key for each item * @param valueSelector * a function that extracts the return element for each item * @param * the key type * @param * the element type * @param delayError * if {@code true}, the exception from the current {@code Observable} is delayed in each group until that specific group emitted * the normal values; if {@code false}, the exception bypasses values in the groups and is reported immediately. * @return the new {@code Observable} instance * @throws NullPointerException if {@code keySelector} or {@code valueSelector} is {@code null} * @see ReactiveX operators documentation: GroupBy */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable> groupBy(@NonNull Function keySelector, @NonNull Function valueSelector, boolean delayError) { return groupBy(keySelector, valueSelector, delayError, bufferSize()); } /** * Groups the items emitted by the current {@code Observable} according to a specified criterion, and emits these * grouped items as {@link GroupedObservable}s. *

* *

* Each emitted {@code GroupedObservable} allows only a single {@link Observer} to subscribe to it during its * lifetime and if this {@code Observer} calls {@code dispose()} before the * source terminates, the next emission by the source having the same key will trigger a new * {@code GroupedObservable} emission. *

* Note: A {@code GroupedObservable} will cache the items it is to emit until such time as it * is subscribed to. For this reason, in order to avoid memory leaks, you should not simply ignore those * {@code GroupedObservable}s that do not concern you. Instead, you can signal to them that they may * discard their buffers by applying an operator like {@link #ignoreElements} to them. *

* Note also that ignoring groups or subscribing later (i.e., on another thread) will result in * so-called group abandonment where a group will only contain one element and the group will be * re-created over and over as new upstream items trigger a new group. The behavior is * a trade-off between no-dataloss, upstream cancellation and excessive group creation. * *

*
Scheduler:
*
{@code groupBy} does not operate by default on a particular {@link Scheduler}.
*
* * @param keySelector * a function that extracts the key for each item * @param valueSelector * a function that extracts the return element for each item * @param delayError * if {@code true}, the exception from the current {@code Observable} is delayed in each group until that specific group emitted * the normal values; if {@code false}, the exception bypasses values in the groups and is reported immediately. * @param bufferSize * the hint for how many {@code GroupedObservable}s and element in each {@code GroupedObservable} should be buffered * @param * the key type * @param * the element type * @return the new {@code Observable} instance * @throws NullPointerException if {@code keySelector} or {@code valueSelector} is {@code null} * @throws IllegalArgumentException if {@code bufferSize} is non-positive * @see ReactiveX operators documentation: GroupBy */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable> groupBy(@NonNull Function keySelector, @NonNull Function valueSelector, boolean delayError, int bufferSize) { Objects.requireNonNull(keySelector, "keySelector is null"); Objects.requireNonNull(valueSelector, "valueSelector is null"); ObjectHelper.verifyPositive(bufferSize, "bufferSize"); return RxJavaPlugins.onAssembly(new ObservableGroupBy<>(this, keySelector, valueSelector, bufferSize, delayError)); } /** * Returns an {@code Observable} that correlates two {@link ObservableSource}s when they overlap in time and groups the results. *

* There are no guarantees in what order the items get combined when multiple * items from one or both source {@code ObservableSource}s overlap. *

* *

*
Scheduler:
*
{@code groupJoin} does not operate by default on a particular {@link Scheduler}.
*
* * @param the value type of the right {@code ObservableSource} source * @param the element type of the left duration {@code ObservableSource}s * @param the element type of the right duration {@code ObservableSource}s * @param the result type * @param other * the other {@code ObservableSource} to correlate items from the current {@code Observable} with * @param leftEnd * a function that returns an {@code ObservableSource} whose emissions indicate the duration of the values of * the current {@code Observable} * @param rightEnd * a function that returns an {@code ObservableSource} whose emissions indicate the duration of the values of * the {@code right} {@code ObservableSource} * @param resultSelector * a function that takes an item emitted by each {@code ObservableSource} and returns the value to be emitted * by the resulting {@code Observable} * @return the new {@code Observable} instance * @throws NullPointerException if {@code other}, {@code leftEnd}, {@code rightEnd} or {@code resultSelector} is {@code null} * @see ReactiveX operators documentation: Join */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable groupJoin( @NonNull ObservableSource other, @NonNull Function> leftEnd, @NonNull Function> rightEnd, @NonNull BiFunction, ? extends R> resultSelector ) { Objects.requireNonNull(other, "other is null"); Objects.requireNonNull(leftEnd, "leftEnd is null"); Objects.requireNonNull(rightEnd, "rightEnd is null"); Objects.requireNonNull(resultSelector, "resultSelector is null"); return RxJavaPlugins.onAssembly(new ObservableGroupJoin<>( this, other, leftEnd, rightEnd, resultSelector)); } /** * Hides the identity of the current {@code Observable} and its {@link Disposable}. *

* Allows hiding extra features such as {@link io.reactivex.rxjava3.subjects.Subject}'s * {@link Observer} methods or preventing certain identity-based * optimizations (fusion). *

* *

*
Scheduler:
*
{@code hide} does not operate by default on a particular {@link Scheduler}.
*
* @return the new {@code Observable} instance * * @since 2.0 */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable hide() { return RxJavaPlugins.onAssembly(new ObservableHide<>(this)); } /** * Ignores all items emitted by the current {@code Observable} and only calls {@code onComplete} or {@code onError}. *

* *

*
Scheduler:
*
{@code ignoreElements} does not operate by default on a particular {@link Scheduler}.
*
* * @return the new {@link Completable} instance * @see ReactiveX operators documentation: IgnoreElements */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Completable ignoreElements() { return RxJavaPlugins.onAssembly(new ObservableIgnoreElementsCompletable<>(this)); } /** * Returns a {@link Single} that emits {@code true} if the current {@code Observable} is empty, otherwise {@code false}. *

* In Rx.Net this is negated as the {@code any} {@link Observer} but we renamed this in RxJava to better match Java * naming idioms. *

* *

*
Scheduler:
*
{@code isEmpty} does not operate by default on a particular {@link Scheduler}.
*
* * @return the new {@code Single} instance * @see ReactiveX operators documentation: Contains */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Single isEmpty() { return all(Functions.alwaysFalse()); } /** * Correlates the items emitted by two {@link ObservableSource}s based on overlapping durations. *

* There are no guarantees in what order the items get combined when multiple * items from one or both source {@code ObservableSource}s overlap. *

* *

*
Scheduler:
*
{@code join} does not operate by default on a particular {@link Scheduler}.
*
* * @param the value type of the right {@code ObservableSource} source * @param the element type of the left duration {@code ObservableSource}s * @param the element type of the right duration {@code ObservableSource}s * @param the result type * @param other * the second {@code ObservableSource} to join items from * @param leftEnd * a function to select a duration for each item emitted by the current {@code Observable}, used to * determine overlap * @param rightEnd * a function to select a duration for each item emitted by the {@code right} {@code ObservableSource}, used to * determine overlap * @param resultSelector * a function that computes an item to be emitted by the resulting {@code Observable} for any two * overlapping items emitted by the two {@code ObservableSource}s * @return the new {@code Observable} instance * @throws NullPointerException if {@code other}, {@code leftEnd}, {@code rightEnd} or {@code resultSelector} is {@code null} * @see ReactiveX operators documentation: Join */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable join( @NonNull ObservableSource other, @NonNull Function> leftEnd, @NonNull Function> rightEnd, @NonNull BiFunction resultSelector ) { Objects.requireNonNull(other, "other is null"); Objects.requireNonNull(leftEnd, "leftEnd is null"); Objects.requireNonNull(rightEnd, "rightEnd is null"); Objects.requireNonNull(resultSelector, "resultSelector is null"); return RxJavaPlugins.onAssembly(new ObservableJoin( this, other, leftEnd, rightEnd, resultSelector)); } /** * Returns a {@link Maybe} that emits the last item emitted by the current {@code Observable} or * completes if the current {@code Observable} is empty. *

* *

*
Scheduler:
*
{@code lastElement} does not operate by default on a particular {@link Scheduler}.
*
* * @return the new {@code Maybe} instance * @see ReactiveX operators documentation: Last */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Maybe lastElement() { return RxJavaPlugins.onAssembly(new ObservableLastMaybe<>(this)); } /** * Returns a {@link Single} that emits only the last item emitted by the current {@code Observable}, or a default item * if the current {@code Observable} completes without emitting any items. *

* *

*
Scheduler:
*
{@code last} does not operate by default on a particular {@link Scheduler}.
*
* * @param defaultItem * the default item to emit if the current {@code Observable} is empty * @return the new {@code Single} instance * @throws NullPointerException if {@code defaultItem} is {@code null} * @see ReactiveX operators documentation: Last */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Single last(@NonNull T defaultItem) { Objects.requireNonNull(defaultItem, "defaultItem is null"); return RxJavaPlugins.onAssembly(new ObservableLastSingle<>(this, defaultItem)); } /** * Returns a {@link Single} that emits only the last item emitted by the current {@code Observable} or * signals a {@link NoSuchElementException} if the current {@code Observable} is empty. *

* *

*
Scheduler:
*
{@code lastOrError} does not operate by default on a particular {@link Scheduler}.
*
* * @return the new {@code Single} instance * @see ReactiveX operators documentation: Last */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Single lastOrError() { return RxJavaPlugins.onAssembly(new ObservableLastSingle<>(this, null)); } /** * This method requires advanced knowledge about building operators, please consider * other standard composition methods first; * Returns an {@code Observable} which, when subscribed to, invokes the {@link ObservableOperator#apply(Observer) apply(Observer)} method * of the provided {@link ObservableOperator} for each individual downstream {@link Observer} and allows the * insertion of a custom operator by accessing the downstream's {@code Observer} during this subscription phase * and providing a new {@code Observer}, containing the custom operator's intended business logic, that will be * used in the subscription process going further upstream. *

* Generally, such a new {@code Observer} will wrap the downstream's {@code Observer} and forwards the * {@code onNext}, {@code onError} and {@code onComplete} events from the upstream directly or according to the * emission pattern the custom operator's business logic requires. In addition, such operator can intercept the * flow control calls of {@code dispose} and {@code isDisposed} that would have traveled upstream and perform * additional actions depending on the same business logic requirements. *

* Example: *


     * // Step 1: Create the consumer type that will be returned by the ObservableOperator.apply():
     *
     * public final class CustomObserver<T> implements Observer<T>, Disposable {
     *
     *     // The downstream's Observer that will receive the onXXX events
     *     final Observer<? super String> downstream;
     *
     *     // The connection to the upstream source that will call this class' onXXX methods
     *     Disposable upstream;
     *
     *     // The constructor takes the downstream subscriber and usually any other parameters
     *     public CustomObserver(Observer<? super String> downstream) {
     *         this.downstream = downstream;
     *     }
     *
     *     // In the subscription phase, the upstream sends a Disposable to this class
     *     // and subsequently this class has to send a Disposable to the downstream.
     *     // Note that relaying the upstream's Disposable directly is not allowed in RxJava
     *     @Override
     *     public void onSubscribe(Disposable d) {
     *         if (upstream != null) {
     *             d.dispose();
     *         } else {
     *             upstream = d;
     *             downstream.onSubscribe(this);
     *         }
     *     }
     *
     *     // The upstream calls this with the next item and the implementation's
     *     // responsibility is to emit an item to the downstream based on the intended
     *     // business logic, or if it can't do so for the particular item,
     *     // request more from the upstream
     *     @Override
     *     public void onNext(T item) {
     *         String str = item.toString();
     *         if (str.length() < 2) {
     *             downstream.onNext(str);
     *         }
     *         // Observable doesn't support backpressure, therefore, there is no
     *         // need or opportunity to call upstream.request(1) if an item
     *         // is not produced to the downstream
     *     }
     *
     *     // Some operators may handle the upstream's error while others
     *     // could just forward it to the downstream.
     *     @Override
     *     public void onError(Throwable throwable) {
     *         downstream.onError(throwable);
     *     }
     *
     *     // When the upstream completes, usually the downstream should complete as well.
     *     @Override
     *     public void onComplete() {
     *         downstream.onComplete();
     *     }
     *
     *     // Some operators may use their own resources which should be cleaned up if
     *     // the downstream disposes the flow before it completed. Operators without
     *     // resources can simply forward the dispose to the upstream.
     *     // In some cases, a disposed flag may be set by this method so that other parts
     *     // of this class may detect the dispose and stop sending events
     *     // to the downstream.
     *     @Override
     *     public void dispose() {
     *         upstream.dispose();
     *     }
     *
     *     // Some operators may simply forward the call to the upstream while others
     *     // can return the disposed flag set in dispose().
     *     @Override
     *     public boolean isDisposed() {
     *         return upstream.isDisposed();
     *     }
     * }
     *
     * // Step 2: Create a class that implements the ObservableOperator interface and
     * //         returns the custom consumer type from above in its apply() method.
     * //         Such class may define additional parameters to be submitted to
     * //         the custom consumer type.
     *
     * final class CustomOperator<T> implements ObservableOperator<String, T> {
     *     @Override
     *     public Observer<T> apply(Observer<? super String> downstream) {
     *         return new CustomObserver<T>(downstream);
     *     }
     * }
     *
     * // Step 3: Apply the custom operator via lift() in a flow by creating an instance of it
     * //         or reusing an existing one.
     *
     * Observable.range(5, 10)
     * .lift(new CustomOperator<Integer>())
     * .test()
     * .assertResult("5", "6", "7", "8", "9");
     * 
*

* Creating custom operators can be complicated and it is recommended one consults the * RxJava wiki: Writing operators page about * the tools, requirements, rules, considerations and pitfalls of implementing them. *

* Note that implementing custom operators via this {@code lift()} method adds slightly more overhead by requiring * an additional allocation and indirection per assembled flows. Instead, extending the abstract {@code Observable} * class and creating an {@link ObservableTransformer} with it is recommended. *

* Note also that it is not possible to stop the subscription phase in {@code lift()} as the {@code apply()} method * requires a non-{@code null} {@code Observer} instance to be returned, which is then unconditionally subscribed to * the current {@code Observable}. For example, if the operator decided there is no reason to subscribe to the * upstream source because of some optimization possibility or a failure to prepare the operator, it still has to * return an {@code Observer} that should immediately dispose the upstream's {@link Disposable} in its * {@code onSubscribe} method. Again, using an {@code ObservableTransformer} and extending the {@code Observable} is * a better option as {@link #subscribeActual} can decide to not subscribe to its upstream after all. *

*
Scheduler:
*
{@code lift} does not operate by default on a particular {@link Scheduler}, however, the * {@code ObservableOperator} may use a {@code Scheduler} to support its own asynchronous behavior.
*
* * @param the output value type * @param lifter the {@code ObservableOperator} that receives the downstream's {@code Observer} and should return * an {@code Observer} with custom behavior to be used as the consumer for the current * {@code Observable}. * @return the new {@code Observable} instance * @throws NullPointerException if {@code lifter} is {@code null} * @see RxJava wiki: Writing operators * @see #compose(ObservableTransformer) */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable lift(@NonNull ObservableOperator lifter) { Objects.requireNonNull(lifter, "lifter is null"); return RxJavaPlugins.onAssembly(new ObservableLift<>(this, lifter)); } /** * Returns an {@code Observable} that applies a specified function to each item emitted by the current {@code Observable} and * emits the results of these function applications. *

* *

*
Scheduler:
*
{@code map} does not operate by default on a particular {@link Scheduler}.
*
* * @param the output type * @param mapper * a function to apply to each item emitted by the current {@code Observable} * @return the new {@code Observable} instance * @throws NullPointerException if {@code mapper} is {@code null} * @see ReactiveX operators documentation: Map */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable map(@NonNull Function mapper) { Objects.requireNonNull(mapper, "mapper is null"); return RxJavaPlugins.onAssembly(new ObservableMap<>(this, mapper)); } /** * Returns an {@code Observable} that represents all of the emissions and notifications from the current * {@code Observable} into emissions marked with their original types within {@link Notification} objects. *

* *

*
Scheduler:
*
{@code materialize} does not operate by default on a particular {@link Scheduler}.
*
* * @return the new {@code Observable} instance * @see ReactiveX operators documentation: Materialize * @see #dematerialize(Function) */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable> materialize() { return RxJavaPlugins.onAssembly(new ObservableMaterialize<>(this)); } /** * Flattens the current {@code Observable} and another {@link ObservableSource} into a single {@code Observable} sequence, without any transformation. *

* *

* You can combine items emitted by multiple {@code ObservableSource}s so that they appear as a single {@code ObservableSource}, by * using the {@code mergeWith} method. *

*
Scheduler:
*
{@code mergeWith} does not operate by default on a particular {@link Scheduler}.
*
* * @param other * an {@code ObservableSource} to be merged * @return the new {@code Observable} instance * @throws NullPointerException if {@code other} is {@code null} * @see ReactiveX operators documentation: Merge */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable mergeWith(@NonNull ObservableSource other) { Objects.requireNonNull(other, "other is null"); return merge(this, other); } /** * Merges the sequence of items of the current {@code Observable} with the success value of the other {@link SingleSource}. *

* *

* The success value of the other {@code SingleSource} can get interleaved at any point of the current * {@code Observable} sequence. *

*
Scheduler:
*
{@code mergeWith} does not operate by default on a particular {@link Scheduler}.
*
*

History: 2.1.10 - experimental * @param other the {@code SingleSource} whose success value to merge with * @return the new {@code Observable} instance * @throws NullPointerException if {@code other} is {@code null} * @since 2.2 */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable mergeWith(@NonNull SingleSource other) { Objects.requireNonNull(other, "other is null"); return RxJavaPlugins.onAssembly(new ObservableMergeWithSingle<>(this, other)); } /** * Merges the sequence of items of the current {@code Observable} with the success value of the other {@link MaybeSource} * or waits both to complete normally if the {@code MaybeSource} is empty. *

* *

* The success value of the other {@code MaybeSource} can get interleaved at any point of the current * {@code Observable} sequence. *

*
Scheduler:
*
{@code mergeWith} does not operate by default on a particular {@link Scheduler}.
*
*

History: 2.1.10 - experimental * @param other the {@code MaybeSource} which provides a success value to merge with or completes * @return the new {@code Observable} instance * @throws NullPointerException if {@code other} is {@code null} * @since 2.2 */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable mergeWith(@NonNull MaybeSource other) { Objects.requireNonNull(other, "other is null"); return RxJavaPlugins.onAssembly(new ObservableMergeWithMaybe<>(this, other)); } /** * Relays the items of the current {@code Observable} and completes only when the other {@link CompletableSource} completes * as well. *

* *

*
Scheduler:
*
{@code mergeWith} does not operate by default on a particular {@link Scheduler}.
*
*

History: 2.1.10 - experimental * @param other the {@code CompletableSource} to await for completion * @return the new {@code Observable} instance * @throws NullPointerException if {@code other} is {@code null} * @since 2.2 */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable mergeWith(@NonNull CompletableSource other) { Objects.requireNonNull(other, "other is null"); return RxJavaPlugins.onAssembly(new ObservableMergeWithCompletable<>(this, other)); } /** * Returns an {@code Observable} to perform the current {@code Observable}'s emissions and notifications on a specified {@link Scheduler}, * asynchronously with an unbounded buffer with {@link Flowable#bufferSize()} "island size". * *

Note that {@code onError} notifications will cut ahead of {@code onNext} notifications on the emission thread if {@code Scheduler} is truly * asynchronous. If strict event ordering is required, consider using the {@link #observeOn(Scheduler, boolean)} overload. *

* *

* This operator keeps emitting as many signals as it can on the given {@code Scheduler}'s worker thread, * which may result in a longer than expected occupation of this thread. In other terms, * it does not allow per-signal fairness in case the worker runs on a shared underlying thread. * If such fairness and signal/work interleaving is preferred, use the delay operator with zero time instead. *

*
Scheduler:
*
You specify which {@code Scheduler} this operator will use.
*
*

"Island size" indicates how large chunks the unbounded buffer allocates to store the excess elements waiting to be consumed * on the other side of the asynchronous boundary. * * @param scheduler * the {@code Scheduler} to notify {@link Observer}s on * @return the new {@code Observable} instance * @throws NullPointerException if {@code scheduler} is {@code null} * @see ReactiveX operators documentation: ObserveOn * @see RxJava Threading Examples * @see #subscribeOn * @see #observeOn(Scheduler, boolean) * @see #observeOn(Scheduler, boolean, int) * @see #delay(long, TimeUnit, Scheduler) */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.CUSTOM) @NonNull public final Observable observeOn(@NonNull Scheduler scheduler) { return observeOn(scheduler, false, bufferSize()); } /** * Returns an {@code Observable} to perform the current {@code Observable}'s emissions and notifications on a specified {@link Scheduler}, * asynchronously with an unbounded buffer with {@link Flowable#bufferSize()} "island size" and optionally delays {@code onError} notifications. *

* *

* This operator keeps emitting as many signals as it can on the given {@code Scheduler}'s worker thread, * which may result in a longer than expected occupation of this thread. In other terms, * it does not allow per-signal fairness in case the worker runs on a shared underlying thread. * If such fairness and signal/work interleaving is preferred, use the delay operator with zero time instead. *

*
Scheduler:
*
You specify which {@code Scheduler} this operator will use.
*
*

"Island size" indicates how large chunks the unbounded buffer allocates to store the excess elements waiting to be consumed * on the other side of the asynchronous boundary. * * @param scheduler * the {@code Scheduler} to notify {@link Observer}s on * @param delayError * indicates if the {@code onError} notification may not cut ahead of {@code onNext} notification on the other side of the * scheduling boundary. If {@code true}, a sequence ending in {@code onError} will be replayed in the same order as was received * from the current {@code Observable} * @return the new {@code Observable} instance * @throws NullPointerException if {@code scheduler} is {@code null} * @see ReactiveX operators documentation: ObserveOn * @see RxJava Threading Examples * @see #subscribeOn * @see #observeOn(Scheduler) * @see #observeOn(Scheduler, boolean, int) * @see #delay(long, TimeUnit, Scheduler, boolean) */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.CUSTOM) @NonNull public final Observable observeOn(@NonNull Scheduler scheduler, boolean delayError) { return observeOn(scheduler, delayError, bufferSize()); } /** * Returns an {@code Observable} to perform the current {@code Observable}'s emissions and notifications on a specified {@link Scheduler}, * asynchronously with an unbounded buffer of configurable "island size" and optionally delays {@code onError} notifications. *

* *

* This operator keeps emitting as many signals as it can on the given {@code Scheduler}'s worker thread, * which may result in a longer than expected occupation of this thread. In other terms, * it does not allow per-signal fairness in case the worker runs on a shared underlying thread. * If such fairness and signal/work interleaving is preferred, use the delay operator with zero time instead. *

*
Scheduler:
*
You specify which {@code Scheduler} this operator will use.
*
*

"Island size" indicates how large chunks the unbounded buffer allocates to store the excess elements waiting to be consumed * on the other side of the asynchronous boundary. Values below 16 are not recommended in performance sensitive scenarios. * * @param scheduler * the {@code Scheduler} to notify {@link Observer}s on * @param delayError * indicates if the {@code onError} notification may not cut ahead of {@code onNext} notification on the other side of the * scheduling boundary. If {@code true} a sequence ending in {@code onError} will be replayed in the same order as was received * from upstream * @param bufferSize the size of the buffer. * @return the new {@code Observable} instance * @throws NullPointerException if {@code scheduler} is {@code null} * @throws IllegalArgumentException if {@code bufferSize} is non-positive * @see ReactiveX operators documentation: ObserveOn * @see RxJava Threading Examples * @see #subscribeOn * @see #observeOn(Scheduler) * @see #observeOn(Scheduler, boolean) * @see #delay(long, TimeUnit, Scheduler, boolean) */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.CUSTOM) @NonNull public final Observable observeOn(@NonNull Scheduler scheduler, boolean delayError, int bufferSize) { Objects.requireNonNull(scheduler, "scheduler is null"); ObjectHelper.verifyPositive(bufferSize, "bufferSize"); return RxJavaPlugins.onAssembly(new ObservableObserveOn<>(this, scheduler, delayError, bufferSize)); } /** * Filters the items emitted by the current {@code Observable}, only emitting those of the specified type. *

* *

*
Scheduler:
*
{@code ofType} does not operate by default on a particular {@link Scheduler}.
*
* * @param the output type * @param clazz * the class type to filter the items emitted by the current {@code Observable} * @return the new {@code Observable} instance * @throws NullPointerException if {@code clazz} is {@code null} * @see ReactiveX operators documentation: Filter */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable ofType(@NonNull Class clazz) { Objects.requireNonNull(clazz, "clazz is null"); return filter(Functions.isInstanceOf(clazz)).cast(clazz); } /** * Returns an {@code Observable} instance that if the current {@code Observable} emits an error, it will emit an {@code onComplete} * and swallow the throwable. *

* *

*
Scheduler:
*
{@code onErrorComplete} does not operate by default on a particular {@link Scheduler}.
*
* @return the new {@code Observable} instance * @since 3.0.0 */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable onErrorComplete() { return onErrorComplete(Functions.alwaysTrue()); } /** * Returns an {@code Observable} instance that if the current {@code Observable} emits an error and the predicate returns * {@code true}, it will emit an {@code onComplete} and swallow the throwable. *

* *

*
Scheduler:
*
{@code onErrorComplete} does not operate by default on a particular {@link Scheduler}.
*
* @param predicate the predicate to call when an {@link Throwable} is emitted which should return {@code true} * if the {@code Throwable} should be swallowed and replaced with an {@code onComplete}. * @return the new {@code Observable} instance * @throws NullPointerException if {@code predicate} is {@code null} * @since 3.0.0 */ @CheckReturnValue @NonNull @SchedulerSupport(SchedulerSupport.NONE) public final Observable onErrorComplete(@NonNull Predicate predicate) { Objects.requireNonNull(predicate, "predicate is null"); return RxJavaPlugins.onAssembly(new ObservableOnErrorComplete<>(this, predicate)); } /** * Resumes the flow with an {@link ObservableSource} returned for the failure {@link Throwable} of the current {@code Observable} by a * function instead of signaling the error via {@code onError}. *

* *

* By default, when an {@code ObservableSource} encounters an error that prevents it from emitting the expected item to * its {@link Observer}, the {@code ObservableSource} invokes its {@code Observer}'s {@code onError} method, and then quits * without invoking any more of its {@code Observer}'s methods. The {@code onErrorResumeNext} method changes this * behavior. If you pass a function that returns an {@code ObservableSource} ({@code resumeFunction}) to * {@code onErrorResumeNext}, if the original {@code ObservableSource} encounters an error, instead of invoking its * {@code Observer}'s {@code onError} method, it will instead relinquish control to the {@code ObservableSource} returned from * {@code resumeFunction}, which will invoke the {@code Observer}'s {@link Observer#onNext onNext} method if it is * able to do so. In such a case, because no {@code ObservableSource} necessarily invokes {@code onError}, the {@code Observer} * may never know that an error happened. *

* You can use this to prevent errors from propagating or to supply fallback data should errors be * encountered. *

*
Scheduler:
*
{@code onErrorResumeNext} does not operate by default on a particular {@link Scheduler}.
*
* * @param fallbackSupplier * a function that returns an {@code ObservableSource} that will take over if the current {@code Observable} encounters * an error * @return the new {@code Observable} instance * @throws NullPointerException if {@code fallbackSupplier} is {@code null} * @see ReactiveX operators documentation: Catch */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable onErrorResumeNext(@NonNull Function> fallbackSupplier) { Objects.requireNonNull(fallbackSupplier, "fallbackSupplier is null"); return RxJavaPlugins.onAssembly(new ObservableOnErrorNext<>(this, fallbackSupplier)); } /** * Resumes the flow with the given {@link ObservableSource} when the current {@code Observable} fails instead of * signaling the error via {@code onError}. *

* *

* By default, when an {@code ObservableSource} encounters an error that prevents it from emitting the expected item to * its {@link Observer}, the {@code ObservableSource} invokes its {@code Observer}'s {@code onError} method, and then quits * without invoking any more of its {@code Observer}'s methods. The {@code onErrorResumeWith} method changes this * behavior. If you pass another {@code ObservableSource} ({@code next}) to an {@code ObservableSource}'s * {@code onErrorResumeWith} method, if the original {@code ObservableSource} encounters an error, instead of invoking its * {@code Observer}'s {@code onError} method, it will instead relinquish control to {@code next} which * will invoke the {@code Observer}'s {@link Observer#onNext onNext} method if it is able to do so. In such a case, * because no {@code ObservableSource} necessarily invokes {@code onError}, the {@code Observer} may never know that an error * happened. *

* You can use this to prevent errors from propagating or to supply fallback data should errors be * encountered. *

*
Scheduler:
*
{@code onErrorResumeWith} does not operate by default on a particular {@link Scheduler}.
*
* * @param fallback * the next {@code ObservableSource} source that will take over if the current {@code Observable} encounters * an error * @return the new {@code Observable} instance * @throws NullPointerException if {@code fallback} is {@code null} * @see ReactiveX operators documentation: Catch */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable onErrorResumeWith(@NonNull ObservableSource fallback) { Objects.requireNonNull(fallback, "fallback is null"); return onErrorResumeNext(Functions.justFunction(fallback)); } /** * Ends the flow with a last item returned by a function for the {@link Throwable} error signaled by the current * {@code Observable} instead of signaling the error via {@code onError}. *

* *

* By default, when an {@link ObservableSource} encounters an error that prevents it from emitting the expected item to * its {@link Observer}, the {@code ObservableSource} invokes its {@code Observer}'s {@code onError} method, and then quits * without invoking any more of its {@code Observer}'s methods. The {@code onErrorReturn} method changes this * behavior. If you pass a function ({@code resumeFunction}) to an {@code ObservableSource}'s {@code onErrorReturn} * method, if the original {@code ObservableSource} encounters an error, instead of invoking its {@code Observer}'s * {@code onError} method, it will instead emit the return value of {@code resumeFunction}. *

* You can use this to prevent errors from propagating or to supply fallback data should errors be * encountered. *

*
Scheduler:
*
{@code onErrorReturn} does not operate by default on a particular {@link Scheduler}.
*
* * @param itemSupplier * a function that returns a single value that will be emitted along with a regular {@code onComplete} in case * the current {@code Observable} signals an {@code onError} event * @return the new {@code Observable} instance * @throws NullPointerException if {@code itemSupplier} is {@code null} * @see ReactiveX operators documentation: Catch */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable onErrorReturn(@NonNull Function itemSupplier) { Objects.requireNonNull(itemSupplier, "itemSupplier is null"); return RxJavaPlugins.onAssembly(new ObservableOnErrorReturn<>(this, itemSupplier)); } /** * Ends the flow with the given last item when the current {@code Observable} fails instead of signaling the error via {@code onError}. *

* *

* By default, when an {@link ObservableSource} encounters an error that prevents it from emitting the expected item to * its {@link Observer}, the {@code ObservableSource} invokes its {@code Observer}'s {@code onError} method, and then quits * without invoking any more of its {@code Observer}'s methods. The {@code onErrorReturn} method changes this * behavior. If you pass a function ({@code resumeFunction}) to an {@code ObservableSource}'s {@code onErrorReturn} * method, if the original {@code ObservableSource} encounters an error, instead of invoking its {@code Observer}'s * {@code onError} method, it will instead emit the return value of {@code resumeFunction}. *

* You can use this to prevent errors from propagating or to supply fallback data should errors be * encountered. *

*
Scheduler:
*
{@code onErrorReturnItem} does not operate by default on a particular {@link Scheduler}.
*
* * @param item * the value that is emitted along with a regular {@code onComplete} in case the current * {@code Observable} signals an exception * @return the new {@code Observable} instance * @throws NullPointerException if {@code item} is {@code null} * @see ReactiveX operators documentation: Catch */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable onErrorReturnItem(@NonNull T item) { Objects.requireNonNull(item, "item is null"); return onErrorReturn(Functions.justFunction(item)); } /** * Nulls out references to the upstream producer and downstream {@link Observer} if * the sequence is terminated or downstream calls {@code dispose()}. *

* *

*
Scheduler:
*
{@code onTerminateDetach} does not operate by default on a particular {@link Scheduler}.
*
* @return the new {@code Observable} instance * the sequence is terminated or downstream calls {@code dispose()} * @since 2.0 */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable onTerminateDetach() { return RxJavaPlugins.onAssembly(new ObservableDetach<>(this)); } /** * Returns a {@link ConnectableObservable}, which is a variety of {@link ObservableSource} that waits until its * {@link ConnectableObservable#connect connect} method is called before it begins emitting items to those * {@link Observer}s that have subscribed to it. *

* *

*
Scheduler:
*
{@code publish} does not operate by default on a particular {@link Scheduler}.
*
* * @return the new {@code ConnectableObservable} instance * @see ReactiveX operators documentation: Publish */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final ConnectableObservable publish() { return RxJavaPlugins.onAssembly(new ObservablePublish<>(this)); } /** * Returns an {@code Observable} that emits the results of invoking a specified selector on items emitted by a * {@link ConnectableObservable} that shares a single subscription to the current {@code Observable} sequence. *

* *

*
Scheduler:
*
{@code publish} does not operate by default on a particular {@link Scheduler}.
*
* * @param * the type of items emitted by the resulting {@code Observable} * @param selector * a function that can use the multicasted source sequence as many times as needed, without * causing multiple subscriptions to the source sequence. {@link Observer}s to the given source will * receive all notifications of the source from the time of the subscription forward. * @return the new {@code Observable} instance * @throws NullPointerException if {@code selector} is {@code null} * @see ReactiveX operators documentation: Publish */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable publish(@NonNull Function, ? extends ObservableSource> selector) { Objects.requireNonNull(selector, "selector is null"); return RxJavaPlugins.onAssembly(new ObservablePublishSelector<>(this, selector)); } /** * Returns a {@link Maybe} that applies a specified accumulator function to the first item emitted by the current * {@code Observable}, then feeds the result of that function along with the second item emitted by the current * {@code Observable} into the same function, and so on until all items have been emitted by the current and finite {@code Observable}, * and emits the final result from the final call to your function as its sole item. *

* *

* This technique, which is called "reduce" here, is sometimes called "aggregate," "fold," "accumulate," * "compress," or "inject" in other programming contexts. Groovy, for instance, has an {@code inject} method * that does a similar operation on lists. *

* Note that this operator requires the upstream to signal {@code onComplete} for the accumulator object to * be emitted. Sources that are infinite and never complete will never emit anything through this * operator and an infinite source may lead to a fatal {@link OutOfMemoryError}. *

*
Scheduler:
*
{@code reduce} does not operate by default on a particular {@link Scheduler}.
*
* * @param reducer * an accumulator function to be invoked on each item emitted by the current {@code Observable}, whose * result will be used in the next accumulator call * @return the new {@code Maybe} instance * @throws NullPointerException if {@code reducer} is {@code null} * @see ReactiveX operators documentation: Reduce * @see Wikipedia: Fold (higher-order function) */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Maybe reduce(@NonNull BiFunction reducer) { Objects.requireNonNull(reducer, "reducer is null"); return RxJavaPlugins.onAssembly(new ObservableReduceMaybe<>(this, reducer)); } /** * Returns a {@link Single} that applies a specified accumulator function to the first item emitted by the current * {@code Observable} and a specified seed value, then feeds the result of that function along with the second item * emitted by the current {@code Observable} into the same function, and so on until all items have been emitted by the * current and finite {@code Observable}, emitting the final result from the final call to your function as its sole item. *

* *

* This technique, which is called "reduce" here, is sometimes called "aggregate," "fold," "accumulate," * "compress," or "inject" in other programming contexts. Groovy, for instance, has an {@code inject} method * that does a similar operation on lists. *

* Note that the {@code seed} is shared among all subscribers to the resulting {@code Observable} * and may cause problems if it is mutable. To make sure each subscriber gets its own value, defer * the application of this operator via {@link #defer(Supplier)}: *


     * ObservableSource<T> source = ...
     * Single.defer(() -> source.reduce(new ArrayList<>(), (list, item) -> list.add(item)));
     *
     * // alternatively, by using compose to stay fluent
     *
     * source.compose(o ->
     *     Observable.defer(() -> o.reduce(new ArrayList<>(), (list, item) -> list.add(item)).toObservable())
     * ).firstOrError();
     *
     * // or, by using reduceWith instead of reduce
     *
     * source.reduceWith(() -> new ArrayList<>(), (list, item) -> list.add(item)));
     * 
*

* Note that this operator requires the upstream to signal {@code onComplete} for the accumulator object to * be emitted. Sources that are infinite and never complete will never emit anything through this * operator and an infinite source may lead to a fatal {@link OutOfMemoryError}. *

*
Scheduler:
*
{@code reduce} does not operate by default on a particular {@link Scheduler}.
*
* * @param the accumulator and output value type * @param seed * the initial (seed) accumulator value * @param reducer * an accumulator function to be invoked on each item emitted by the current {@code Observable}, the * result of which will be used in the next accumulator call * @return the new {@code Single} instance * @throws NullPointerException if {@code seed} or {@code reducer} is {@code null} * @see ReactiveX operators documentation: Reduce * @see Wikipedia: Fold (higher-order function) * @see #reduceWith(Supplier, BiFunction) */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final <@NonNull R> Single reduce(R seed, @NonNull BiFunction reducer) { Objects.requireNonNull(seed, "seed is null"); Objects.requireNonNull(reducer, "reducer is null"); return RxJavaPlugins.onAssembly(new ObservableReduceSeedSingle<>(this, seed, reducer)); } /** * Returns a {@link Single} that applies a specified accumulator function to the first item emitted by the current * {@code Observable} and a seed value derived from calling a specified {@code seedSupplier}, then feeds the result * of that function along with the second item emitted by the current {@code Observable} into the same function, * and so on until all items have been emitted by the current and finite {@code Observable}, emitting the final result * from the final call to your function as its sole item. *

* *

* This technique, which is called "reduce" here, is sometimes called "aggregate," "fold," "accumulate," * "compress," or "inject" in other programming contexts. Groovy, for instance, has an {@code inject} method * that does a similar operation on lists. *

* Note that this operator requires the upstream to signal {@code onComplete} for the accumulator object to * be emitted. Sources that are infinite and never complete will never emit anything through this * operator and an infinite source may lead to a fatal {@link OutOfMemoryError}. *

*
Scheduler:
*
{@code reduceWith} does not operate by default on a particular {@link Scheduler}.
*
* * @param the accumulator and output value type * @param seedSupplier * the {@link Supplier} that provides the initial (seed) accumulator value for each individual {@link Observer} * @param reducer * an accumulator function to be invoked on each item emitted by the current {@code Observable}, the * result of which will be used in the next accumulator call * @return the new {@code Single} instance * @throws NullPointerException if {@code seedSupplier} or {@code reducer} is {@code null} * @see ReactiveX operators documentation: Reduce * @see Wikipedia: Fold (higher-order function) */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final <@NonNull R> Single reduceWith(@NonNull Supplier seedSupplier, @NonNull BiFunction reducer) { Objects.requireNonNull(seedSupplier, "seedSupplier is null"); Objects.requireNonNull(reducer, "reducer is null"); return RxJavaPlugins.onAssembly(new ObservableReduceWithSingle<>(this, seedSupplier, reducer)); } /** * Returns an {@code Observable} that repeats the sequence of items emitted by the current {@code Observable} indefinitely. *

* *

*
Scheduler:
*
{@code repeat} does not operate by default on a particular {@link Scheduler}.
*
* * @return the new {@code Observable} instance * @see ReactiveX operators documentation: Repeat */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable repeat() { return repeat(Long.MAX_VALUE); } /** * Returns an {@code Observable} that repeats the sequence of items emitted by the current {@code Observable} at most * {@code count} times. *

* *

*
Scheduler:
*
{@code repeat} does not operate by default on a particular {@link Scheduler}.
*
* * @param times * the number of times the current {@code Observable} items are repeated, a count of 0 will yield an empty * sequence * @return the new {@code Observable} instance * @throws IllegalArgumentException * if {@code times} is negative * @see ReactiveX operators documentation: Repeat */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable repeat(long times) { if (times < 0) { throw new IllegalArgumentException("times >= 0 required but it was " + times); } if (times == 0) { return empty(); } return RxJavaPlugins.onAssembly(new ObservableRepeat<>(this, times)); } /** * Returns an {@code Observable} that repeats the sequence of items emitted by the current {@code Observable} until * the provided stop function returns {@code true}. *

* *

*
Scheduler:
*
{@code repeatUntil} does not operate by default on a particular {@link Scheduler}.
*
* * @param stop * a boolean supplier that is called when the current {@code Observable} completes; * if it returns {@code true}, the returned {@code Observable} completes; if it returns {@code false}, * the current {@code Observable} is resubscribed. * @return the new {@code Observable} instance * @throws NullPointerException * if {@code stop} is {@code null} * @see ReactiveX operators documentation: Repeat */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable repeatUntil(@NonNull BooleanSupplier stop) { Objects.requireNonNull(stop, "stop is null"); return RxJavaPlugins.onAssembly(new ObservableRepeatUntil<>(this, stop)); } /** * Returns an {@code Observable} that emits the same values as the current {@code Observable} with the exception of an * {@code onComplete}. An {@code onComplete} notification from the source will result in the emission of * a {@code void} item to the {@link ObservableSource} provided as an argument to the {@code notificationHandler} * function. If that {@code ObservableSource} calls {@code onComplete} or {@code onError} then {@code repeatWhen} will * call {@code onComplete} or {@code onError} on the child subscription. Otherwise, the current {@code Observable} * will be resubscribed. *

* *

*
Scheduler:
*
{@code repeatWhen} does not operate by default on a particular {@link Scheduler}.
*
* * @param handler * receives an {@code ObservableSource} of notifications with which a user can complete or error, aborting the repeat. * @return the new {@code Observable} instance * @throws NullPointerException if {@code handler} is {@code null} * @see ReactiveX operators documentation: Repeat */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable repeatWhen(@NonNull Function, ? extends ObservableSource> handler) { Objects.requireNonNull(handler, "handler is null"); return RxJavaPlugins.onAssembly(new ObservableRepeatWhen<>(this, handler)); } /** * Returns a {@link ConnectableObservable} that shares a single subscription to the current {@code Observable} * that will replay all of its items and notifications to any future {@link Observer}. A connectable * {@code Observable} resembles an ordinary {@code Observable}, except that it does not begin emitting items when it is * subscribed to, but only when its {@code connect} method is called. *

* *

*
Scheduler:
*
This version of {@code replay} does not operate by default on a particular {@link Scheduler}.
*
* * @return the new {@code ConnectableObservable} instance * @see ReactiveX operators documentation: Replay */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final ConnectableObservable replay() { return ObservableReplay.createFrom(this); } /** * Returns an {@code Observable} that emits items that are the results of invoking a specified selector on the items * emitted by a {@link ConnectableObservable} that shares a single subscription to the current {@code Observable}. *

* *

*
Scheduler:
*
This version of {@code replay} does not operate by default on a particular {@link Scheduler}.
*
* * @param * the type of items emitted by the resulting {@code Observable} * @param selector * the selector function, which can use the multicasted sequence as many times as needed, without * causing multiple subscriptions to the current {@code Observable} * @return the new {@code Observable} instance * @throws NullPointerException if {@code selector} is {@code null} * @see ReactiveX operators documentation: Replay */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable replay(@NonNull Function, ? extends ObservableSource> selector) { Objects.requireNonNull(selector, "selector is null"); return ObservableReplay.multicastSelector(ObservableInternalHelper.replaySupplier(this), selector); } /** * Returns an {@code Observable} that emits items that are the results of invoking a specified selector on items * emitted by a {@link ConnectableObservable} that shares a single subscription to the current {@code Observable}, * replaying {@code bufferSize} notifications. *

* Note that due to concurrency requirements, {@code replay(bufferSize)} may hold strong references to more than * {@code bufferSize} source emissions. *

* *

*
Scheduler:
*
This version of {@code replay} does not operate by default on a particular {@link Scheduler}.
*
* * @param * the type of items emitted by the resulting {@code Observable} * @param selector * the selector function, which can use the multicasted sequence as many times as needed, without * causing multiple subscriptions to the current {@code Observable} * @param bufferSize * the buffer size that limits the number of items the connectable {@code Observable} can replay * @return the new {@code Observable} instance * @throws NullPointerException if {@code selector} is {@code null} * @throws IllegalArgumentException if {@code bufferSize} is non-positive * @see ReactiveX operators documentation: Replay * @see #replay(Function, int, boolean) */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable replay(@NonNull Function, ? extends ObservableSource> selector, int bufferSize) { Objects.requireNonNull(selector, "selector is null"); ObjectHelper.verifyPositive(bufferSize, "bufferSize"); return ObservableReplay.multicastSelector(ObservableInternalHelper.replaySupplier(this, bufferSize, false), selector); } /** * Returns an {@code Observable} that emits items that are the results of invoking a specified selector on items * emitted by a {@link ConnectableObservable} that shares a single subscription to the current {@code Observable}, * replaying {@code bufferSize} notifications. *

* Note that due to concurrency requirements, {@code replay(bufferSize)} may hold strong references to more than * {@code bufferSize} source emissions. *

* *

*
Scheduler:
*
This version of {@code replay} does not operate by default on a particular {@link Scheduler}.
*
* * @param * the type of items emitted by the resulting {@code Observable} * @param selector * the selector function, which can use the multicasted sequence as many times as needed, without * causing multiple subscriptions to the current {@code Observable} * @param bufferSize * the buffer size that limits the number of items the connectable {@code Observable} can replay * @param eagerTruncate * if {@code true}, whenever the internal buffer is truncated to the given bufferSize, the * oldest item will be guaranteed dereferenced, thus avoiding unexpected retention * @return the new {@code Observable} instance * @throws NullPointerException if {@code selector} is {@code null} * @throws IllegalArgumentException if {@code bufferSize} is non-positive * @see ReactiveX operators documentation: Replay */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable replay(@NonNull Function, ? extends ObservableSource> selector, int bufferSize, boolean eagerTruncate) { Objects.requireNonNull(selector, "selector is null"); ObjectHelper.verifyPositive(bufferSize, "bufferSize"); return ObservableReplay.multicastSelector(ObservableInternalHelper.replaySupplier(this, bufferSize, eagerTruncate), selector); } /** * Returns an {@code Observable} that emits items that are the results of invoking a specified selector on items * emitted by a {@link ConnectableObservable} that shares a single subscription to the current {@code Observable}, * replaying no more than {@code bufferSize} items that were emitted within a specified time window. *

* Note that due to concurrency requirements, {@code replay(bufferSize)} may hold strong references to more than * {@code bufferSize} source emissions. *

* *

*
Scheduler:
*
This version of {@code replay} operates by default on the {@code computation} {@link Scheduler}.
*
* * @param * the type of items emitted by the resulting {@code Observable} * @param selector * a selector function, which can use the multicasted sequence as many times as needed, without * causing multiple subscriptions to the current {@code Observable} * @param bufferSize * the buffer size that limits the number of items the connectable {@code Observable} can replay * @param time * the duration of the window in which the replayed items must have been emitted * @param unit * the time unit of {@code time} * @return the new {@code Observable} instance * @throws NullPointerException if {@code selector} or {@code unit} is {@code null} * @throws IllegalArgumentException if {@code bufferSize} is non-positive * @see ReactiveX operators documentation: Replay */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.COMPUTATION) @NonNull public final Observable replay(@NonNull Function, ? extends ObservableSource> selector, int bufferSize, long time, @NonNull TimeUnit unit) { return replay(selector, bufferSize, time, unit, Schedulers.computation()); } /** * Returns an {@code Observable} that emits items that are the results of invoking a specified selector on items * emitted by a {@link ConnectableObservable} that shares a single subscription to the current {@code Observable}, * replaying no more than {@code bufferSize} items that were emitted within a specified time window. *

* Note that due to concurrency requirements, {@code replay(bufferSize)} may hold strong references to more than * {@code bufferSize} source emissions. *

* *

*
Scheduler:
*
You specify which {@link Scheduler} this operator will use.
*
* * @param * the type of items emitted by the resulting {@code Observable} * @param selector * a selector function, which can use the multicasted sequence as many times as needed, without * causing multiple subscriptions to the current {@code Observable} * @param bufferSize * the buffer size that limits the number of items the connectable {@code Observable} can replay * @param time * the duration of the window in which the replayed items must have been emitted * @param unit * the time unit of {@code time} * @param scheduler * the {@code Scheduler} that is the time source for the window * @return the new {@code Observable} instance * @throws IllegalArgumentException * if {@code bufferSize} is non-positive * @throws NullPointerException if {@code selector}, {@code unit} or {@code scheduler} is {@code null} * @throws IllegalArgumentException if {@code bufferSize} is non-positive * @see ReactiveX operators documentation: Replay * @see #replay(Function, int, long, TimeUnit, Scheduler, boolean) */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.CUSTOM) @NonNull public final Observable replay(@NonNull Function, ? extends ObservableSource> selector, int bufferSize, long time, @NonNull TimeUnit unit, @NonNull Scheduler scheduler) { Objects.requireNonNull(selector, "selector is null"); ObjectHelper.verifyPositive(bufferSize, "bufferSize"); Objects.requireNonNull(unit, "unit is null"); Objects.requireNonNull(scheduler, "scheduler is null"); return ObservableReplay.multicastSelector( ObservableInternalHelper.replaySupplier(this, bufferSize, time, unit, scheduler, false), selector); } /** * Returns an {@code Observable} that emits items that are the results of invoking a specified selector on items * emitted by a {@link ConnectableObservable} that shares a single subscription to the current {@code Observable}, * replaying no more than {@code bufferSize} items that were emitted within a specified time window. *

* Note that due to concurrency requirements, {@code replay(bufferSize)} may hold strong references to more than * {@code bufferSize} source emissions. *

* *

*
Scheduler:
*
You specify which {@link Scheduler} this operator will use.
*
* * @param * the type of items emitted by the resulting {@code Observable} * @param selector * a selector function, which can use the multicasted sequence as many times as needed, without * causing multiple subscriptions to the current {@code Observable} * @param bufferSize * the buffer size that limits the number of items the connectable {@code Observable} can replay * @param time * the duration of the window in which the replayed items must have been emitted * @param unit * the time unit of {@code time} * @param scheduler * the {@code Scheduler} that is the time source for the window * @param eagerTruncate * if {@code true}, whenever the internal buffer is truncated to the given bufferSize/age, the * oldest item will be guaranteed dereferenced, thus avoiding unexpected retention * @return the new {@code Observable} instance * @throws NullPointerException if {@code selector}, {@code unit} or {@code scheduler} is {@code null} * @throws IllegalArgumentException * if {@code bufferSize} is non-positive * @see ReactiveX operators documentation: Replay */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.CUSTOM) @NonNull public final Observable replay(@NonNull Function, ? extends ObservableSource> selector, int bufferSize, long time, @NonNull TimeUnit unit, @NonNull Scheduler scheduler, boolean eagerTruncate) { Objects.requireNonNull(selector, "selector is null"); ObjectHelper.verifyPositive(bufferSize, "bufferSize"); Objects.requireNonNull(unit, "unit is null"); Objects.requireNonNull(scheduler, "scheduler is null"); return ObservableReplay.multicastSelector( ObservableInternalHelper.replaySupplier(this, bufferSize, time, unit, scheduler, eagerTruncate), selector); } /** * Returns an {@code Observable} that emits items that are the results of invoking a specified selector on items * emitted by a {@link ConnectableObservable} that shares a single subscription to the current {@code Observable}, * replaying all items that were emitted within a specified time window. *

* *

*
Scheduler:
*
This version of {@code replay} operates by default on the {@code computation} {@link Scheduler}.
*
* * @param * the type of items emitted by the resulting {@code Observable} * @param selector * a selector function, which can use the multicasted sequence as many times as needed, without * causing multiple subscriptions to the current {@code Observable} * @param time * the duration of the window in which the replayed items must have been emitted * @param unit * the time unit of {@code time} * @return the new {@code Observable} instance * @throws NullPointerException if {@code selector} or {@code unit} is {@code null} * @see ReactiveX operators documentation: Replay */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.COMPUTATION) @NonNull public final Observable replay(@NonNull Function, ? extends ObservableSource> selector, long time, @NonNull TimeUnit unit) { return replay(selector, time, unit, Schedulers.computation()); } /** * Returns an {@code Observable} that emits items that are the results of invoking a specified selector on items * emitted by a {@link ConnectableObservable} that shares a single subscription to the current {@code Observable}, * replaying all items that were emitted within a specified time window. *

* *

*
Scheduler:
*
You specify which {@link Scheduler} this operator will use.
*
* * @param * the type of items emitted by the resulting {@code Observable} * @param selector * a selector function, which can use the multicasted sequence as many times as needed, without * causing multiple subscriptions to the current {@code Observable} * @param time * the duration of the window in which the replayed items must have been emitted * @param unit * the time unit of {@code time} * @param scheduler * the scheduler that is the time source for the window * @return the new {@code Observable} instance * @throws NullPointerException if {@code selector}, {@code unit} or {@code scheduler} is {@code null} * @see ReactiveX operators documentation: Replay * @see #replay(Function, long, TimeUnit, Scheduler, boolean) */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.CUSTOM) @NonNull public final Observable replay(@NonNull Function, ? extends ObservableSource> selector, long time, @NonNull TimeUnit unit, @NonNull Scheduler scheduler) { Objects.requireNonNull(selector, "selector is null"); Objects.requireNonNull(unit, "unit is null"); Objects.requireNonNull(scheduler, "scheduler is null"); return ObservableReplay.multicastSelector(ObservableInternalHelper.replaySupplier(this, time, unit, scheduler, false), selector); } /** * Returns an {@code Observable} that emits items that are the results of invoking a specified selector on items * emitted by a {@link ConnectableObservable} that shares a single subscription to the current {@code Observable}, * replaying all items that were emitted within a specified time window. *

* *

*
Scheduler:
*
You specify which {@link Scheduler} this operator will use.
*
* * @param * the type of items emitted by the resulting {@code Observable} * @param selector * a selector function, which can use the multicasted sequence as many times as needed, without * causing multiple subscriptions to the current {@code Observable} * @param time * the duration of the window in which the replayed items must have been emitted * @param unit * the time unit of {@code time} * @param scheduler * the scheduler that is the time source for the window * @param eagerTruncate * if {@code true}, whenever the internal buffer is truncated to the given age, the * oldest item will be guaranteed dereferenced, thus avoiding unexpected retention * @return the new {@code Observable} instance * @throws NullPointerException if {@code selector}, {@code unit} or {@code scheduler} is {@code null} * @see ReactiveX operators documentation: Replay */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.CUSTOM) @NonNull public final Observable replay(@NonNull Function, ? extends ObservableSource> selector, long time, @NonNull TimeUnit unit, @NonNull Scheduler scheduler, boolean eagerTruncate) { Objects.requireNonNull(selector, "selector is null"); Objects.requireNonNull(unit, "unit is null"); Objects.requireNonNull(scheduler, "scheduler is null"); return ObservableReplay.multicastSelector(ObservableInternalHelper.replaySupplier(this, time, unit, scheduler, eagerTruncate), selector); } /** * Returns a {@link ConnectableObservable} that shares a single subscription to the current {@code Observable} that * replays at most {@code bufferSize} items emitted by the current {@code Observable}. A connectable {@code Observable} resembles * an ordinary {@code Observable}, except that it does not begin emitting items when it is subscribed to, but only * when its {@code connect} method is called. *

* *

* Note that due to concurrency requirements, {@code replay(bufferSize)} may hold strong references to more than * {@code bufferSize} source emissions. * To ensure no beyond-bufferSize items are referenced, * use the {@link #replay(int, boolean)} overload with {@code eagerTruncate = true}. *

*
Scheduler:
*
This version of {@code replay} does not operate by default on a particular {@link Scheduler}.
*
* * @param bufferSize * the buffer size that limits the number of items that can be replayed * @return the new {@code ConnectableObservable} instance * @throws IllegalArgumentException if {@code bufferSize} is non-positive * @see ReactiveX operators documentation: Replay * @see #replay(int, boolean) */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final ConnectableObservable replay(int bufferSize) { ObjectHelper.verifyPositive(bufferSize, "bufferSize"); return ObservableReplay.create(this, bufferSize, false); } /** * Returns a {@link ConnectableObservable} that shares a single subscription to the current {@code Observable} that * replays at most {@code bufferSize} items emitted by the current {@code Observable}. A connectable {@code Observable} resembles * an ordinary {@code Observable}, except that it does not begin emitting items when it is subscribed to, but only * when its {@code connect} method is called. *

* *

* Note that due to concurrency requirements, {@code replay(bufferSize)} may hold strong references to more than * {@code bufferSize} source emissions. * To ensure no beyond-bufferSize items are referenced, set {@code eagerTruncate = true}. *

*
Scheduler:
*
This version of {@code replay} does not operate by default on a particular {@link Scheduler}.
*
* * @param bufferSize * the buffer size that limits the number of items that can be replayed * @param eagerTruncate * if {@code true}, whenever the internal buffer is truncated to the given bufferSize/age, the * oldest item will be guaranteed dereferenced, thus avoiding unexpected retention * @return the new {@code ConnectableObservable} instance * @throws IllegalArgumentException if {@code bufferSize} is non-positive * @see ReactiveX operators documentation: Replay */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final ConnectableObservable replay(int bufferSize, boolean eagerTruncate) { ObjectHelper.verifyPositive(bufferSize, "bufferSize"); return ObservableReplay.create(this, bufferSize, eagerTruncate); } /** * Returns a {@link ConnectableObservable} that shares a single subscription to the current {@code Observable} and * replays at most {@code bufferSize} items that were emitted during a specified time window. A connectable * {@code Observable} resembles an ordinary {@code Observable}, except that it does not begin emitting items when it is * subscribed to, but only when its {@code connect} method is called. *

* *

* Note that due to concurrency requirements, {@code replay(bufferSize)} may hold strong references to more than * {@code bufferSize} source emissions. * To ensure no out-of-date or beyond-bufferSize items are referenced, * use the {@link #replay(int, long, TimeUnit, Scheduler, boolean)} overload with {@code eagerTruncate = true}. *

*
Scheduler:
*
This version of {@code replay} operates by default on the {@code computation} {@link Scheduler}.
*
* * @param bufferSize * the buffer size that limits the number of items that can be replayed * @param time * the duration of the window in which the replayed items must have been emitted * @param unit * the time unit of {@code time} * @return the new {@code ConnectableObservable} instance * @throws NullPointerException if {@code unit} is {@code null} * @throws IllegalArgumentException if {@code bufferSize} is non-positive * @see ReactiveX operators documentation: Replay * @see #replay(int, long, TimeUnit, Scheduler, boolean) */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.COMPUTATION) @NonNull public final ConnectableObservable replay(int bufferSize, long time, @NonNull TimeUnit unit) { return replay(bufferSize, time, unit, Schedulers.computation()); } /** * Returns a {@link ConnectableObservable} that shares a single subscription to the current {@code Observable} and * that replays a maximum of {@code bufferSize} items that are emitted within a specified time window. A * connectable {@code Observable} resembles an ordinary {@code Observable}, except that it does not begin emitting items * when it is subscribed to, but only when its {@code connect} method is called. *

* Note that due to concurrency requirements, {@code replay(bufferSize)} may hold strong references to more than * {@code bufferSize} source emissions. * To ensure no out-of-date or beyond-bufferSize items are referenced, * use the {@link #replay(int, long, TimeUnit, Scheduler, boolean)} overload with {@code eagerTruncate = true}. *

* *

*
Scheduler:
*
You specify which {@link Scheduler} this operator will use.
*
* * @param bufferSize * the buffer size that limits the number of items that can be replayed * @param time * the duration of the window in which the replayed items must have been emitted * @param unit * the time unit of {@code time} * @param scheduler * the scheduler that is used as a time source for the window * @return the new {@code ConnectableObservable} instance * @throws NullPointerException if {@code unit} or {@code scheduler} is {@code null} * @throws IllegalArgumentException * if {@code bufferSize} is non-positive * @see ReactiveX operators documentation: Replay * @see #replay(int, long, TimeUnit, Scheduler, boolean) */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.CUSTOM) @NonNull public final ConnectableObservable replay(int bufferSize, long time, @NonNull TimeUnit unit, @NonNull Scheduler scheduler) { ObjectHelper.verifyPositive(bufferSize, "bufferSize"); Objects.requireNonNull(unit, "unit is null"); Objects.requireNonNull(scheduler, "scheduler is null"); return ObservableReplay.create(this, time, unit, scheduler, bufferSize, false); } /** * Returns a {@link ConnectableObservable} that shares a single subscription to the current {@code Observable} and * that replays a maximum of {@code bufferSize} items that are emitted within a specified time window. A * connectable {@code Observable} resembles an ordinary {@code Observable}, except that it does not begin emitting items * when it is subscribed to, but only when its {@code connect} method is called. *

* *

* Note that due to concurrency requirements, {@code replay(bufferSize)} may hold strong references to more than * {@code bufferSize} source emissions. * To ensure no out-of-date or beyond-bufferSize items * are referenced, set {@code eagerTruncate = true}. *

*
Scheduler:
*
You specify which {@link Scheduler} this operator will use.
*
* * @param bufferSize * the buffer size that limits the number of items that can be replayed * @param time * the duration of the window in which the replayed items must have been emitted * @param unit * the time unit of {@code time} * @param scheduler * the scheduler that is used as a time source for the window * @return the new {@code ConnectableObservable} instance * @param eagerTruncate * if {@code true}, whenever the internal buffer is truncated to the given bufferSize/age, the * oldest item will be guaranteed dereferenced, thus avoiding unexpected retention * @throws NullPointerException if {@code unit} or {@code scheduler} is {@code null} * @throws IllegalArgumentException * if {@code bufferSize} is non-positive * @see ReactiveX operators documentation: Replay */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.CUSTOM) @NonNull public final ConnectableObservable replay(int bufferSize, long time, @NonNull TimeUnit unit, @NonNull Scheduler scheduler, boolean eagerTruncate) { ObjectHelper.verifyPositive(bufferSize, "bufferSize"); Objects.requireNonNull(unit, "unit is null"); Objects.requireNonNull(scheduler, "scheduler is null"); return ObservableReplay.create(this, time, unit, scheduler, bufferSize, eagerTruncate); } /** * Returns a {@link ConnectableObservable} that shares a single subscription to the current {@code Observable} and * replays all items emitted by the current {@code Observable} within a specified time window. A connectable {@code Observable} * resembles an ordinary {@code Observable}, except that it does not begin emitting items when it is subscribed to, * but only when its {@code connect} method is called. *

* *

*
Scheduler:
*
This version of {@code replay} operates by default on the {@code computation} {@link Scheduler}.
*
* * @param time * the duration of the window in which the replayed items must have been emitted * @param unit * the time unit of {@code time} * @return the new {@code ConnectableObservable} instance * @throws NullPointerException if {@code unit} is {@code null} * @see ReactiveX operators documentation: Replay */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.COMPUTATION) @NonNull public final ConnectableObservable replay(long time, @NonNull TimeUnit unit) { return replay(time, unit, Schedulers.computation()); } /** * Returns a {@link ConnectableObservable} that shares a single subscription to the current {@code Observable} and * replays all items emitted by the current {@code Observable} within a specified time window. A connectable {@code Observable} * resembles an ordinary {@code Observable}, except that it does not begin emitting items when it is subscribed to, * but only when its {@code connect} method is called. *

* *

* Note that the internal buffer may retain strong references to the oldest item. To ensure no out-of-date items * are referenced, use the {@link #replay(long, TimeUnit, Scheduler, boolean)} overload with {@code eagerTruncate = true}. *

*
Scheduler:
*
You specify which {@link Scheduler} this operator will use.
*
* * @param time * the duration of the window in which the replayed items must have been emitted * @param unit * the time unit of {@code time} * @param scheduler * the {@code Scheduler} that is the time source for the window * @return the new {@code ConnectableObservable} instance * @throws NullPointerException if {@code unit} or {@code scheduler} is {@code null} * @see ReactiveX operators documentation: Replay * @see #replay(long, TimeUnit, Scheduler, boolean) */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.CUSTOM) @NonNull public final ConnectableObservable replay(long time, @NonNull TimeUnit unit, @NonNull Scheduler scheduler) { Objects.requireNonNull(unit, "unit is null"); Objects.requireNonNull(scheduler, "scheduler is null"); return ObservableReplay.create(this, time, unit, scheduler, false); } /** * Returns a {@link ConnectableObservable} that shares a single subscription to the current {@code Observable} and * replays all items emitted by the current {@code Observable} within a specified time window. A connectable {@code Observable} * resembles an ordinary {@code Observable}, except that it does not begin emitting items when it is subscribed to, * but only when its {@code connect} method is called. *

* *

* Note that the internal buffer may retain strong references to the oldest item. To ensure no out-of-date items * are referenced, set {@code eagerTruncate = true}. *

*
Scheduler:
*
You specify which {@link Scheduler} this operator will use.
*
* * @param time * the duration of the window in which the replayed items must have been emitted * @param unit * the time unit of {@code time} * @param scheduler * the {@code Scheduler} that is the time source for the window * @param eagerTruncate * if {@code true}, whenever the internal buffer is truncated to the given bufferSize/age, the * oldest item will be guaranteed dereferenced, thus avoiding unexpected retention * @return the new {@code ConnectableObservable} instance * @throws NullPointerException if {@code unit} or {@code scheduler} is {@code null} * @see ReactiveX operators documentation: Replay */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.CUSTOM) @NonNull public final ConnectableObservable replay(long time, @NonNull TimeUnit unit, @NonNull Scheduler scheduler, boolean eagerTruncate) { Objects.requireNonNull(unit, "unit is null"); Objects.requireNonNull(scheduler, "scheduler is null"); return ObservableReplay.create(this, time, unit, scheduler, eagerTruncate); } /** * Returns an {@code Observable} that mirrors the current {@code Observable}, resubscribing to it if it calls {@code onError} * (infinite retry count). *

* *

* If the current {@code Observable} calls {@link Observer#onError}, this method will resubscribe to the current * {@code Observable} rather than propagating the {@code onError} call. *

* Any and all items emitted by the current {@code Observable} will be emitted by the resulting {@code Observable}, even * those emitted during failed subscriptions. For example, if the current {@code Observable} fails at first but emits * {@code [1, 2]} then succeeds the second time and emits {@code [1, 2, 3, 4, 5]} then the complete sequence * of emissions and notifications would be {@code [1, 2, 1, 2, 3, 4, 5, onComplete]}. *

*
Scheduler:
*
{@code retry} does not operate by default on a particular {@link Scheduler}.
*
* * @return the new {@code Observable} instance * @see ReactiveX operators documentation: Retry */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable retry() { return retry(Long.MAX_VALUE, Functions.alwaysTrue()); } /** * Returns an {@code Observable} that mirrors the current {@code Observable}, resubscribing to it if it calls {@code onError} * and the predicate returns {@code true} for that specific exception and retry count. *

* *

*
Scheduler:
*
{@code retry} does not operate by default on a particular {@link Scheduler}.
*
* * @param predicate * the predicate that determines if a resubscription may happen in case of a specific exception * and retry count * @return the new {@code Observable} instance * @throws NullPointerException if {@code predicate} is {@code null} * @see #retry() * @see ReactiveX operators documentation: Retry */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable retry(@NonNull BiPredicate predicate) { Objects.requireNonNull(predicate, "predicate is null"); return RxJavaPlugins.onAssembly(new ObservableRetryBiPredicate<>(this, predicate)); } /** * Returns an {@code Observable} that mirrors the current {@code Observable}, resubscribing to it if it calls {@code onError} * up to a specified number of retries. *

* *

* If the current {@code Observable} calls {@link Observer#onError}, this method will resubscribe to the current * {@code Observable} for a maximum of {@code count} resubscriptions rather than propagating the * {@code onError} call. *

* Any and all items emitted by the current {@code Observable} will be emitted by the resulting {@code Observable}, even * those emitted during failed subscriptions. For example, if the current {@code Observable} fails at first but emits * {@code [1, 2]} then succeeds the second time and emits {@code [1, 2, 3, 4, 5]} then the complete sequence * of emissions and notifications would be {@code [1, 2, 1, 2, 3, 4, 5, onComplete]}. *

*
Scheduler:
*
{@code retry} does not operate by default on a particular {@link Scheduler}.
*
* * @param times * the number of times to resubscribe if the current {@code Observable} fails * @return the new {@code Observable} instance * @throws IllegalArgumentException if {@code times} is negative * @see ReactiveX operators documentation: Retry */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable retry(long times) { return retry(times, Functions.alwaysTrue()); } /** * Retries at most times or until the predicate returns {@code false}, whichever happens first. *

* *

*
Scheduler:
*
{@code retry} does not operate by default on a particular {@link Scheduler}.
*
* @param times the number of times to resubscribe if the current {@code Observable} fails * @param predicate the predicate called with the failure {@link Throwable} and should return {@code true} to trigger a retry. * @throws NullPointerException if {@code predicate} is {@code null} * @throws IllegalArgumentException if {@code times} is negative * @return the new {@code Observable} instance */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable retry(long times, @NonNull Predicate predicate) { if (times < 0) { throw new IllegalArgumentException("times >= 0 required but it was " + times); } Objects.requireNonNull(predicate, "predicate is null"); return RxJavaPlugins.onAssembly(new ObservableRetryPredicate<>(this, times, predicate)); } /** * Retries the current {@code Observable} if the predicate returns {@code true}. *

* *

*
Scheduler:
*
{@code retry} does not operate by default on a particular {@link Scheduler}.
*
* * @param predicate the predicate that receives the failure {@link Throwable} and should return {@code true} to trigger a retry. * @return the new {@code Observable} instance * @throws NullPointerException if {@code predicate} is {@code null} */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable retry(@NonNull Predicate predicate) { return retry(Long.MAX_VALUE, predicate); } /** * Retries until the given stop function returns {@code true}. *

* *

*
Scheduler:
*
{@code retryUntil} does not operate by default on a particular {@link Scheduler}.
*
* @param stop the function that should return {@code true} to stop retrying * @return the new {@code Observable} instance * @throws NullPointerException if {@code stop} is {@code null} */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable retryUntil(@NonNull BooleanSupplier stop) { Objects.requireNonNull(stop, "stop is null"); return retry(Long.MAX_VALUE, Functions.predicateReverseFor(stop)); } /** * Returns an {@code Observable} that emits the same values as the current {@code Observable} with the exception of an * {@code onError}. An {@code onError} notification from the source will result in the emission of a * {@link Throwable} item to the {@code Observable} provided as an argument to the {@code notificationHandler} * function. If that {@code Observable} calls {@code onComplete} or {@code onError} then {@code retry} will call * {@code onComplete} or {@code onError} on the child subscription. Otherwise, the current {@code Observable} * will be resubscribed. *

* *

* Example: * * This retries 3 times, each time incrementing the number of seconds it waits. * *


     *  Observable.create((ObservableEmitter<? super String> s) -> {
     *      System.out.println("subscribing");
     *      s.onError(new RuntimeException("always fails"));
     *  }).retryWhen(attempts -> {
     *      return attempts.zipWith(Observable.range(1, 3), (n, i) -> i).flatMap(i -> {
     *          System.out.println("delay retry by " + i + " second(s)");
     *          return Observable.timer(i, TimeUnit.SECONDS);
     *      });
     *  }).blockingForEach(System.out::println);
     * 
* * Output is: * *
 {@code
     * subscribing
     * delay retry by 1 second(s)
     * subscribing
     * delay retry by 2 second(s)
     * subscribing
     * delay retry by 3 second(s)
     * subscribing
     * } 
*

* Note that the inner {@link ObservableSource} returned by the handler function should signal * either {@code onNext}, {@code onError} or {@code onComplete} in response to the received * {@code Throwable} to indicate the operator should retry or terminate. If the upstream to * the operator is asynchronous, signaling {@code onNext} followed by {@code onComplete} immediately may * result in the sequence to be completed immediately. Similarly, if this inner * {@code ObservableSource} signals {@code onError} or {@code onComplete} while the upstream is * active, the sequence is terminated with the same signal immediately. *

* The following example demonstrates how to retry an asynchronous source with a delay: *


     * Observable.timer(1, TimeUnit.SECONDS)
     *     .doOnSubscribe(s -> System.out.println("subscribing"))
     *     .map(v -> { throw new RuntimeException(); })
     *     .retryWhen(errors -> {
     *         AtomicInteger counter = new AtomicInteger();
     *         return errors
     *                   .takeWhile(e -> counter.getAndIncrement() != 3)
     *                   .flatMap(e -> {
     *                       System.out.println("delay retry by " + counter.get() + " second(s)");
     *                       return Observable.timer(counter.get(), TimeUnit.SECONDS);
     *                   });
     *     })
     *     .blockingSubscribe(System.out::println, System.out::println);
     * 
*
*
Scheduler:
*
{@code retryWhen} does not operate by default on a particular {@link Scheduler}.
*
* * @param handler * receives an {@code Observable} of notifications with which a user can complete or error, aborting the * retry * @return the new {@code Observable} instance * @throws NullPointerException if {@code handler} is {@code null} * @see ReactiveX operators documentation: Retry */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable retryWhen( @NonNull Function, ? extends ObservableSource> handler) { Objects.requireNonNull(handler, "handler is null"); return RxJavaPlugins.onAssembly(new ObservableRetryWhen<>(this, handler)); } /** * Subscribes to the current {@code Observable} and wraps the given {@link Observer} into a {@link SafeObserver} * (if not already a {@code SafeObserver}) that * deals with exceptions thrown by a misbehaving {@code Observer} (that doesn't follow the * Reactive Streams specification). *
*
Scheduler:
*
{@code safeSubscribe} does not operate by default on a particular {@link Scheduler}.
*
* @param observer the incoming {@code Observer} instance * @throws NullPointerException if {@code observer} is {@code null} */ @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final void safeSubscribe(@NonNull Observer observer) { Objects.requireNonNull(observer, "observer is null"); if (observer instanceof SafeObserver) { subscribe(observer); } else { subscribe(new SafeObserver<>(observer)); } } /** * Returns an {@code Observable} that emits the most recently emitted item (if any) emitted by the current {@code Observable} * within periodic time intervals. *

* *

*
Scheduler:
*
{@code sample} operates by default on the {@code computation} {@link Scheduler}.
*
* * @param period * the sampling rate * @param unit * the {@link TimeUnit} in which {@code period} is defined * @return the new {@code Observable} instance * @throws NullPointerException if {@code unit} is {@code null} * @see ReactiveX operators documentation: Sample * @see #throttleLast(long, TimeUnit) */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.COMPUTATION) @NonNull public final Observable sample(long period, @NonNull TimeUnit unit) { return sample(period, unit, Schedulers.computation()); } /** * Returns an {@code Observable} that emits the most recently emitted item (if any) emitted by the current {@code Observable} * within periodic time intervals and optionally emit the very last upstream item when the upstream completes. *

* *

*
Scheduler:
*
{@code sample} operates by default on the {@code computation} {@link Scheduler}.
*
* *

History: 2.0.5 - experimental * @param period * the sampling rate * @param unit * the {@link TimeUnit} in which {@code period} is defined * @param emitLast * if {@code true} and the upstream completes while there is still an unsampled item available, * that item is emitted to downstream before completion * if {@code false}, an unsampled last item is ignored. * @return the new {@code Observable} instance * @throws NullPointerException if {@code unit} is {@code null} * @see ReactiveX operators documentation: Sample * @see #throttleLast(long, TimeUnit) * @since 2.1 */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.COMPUTATION) @NonNull public final Observable sample(long period, @NonNull TimeUnit unit, boolean emitLast) { return sample(period, unit, Schedulers.computation(), emitLast); } /** * Returns an {@code Observable} that emits the most recently emitted item (if any) emitted by the current {@code Observable} * within periodic time intervals, where the intervals are defined on a particular {@link Scheduler}. *

* *

*
Scheduler:
*
You specify which {@code Scheduler} this operator will use.
*
* * @param period * the sampling rate * @param unit * the {@link TimeUnit} in which {@code period} is defined * @param scheduler * the {@code Scheduler} to use when sampling * @return the new {@code Observable} instance * @throws NullPointerException if {@code unit} or {@code scheduler} is {@code null} * @see ReactiveX operators documentation: Sample * @see #throttleLast(long, TimeUnit, Scheduler) */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.CUSTOM) @NonNull public final Observable sample(long period, @NonNull TimeUnit unit, @NonNull Scheduler scheduler) { Objects.requireNonNull(unit, "unit is null"); Objects.requireNonNull(scheduler, "scheduler is null"); return RxJavaPlugins.onAssembly(new ObservableSampleTimed<>(this, period, unit, scheduler, false)); } /** * Returns an {@code Observable} that emits the most recently emitted item (if any) emitted by the current {@code Observable} * within periodic time intervals, where the intervals are defined on a particular {@link Scheduler} * and optionally emit the very last upstream item when the upstream completes. *

* *

*
Scheduler:
*
You specify which {@code Scheduler} this operator will use.
*
* *

History: 2.0.5 - experimental * @param period * the sampling rate * @param unit * the {@link TimeUnit} in which {@code period} is defined * @param scheduler * the {@code Scheduler} to use when sampling * @param emitLast * if {@code true} and the upstream completes while there is still an unsampled item available, * that item is emitted to downstream before completion * if {@code false}, an unsampled last item is ignored. * @return the new {@code Observable} instance * @throws NullPointerException if {@code unit} or {@code scheduler} is {@code null} * @see ReactiveX operators documentation: Sample * @see #throttleLast(long, TimeUnit, Scheduler) * @since 2.1 */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.CUSTOM) @NonNull public final Observable sample(long period, @NonNull TimeUnit unit, @NonNull Scheduler scheduler, boolean emitLast) { Objects.requireNonNull(unit, "unit is null"); Objects.requireNonNull(scheduler, "scheduler is null"); return RxJavaPlugins.onAssembly(new ObservableSampleTimed<>(this, period, unit, scheduler, emitLast)); } /** * Returns an {@code Observable} that, when the specified {@code sampler} {@link ObservableSource} emits an item or completes, * emits the most recently emitted item (if any) emitted by the current {@code Observable} since the previous * emission from the {@code sampler} {@code ObservableSource}. *

* *

*
Scheduler:
*
This version of {@code sample} does not operate by default on a particular {@link Scheduler}.
*
* * @param the element type of the sampler {@code ObservableSource} * @param sampler * the {@code ObservableSource} to use for sampling the current {@code Observable} * @return the new {@code Observable} instance * @throws NullPointerException if {@code sampler} is {@code null} * @see ReactiveX operators documentation: Sample */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable sample(@NonNull ObservableSource sampler) { Objects.requireNonNull(sampler, "sampler is null"); return RxJavaPlugins.onAssembly(new ObservableSampleWithObservable<>(this, sampler, false)); } /** * Returns an {@code Observable} that, when the specified {@code sampler} {@link ObservableSource} emits an item or completes, * emits the most recently emitted item (if any) emitted by the current {@code Observable} since the previous * emission from the {@code sampler} {@code ObservableSource} * and optionally emit the very last upstream item when the upstream or other {@code ObservableSource} complete. *

* *

*
Scheduler:
*
This version of {@code sample} does not operate by default on a particular {@link Scheduler}.
*
* *

History: 2.0.5 - experimental * @param the element type of the sampler {@code ObservableSource} * @param sampler * the {@code ObservableSource} to use for sampling the current {@code Observable} * @param emitLast * if {@code true} and the upstream completes while there is still an unsampled item available, * that item is emitted to downstream before completion * if {@code false}, an unsampled last item is ignored. * @return the new {@code Observable} instance * @throws NullPointerException if {@code sampler} is {@code null} * @see ReactiveX operators documentation: Sample * @since 2.1 */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable sample(@NonNull ObservableSource sampler, boolean emitLast) { Objects.requireNonNull(sampler, "sampler is null"); return RxJavaPlugins.onAssembly(new ObservableSampleWithObservable<>(this, sampler, emitLast)); } /** * Returns an {@code Observable} that emits the first value emitted by the current {@code Observable}, then emits one value * for each subsequent value emitted by the current {@code Observable}. Each emission after the first is the result of * applying the specified accumulator function to the previous emission and the corresponding value from the current {@code Observable}. *

* *

* This sort of function is sometimes called an accumulator. *

*
Scheduler:
*
{@code scan} does not operate by default on a particular {@link Scheduler}.
*
* * @param accumulator * an accumulator function to be invoked on each item emitted by the current {@code Observable}, whose * result will be emitted to {@link Observer}s via {@link Observer#onNext onNext} and used in the * next accumulator call * @return the new {@code Observable} instance * @throws NullPointerException if {@code accumulator} is {@code null} * @see ReactiveX operators documentation: Scan */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable scan(@NonNull BiFunction accumulator) { Objects.requireNonNull(accumulator, "accumulator is null"); return RxJavaPlugins.onAssembly(new ObservableScan<>(this, accumulator)); } /** * Returns an {@code Observable} that emits the provided initial (seed) value, then emits one value for each value emitted * by the current {@code Observable}. Each emission after the first is the result of applying the specified accumulator * function to the previous emission and the corresponding value from the current {@code Observable}. *

* *

* This sort of function is sometimes called an accumulator. *

* Note that the {@code Observable} that results from this method will emit {@code initialValue} as its first * emitted item. *

* Note that the {@code initialValue} is shared among all subscribers to the resulting {@code Observable} * and may cause problems if it is mutable. To make sure each subscriber gets its own value, defer * the application of this operator via {@link #defer(Supplier)}: *


     * ObservableSource<T> source = ...
     * Observable.defer(() -> source.scan(new ArrayList<>(), (list, item) -> list.add(item)));
     *
     * // alternatively, by using compose to stay fluent
     *
     * source.compose(o ->
     *     Observable.defer(() -> o.scan(new ArrayList<>(), (list, item) -> list.add(item)))
     * );
     * 
*
*
Scheduler:
*
{@code scan} does not operate by default on a particular {@link Scheduler}.
*
* * @param the initial, accumulator and result type * @param initialValue * the initial (seed) accumulator item * @param accumulator * an accumulator function to be invoked on each item emitted by the current {@code Observable}, whose * result will be emitted to {@link Observer}s via {@link Observer#onNext onNext} and used in the * next accumulator call * @return the new {@code Observable} instance * @throws NullPointerException if {@code initialValue} or {@code accumulator} is {@code null} * @see ReactiveX operators documentation: Scan */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable scan(@NonNull R initialValue, @NonNull BiFunction accumulator) { Objects.requireNonNull(initialValue, "initialValue is null"); return scanWith(Functions.justSupplier(initialValue), accumulator); } /** * Returns an {@code Observable} that emits the provided initial (seed) value, then emits one value for each value emitted * by the current {@code Observable}. Each emission after the first is the result of applying the specified accumulator * function to the previous emission and the corresponding value from the current {@code Observable}. *

* *

* This sort of function is sometimes called an accumulator. *

* Note that the {@code Observable} that results from this method will emit the value returned * by the {@code seedSupplier} as its first item. *

*
Scheduler:
*
{@code scanWith} does not operate by default on a particular {@link Scheduler}.
*
* * @param the initial, accumulator and result type * @param seedSupplier * a {@link Supplier} that returns the initial (seed) accumulator item for each individual {@link Observer} * @param accumulator * an accumulator function to be invoked on each item emitted by the current {@code Observable}, whose * result will be emitted to {@code Observer}s via {@link Observer#onNext onNext} and used in the * next accumulator call * @return the new {@code Observable} instance * @throws NullPointerException if {@code seedSupplier} or {@code accumulator} is {@code null} * @see ReactiveX operators documentation: Scan */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable scanWith(@NonNull Supplier seedSupplier, @NonNull BiFunction accumulator) { Objects.requireNonNull(seedSupplier, "seedSupplier is null"); Objects.requireNonNull(accumulator, "accumulator is null"); return RxJavaPlugins.onAssembly(new ObservableScanSeed<>(this, seedSupplier, accumulator)); } /** * Forces the current {@code Observable}'s emissions and notifications to be serialized and for it to obey * the {@code ObservableSource} contract in other ways. *

* It is possible for an {@code Observable} to invoke its {@link Observer}s' methods asynchronously, perhaps from * different threads. This could make such an {@code Observable} poorly-behaved, in that it might try to invoke * {@code onComplete} or {@code onError} before one of its {@code onNext} invocations, or it might call * {@code onNext} from two different threads concurrently. You can force such an {@code Observable} to be * well-behaved and sequential by applying the {@code serialize} method to it. *

* *

*
Scheduler:
*
{@code serialize} does not operate by default on a particular {@link Scheduler}.
*
* * @return the new {@code Observable} instance * @see ReactiveX operators documentation: Serialize */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable serialize() { return RxJavaPlugins.onAssembly(new ObservableSerialized<>(this)); } /** * Returns a new {@code Observable} that multicasts (and shares a single subscription to) the current {@code Observable}. As long as * there is at least one {@link Observer}, the current {@code Observable} will stay subscribed and keep emitting signals. * When all observers have disposed, the operator will dispose the subscription to the current {@code Observable}. *

* This is an alias for {@link #publish()}.{@link ConnectableObservable#refCount() refCount()}. *

* *

*
Scheduler:
*
{@code share} does not operate by default on a particular {@link Scheduler}.
*
* * @return the new {@code Observable} instance * @see ReactiveX operators documentation: RefCount */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable share() { return publish().refCount(); } /** * Returns a {@link Maybe} that completes if the current {@code Observable} is empty or emits the single item * emitted by the current {@code Observable}, or signals an {@link IllegalArgumentException} if the current * {@code Observable} emits more than one item. *

* *

*
Scheduler:
*
{@code singleElement} does not operate by default on a particular {@link Scheduler}.
*
* * @return the new {@code Maybe} instance * @see ReactiveX operators documentation: First */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Maybe singleElement() { return RxJavaPlugins.onAssembly(new ObservableSingleMaybe<>(this)); } /** * Returns a {@link Single} that emits the single item emitted by the current {@code Observable}, if the current {@code Observable} * emits only a single item, or a default item if the current {@code Observable} emits no items. If the current * {@code Observable} emits more than one item, an {@link IllegalArgumentException} is signaled instead. *

* *

*
Scheduler:
*
{@code single} does not operate by default on a particular {@link Scheduler}.
*
* * @param defaultItem * a default value to emit if the current {@code Observable} emits no item * @return the new {@code Single} instance * @throws NullPointerException if {@code defaultItem} is {@code null} * @see ReactiveX operators documentation: First */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Single single(@NonNull T defaultItem) { Objects.requireNonNull(defaultItem, "defaultItem is null"); return RxJavaPlugins.onAssembly(new ObservableSingleSingle<>(this, defaultItem)); } /** * Returns a {@link Single} that emits the single item emitted by the current {@code Observable} if it * emits only a single item, otherwise * if the current {@code Observable} completes without emitting any items or emits more than one item a * {@link NoSuchElementException} or {@link IllegalArgumentException} will be signaled respectively. *

* *

*
Scheduler:
*
{@code singleOrError} does not operate by default on a particular {@link Scheduler}.
*
* * @return the new {@code Single} instance * @see ReactiveX operators documentation: First */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Single singleOrError() { return RxJavaPlugins.onAssembly(new ObservableSingleSingle<>(this, null)); } /** * Returns an {@code Observable} that skips the first {@code count} items emitted by the current {@code Observable} and emits * the remainder. *

* *

*
Scheduler:
*
This version of {@code skip} does not operate by default on a particular {@link Scheduler}.
*
* * @param count * the number of items to skip * @return the new {@code Observable} instance * @throws IllegalArgumentException if {@code count} is negative * @see ReactiveX operators documentation: Skip */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable skip(long count) { if (count < 0) { throw new IllegalArgumentException("count >= 0 expected but it was " + count); } if (count == 0) { return RxJavaPlugins.onAssembly(this); } return RxJavaPlugins.onAssembly(new ObservableSkip<>(this, count)); } /** * Returns an {@code Observable} that skips values emitted by the current {@code Observable} before a specified time window * elapses. *

* *

*
Scheduler:
*
{@code skip} does not operate on any particular scheduler but uses the current time * from the {@code computation} {@link Scheduler}.
*
* * @param time * the length of the time window to skip * @param unit * the time unit of {@code time} * @return the new {@code Observable} instance * @throws NullPointerException if {@code unit} is {@code null} * @see ReactiveX operators documentation: Skip */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.COMPUTATION) @NonNull public final Observable skip(long time, @NonNull TimeUnit unit) { return skipUntil(timer(time, unit)); } /** * Returns an {@code Observable} that skips values emitted by the current {@code Observable} before a specified time window * on a specified {@link Scheduler} elapses. *

* *

*
Scheduler:
*
You specify which {@code Scheduler} this operator will use for the timed skipping
*
* * @param time * the length of the time window to skip * @param unit * the time unit of {@code time} * @param scheduler * the {@code Scheduler} on which the timed wait happens * @return the new {@code Observable} instance * @throws NullPointerException if {@code unit} or {@code scheduler} is {@code null} * @see ReactiveX operators documentation: Skip */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.CUSTOM) @NonNull public final Observable skip(long time, @NonNull TimeUnit unit, @NonNull Scheduler scheduler) { return skipUntil(timer(time, unit, scheduler)); } /** * Returns an {@code Observable} that drops a specified number of items from the end of the sequence emitted by the * current {@code Observable}. *

* *

* This {@link Observer} accumulates a queue long enough to store the first {@code count} items. As more items are * received, items are taken from the front of the queue and emitted by the returned {@code Observable}. This causes * such items to be delayed. *

*
Scheduler:
*
This version of {@code skipLast} does not operate by default on a particular {@link Scheduler}.
*
* * @param count * number of items to drop from the end of the source sequence * @return the new {@code Observable} instance * @throws IllegalArgumentException * if {@code count} is negative * @see ReactiveX operators documentation: SkipLast */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable skipLast(int count) { if (count < 0) { throw new IllegalArgumentException("count >= 0 required but it was " + count); } if (count == 0) { return RxJavaPlugins.onAssembly(this); } return RxJavaPlugins.onAssembly(new ObservableSkipLast<>(this, count)); } /** * Returns an {@code Observable} that drops items emitted by the current {@code Observable} during a specified time window * before the source completes. *

* *

* Note: this action will cache the latest items arriving in the specified time window. *

*
Scheduler:
*
{@code skipLast} does not operate on any particular scheduler but uses the current time * from the {@code trampoline} {@link Scheduler}.
*
* * @param time * the length of the time window * @param unit * the time unit of {@code time} * @return the new {@code Observable} instance * @throws NullPointerException if {@code unit} is {@code null} * @see ReactiveX operators documentation: SkipLast */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.TRAMPOLINE) @NonNull public final Observable skipLast(long time, @NonNull TimeUnit unit) { return skipLast(time, unit, Schedulers.trampoline(), false, bufferSize()); } /** * Returns an {@code Observable} that drops items emitted by the current {@code Observable} during a specified time window * before the source completes. *

* *

* Note: this action will cache the latest items arriving in the specified time window. *

*
Scheduler:
*
{@code skipLast} does not operate on any particular scheduler but uses the current time * from the {@code computation} {@link Scheduler}.
*
* * @param time * the length of the time window * @param unit * the time unit of {@code time} * @param delayError * if {@code true}, an exception signaled by the current {@code Observable} is delayed until the regular elements are consumed * by the downstream; if {@code false}, an exception is immediately signaled and all regular elements dropped * @return the new {@code Observable} instance * @throws NullPointerException if {@code unit} is {@code null} * @see ReactiveX operators documentation: SkipLast */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.TRAMPOLINE) @NonNull public final Observable skipLast(long time, @NonNull TimeUnit unit, boolean delayError) { return skipLast(time, unit, Schedulers.trampoline(), delayError, bufferSize()); } /** * Returns an {@code Observable} that drops items emitted by the current {@code Observable} during a specified time window * (defined on a specified scheduler) before the source completes. *

* *

* Note: this action will cache the latest items arriving in the specified time window. *

*
Scheduler:
*
You specify which {@link Scheduler} this operator will use for tracking the current time
*
* * @param time * the length of the time window * @param unit * the time unit of {@code time} * @param scheduler * the scheduler used as the time source * @return the new {@code Observable} instance * @throws NullPointerException if {@code unit} or {@code scheduler} is {@code null} * @see ReactiveX operators documentation: SkipLast */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.CUSTOM) @NonNull public final Observable skipLast(long time, @NonNull TimeUnit unit, @NonNull Scheduler scheduler) { return skipLast(time, unit, scheduler, false, bufferSize()); } /** * Returns an {@code Observable} that drops items emitted by the current {@code Observable} during a specified time window * (defined on a specified scheduler) before the source completes. *

* *

* Note: this action will cache the latest items arriving in the specified time window. *

*
Scheduler:
*
You specify which {@link Scheduler} this operator will use to track the current time
*
* * @param time * the length of the time window * @param unit * the time unit of {@code time} * @param scheduler * the scheduler used as the time source * @param delayError * if {@code true}, an exception signaled by the current {@code Observable} is delayed until the regular elements are consumed * by the downstream; if {@code false}, an exception is immediately signaled and all regular elements dropped * @return the new {@code Observable} instance * @throws NullPointerException if {@code unit} or {@code scheduler} is {@code null} * @see ReactiveX operators documentation: SkipLast */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.CUSTOM) @NonNull public final Observable skipLast(long time, @NonNull TimeUnit unit, @NonNull Scheduler scheduler, boolean delayError) { return skipLast(time, unit, scheduler, delayError, bufferSize()); } /** * Returns an {@code Observable} that drops items emitted by the current {@code Observable} during a specified time window * (defined on a specified scheduler) before the source completes. *

* *

* Note: this action will cache the latest items arriving in the specified time window. *

*
Scheduler:
*
You specify which {@link Scheduler} this operator will use.
*
* * @param time * the length of the time window * @param unit * the time unit of {@code time} * @param scheduler * the scheduler used as the time source * @param delayError * if {@code true}, an exception signaled by the current {@code Observable} is delayed until the regular elements are consumed * by the downstream; if {@code false}, an exception is immediately signaled and all regular elements dropped * @param bufferSize * the hint about how many elements to expect to be skipped * @return the new {@code Observable} instance * @throws NullPointerException if {@code unit} or {@code scheduler} is {@code null} * @throws IllegalArgumentException if {@code bufferSize} is non-positive * @see ReactiveX operators documentation: SkipLast */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.CUSTOM) @NonNull public final Observable skipLast(long time, @NonNull TimeUnit unit, @NonNull Scheduler scheduler, boolean delayError, int bufferSize) { Objects.requireNonNull(unit, "unit is null"); Objects.requireNonNull(scheduler, "scheduler is null"); ObjectHelper.verifyPositive(bufferSize, "bufferSize"); // the internal buffer holds pairs of (timestamp, value) so double the default buffer size int s = bufferSize << 1; return RxJavaPlugins.onAssembly(new ObservableSkipLastTimed<>(this, time, unit, scheduler, s, delayError)); } /** * Returns an {@code Observable} that skips items emitted by the current {@code Observable} until a second {@link ObservableSource} emits * an item. *

* *

*
Scheduler:
*
{@code skipUntil} does not operate by default on a particular {@link Scheduler}.
*
* * @param the element type of the other {@code ObservableSource} * @param other * the second {@code ObservableSource} that has to emit an item before the current {@code Observable}'s elements begin * to be mirrored by the resulting {@code Observable} * @return the new {@code Observable} instance * @throws NullPointerException if {@code other} is {@code null} * @see ReactiveX operators documentation: SkipUntil */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable skipUntil(@NonNull ObservableSource other) { Objects.requireNonNull(other, "other is null"); return RxJavaPlugins.onAssembly(new ObservableSkipUntil<>(this, other)); } /** * Returns an {@code Observable} that skips all items emitted by the current {@code Observable} as long as a specified * condition holds {@code true}, but emits all further source items as soon as the condition becomes {@code false}. *

* *

*
Scheduler:
*
{@code skipWhile} does not operate by default on a particular {@link Scheduler}.
*
* * @param predicate * a function to test each item emitted from the current {@code Observable} * @return the new {@code Observable} instance * @throws NullPointerException if {@code predicate} is {@code null} * @see ReactiveX operators documentation: SkipWhile */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable skipWhile(@NonNull Predicate predicate) { Objects.requireNonNull(predicate, "predicate is null"); return RxJavaPlugins.onAssembly(new ObservableSkipWhile<>(this, predicate)); } /** * Returns an {@code Observable} that emits the events emitted by the current {@code Observable}, in a * sorted order. Each item emitted by the current {@code Observable} must implement {@link Comparable} with respect to all * other items in the sequence. *

* *

* If any item emitted by the current {@code Observable} does not implement {@code Comparable} with respect to * all other items emitted by the current {@code Observable}, no items will be emitted and the * sequence is terminated with a {@link ClassCastException}. * *

Note that calling {@code sorted} with long, non-terminating or infinite sources * might cause {@link OutOfMemoryError} * *

*
Scheduler:
*
{@code sorted} does not operate by default on a particular {@link Scheduler}.
*
* @return the new {@code Observable} instance */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable sorted() { return toList().toObservable().map(Functions.listSorter(Functions.naturalComparator())).flatMapIterable(Functions.identity()); } /** * Returns an {@code Observable} that emits the events emitted by the current {@code Observable}, in a * sorted order based on a specified comparison function. * *

Note that calling {@code sorted} with long, non-terminating or infinite sources * might cause {@link OutOfMemoryError} * *

*
Scheduler:
*
{@code sorted} does not operate by default on a particular {@link Scheduler}.
*
* * @param comparator * a function that compares two items emitted by the current {@code Observable} and returns an {@code int} * that indicates their sort order * @throws NullPointerException if {@code comparator} is {@code null} * @return the new {@code Observable} instance */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable sorted(@NonNull Comparator comparator) { Objects.requireNonNull(comparator, "comparator is null"); return toList().toObservable().map(Functions.listSorter(comparator)).flatMapIterable(Functions.identity()); } /** * Returns an {@code Observable} that emits the items in a specified {@link Iterable} before it begins to emit items * emitted by the current {@code Observable}. *

* *

*
Scheduler:
*
{@code startWithIterable} does not operate by default on a particular {@link Scheduler}.
*
* * @param items * an {@code Iterable} that contains the items you want the resulting {@code Observable} to emit first * @return the new {@code Observable} instance * @throws NullPointerException if {@code items} is {@code null} * @see ReactiveX operators documentation: StartWith * @since 3.0.0 * @see #startWithItem(Object) * @see #startWithArray(Object...) */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable startWithIterable(@NonNull Iterable<@NonNull ? extends T> items) { return concatArray(fromIterable(items), this); } /** * Returns an {@code Observable} which first runs the other {@link CompletableSource} * then the current {@code Observable} if the other completed normally. *

* *

*
Scheduler:
*
{@code startWith} does not operate by default on a particular {@link Scheduler}.
*
* @param other the other {@code CompletableSource} to run first * @return the new {@code Observable} instance * @throws NullPointerException if {@code other} is {@code null} * @since 3.0.0 */ @CheckReturnValue @NonNull @SchedulerSupport(SchedulerSupport.NONE) public final Observable startWith(@NonNull CompletableSource other) { Objects.requireNonNull(other, "other is null"); return Observable.concat(Completable.wrap(other).toObservable(), this); } /** * Returns an {@code Observable} which first runs the other {@link SingleSource} * then the current {@code Observable} if the other succeeded normally. *

* *

*
Scheduler:
*
{@code startWith} does not operate by default on a particular {@link Scheduler}.
*
* @param other the other {@code SingleSource} to run first * @return the new {@code Observable} instance * @throws NullPointerException if {@code other} is {@code null} * @since 3.0.0 */ @CheckReturnValue @NonNull @SchedulerSupport(SchedulerSupport.NONE) public final Observable startWith(@NonNull SingleSource other) { Objects.requireNonNull(other, "other is null"); return Observable.concat(Single.wrap(other).toObservable(), this); } /** * Returns an {@code Observable} which first runs the other {@link MaybeSource} * then the current {@code Observable} if the other succeeded or completed normally. *

* *

*
Scheduler:
*
{@code startWith} does not operate by default on a particular {@link Scheduler}.
*
* @param other the other {@code MaybeSource} to run first * @return the new {@code Observable} instance * @throws NullPointerException if {@code other} is {@code null} * @since 3.0.0 */ @CheckReturnValue @NonNull @SchedulerSupport(SchedulerSupport.NONE) public final Observable startWith(@NonNull MaybeSource other) { Objects.requireNonNull(other, "other is null"); return Observable.concat(Maybe.wrap(other).toObservable(), this); } /** * Returns an {@code Observable} that emits the items in a specified {@link ObservableSource} before it begins to emit * items emitted by the current {@code Observable}. *

* *

*
Scheduler:
*
{@code startWith} does not operate by default on a particular {@link Scheduler}.
*
* * @param other * an {@code ObservableSource} that contains the items you want the modified {@code ObservableSource} to emit first * @return the new {@code Observable} instance * @throws NullPointerException if {@code other} is {@code null} * @see ReactiveX operators documentation: StartWith */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable startWith(@NonNull ObservableSource other) { Objects.requireNonNull(other, "other is null"); return concatArray(other, this); } /** * Returns an {@code Observable} that emits a specified item before it begins to emit items emitted by the current * {@code Observable}. *

* *

*
Scheduler:
*
{@code startWithItem} does not operate by default on a particular {@link Scheduler}.
*
* * @param item * the item to emit first * @return the new {@code Observable} instance * @throws NullPointerException if {@code item} is {@code null} * @see ReactiveX operators documentation: StartWith * @see #startWithArray(Object...) * @see #startWithIterable(Iterable) * @since 3.0.0 */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable startWithItem(@NonNull T item) { return concatArray(just(item), this); } /** * Returns an {@code Observable} that emits the specified items before it begins to emit items emitted by the current * {@code Observable}. *

* *

*
Scheduler:
*
{@code startWithArray} does not operate by default on a particular {@link Scheduler}.
*
* * @param items * the array of values to emit first * @return the new {@code Observable} instance * @throws NullPointerException if {@code items} is {@code null} * @see ReactiveX operators documentation: StartWith * @see #startWithItem(Object) * @see #startWithIterable(Iterable) */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @SafeVarargs @NonNull public final Observable startWithArray(@NonNull T... items) { Observable fromArray = fromArray(items); if (fromArray == empty()) { return RxJavaPlugins.onAssembly(this); } return concatArray(fromArray, this); } /** * Subscribes to the current {@code Observable} and ignores {@code onNext} and {@code onComplete} emissions. *

* If the {@code Observable} emits an error, it is wrapped into an * {@link OnErrorNotImplementedException} * and routed to the {@link RxJavaPlugins#onError(Throwable)} handler. *

*
Scheduler:
*
{@code subscribe} does not operate by default on a particular {@link Scheduler}.
*
* * @return the new {@link Disposable} instance that can be used to dispose the subscription at any time * @see ReactiveX operators documentation: Subscribe */ @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Disposable subscribe() { return subscribe(Functions.emptyConsumer(), Functions.ON_ERROR_MISSING, Functions.EMPTY_ACTION); } /** * Subscribes to the current {@code Observable} and provides a callback to handle the items it emits. *

* If the {@code Observable} emits an error, it is wrapped into an * {@link OnErrorNotImplementedException} * and routed to the {@link RxJavaPlugins#onError(Throwable)} handler. *

*
Scheduler:
*
{@code subscribe} does not operate by default on a particular {@link Scheduler}.
*
* * @param onNext * the {@code Consumer} you have designed to accept emissions from the current {@code Observable} * @return the new {@link Disposable} instance that can be used to dispose the subscription at any time * @throws NullPointerException * if {@code onNext} is {@code null} * @see ReactiveX operators documentation: Subscribe */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Disposable subscribe(@NonNull Consumer onNext) { return subscribe(onNext, Functions.ON_ERROR_MISSING, Functions.EMPTY_ACTION); } /** * Subscribes to the current {@code Observable} and provides callbacks to handle the items it emits and any error * notification it signals. *
*
Scheduler:
*
{@code subscribe} does not operate by default on a particular {@link Scheduler}.
*
* * @param onNext * the {@code Consumer} you have designed to accept emissions from the current {@code Observable} * @param onError * the {@code Consumer} you have designed to accept any error notification from the current * {@code Observable} * @return the new {@link Disposable} instance that can be used to dispose the subscription at any time * @see ReactiveX operators documentation: Subscribe * @throws NullPointerException * if {@code onNext} or {@code onError} is {@code null} */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Disposable subscribe(@NonNull Consumer onNext, @NonNull Consumer onError) { return subscribe(onNext, onError, Functions.EMPTY_ACTION); } /** * Subscribes to the current {@code Observable} and provides callbacks to handle the items it emits and any error or * completion notification it signals. *
*
Scheduler:
*
{@code subscribe} does not operate by default on a particular {@link Scheduler}.
*
* * @param onNext * the {@code Consumer} you have designed to accept emissions from the current {@code Observable} * @param onError * the {@code Consumer} you have designed to accept any error notification from the current * {@code Observable} * @param onComplete * the {@link Action} you have designed to accept a completion notification from the current * {@code Observable} * @return the new {@link Disposable} instance that can be used to dispose the subscription at any time * @throws NullPointerException * if {@code onNext}, {@code onError} or {@code onComplete} is {@code null} * @see ReactiveX operators documentation: Subscribe */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Disposable subscribe(@NonNull Consumer onNext, @NonNull Consumer onError, @NonNull Action onComplete) { Objects.requireNonNull(onNext, "onNext is null"); Objects.requireNonNull(onError, "onError is null"); Objects.requireNonNull(onComplete, "onComplete is null"); LambdaObserver ls = new LambdaObserver<>(onNext, onError, onComplete, Functions.emptyConsumer()); subscribe(ls); return ls; } @SchedulerSupport(SchedulerSupport.NONE) @Override public final void subscribe(@NonNull Observer observer) { Objects.requireNonNull(observer, "observer is null"); try { observer = RxJavaPlugins.onSubscribe(this, observer); Objects.requireNonNull(observer, "The RxJavaPlugins.onSubscribe hook returned a null Observer. Please change the handler provided to RxJavaPlugins.setOnObservableSubscribe for invalid null returns. Further reading: https://github.com/ReactiveX/RxJava/wiki/Plugins"); subscribeActual(observer); } catch (NullPointerException e) { // NOPMD throw e; } catch (Throwable e) { Exceptions.throwIfFatal(e); // can't call onError because no way to know if a Disposable has been set or not // can't call onSubscribe because the call might have set a Subscription already RxJavaPlugins.onError(e); NullPointerException npe = new NullPointerException("Actually not, but can't throw other exceptions due to RS"); npe.initCause(e); throw npe; } } /** * Operator implementations (both source and intermediate) should implement this method that * performs the necessary business logic and handles the incoming {@link Observer}s. *

There is no need to call any of the plugin hooks on the current {@code Observable} instance or * the {@code Observer}; all hooks and basic safeguards have been * applied by {@link #subscribe(Observer)} before this method gets called. * @param observer the incoming {@code Observer}, never {@code null} */ protected abstract void subscribeActual(@NonNull Observer observer); /** * Subscribes a given {@link Observer} (subclass) to the current {@code Observable} and returns the given * {@code Observer} instance as is. *

Usage example: *


     * Observable<Integer> source = Observable.range(1, 10);
     * CompositeDisposable composite = new CompositeDisposable();
     *
     * DisposableObserver<Integer> ds = new DisposableObserver<>() {
     *     // ...
     * };
     *
     * composite.add(source.subscribeWith(ds));
     * 
*
*
Scheduler:
*
{@code subscribeWith} does not operate by default on a particular {@link Scheduler}.
*
* @param the type of the {@code Observer} to use and return * @param observer the {@code Observer} (subclass) to use and return, not {@code null} * @return the input {@code observer} * @throws NullPointerException if {@code observer} is {@code null} * @since 2.0 */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final <@NonNull E extends Observer> E subscribeWith(E observer) { subscribe(observer); return observer; } /** * Asynchronously subscribes {@link Observer}s to the current {@code Observable} on the specified {@link Scheduler}. *

* *

*
Scheduler:
*
You specify which {@code Scheduler} this operator will use.
*
* * @param scheduler * the {@code Scheduler} to perform subscription actions on * @return the new {@code Observable} instance * @throws NullPointerException if {@code scheduler} is {@code null} * @see ReactiveX operators documentation: SubscribeOn * @see RxJava Threading Examples * @see #observeOn */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.CUSTOM) @NonNull public final Observable subscribeOn(@NonNull Scheduler scheduler) { Objects.requireNonNull(scheduler, "scheduler is null"); return RxJavaPlugins.onAssembly(new ObservableSubscribeOn<>(this, scheduler)); } /** * Returns an {@code Observable} that emits the items emitted by the current {@code Observable} or the items of an alternate * {@link ObservableSource} if the current {@code Observable} is empty. *

* *

*
Scheduler:
*
{@code switchIfEmpty} does not operate by default on a particular {@link Scheduler}.
*
* * @param other * the alternate {@code ObservableSource} to subscribe to if the source does not emit any items * @return the new {@code Observable} instance * @throws NullPointerException if {@code other} is {@code null} * @since 1.1.0 */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable switchIfEmpty(@NonNull ObservableSource other) { Objects.requireNonNull(other, "other is null"); return RxJavaPlugins.onAssembly(new ObservableSwitchIfEmpty<>(this, other)); } /** * Returns a new {@code Observable} by applying a function that you supply to each item emitted by the current * {@code Observable} that returns an {@link ObservableSource}, and then emitting the items emitted by the most recently emitted * of these {@code ObservableSource}s. *

* The resulting {@code Observable} completes if both the current {@code Observable} and the last inner {@code ObservableSource}, if any, complete. * If the current {@code Observable} signals an {@code onError}, the inner {@code ObservableSource} is disposed and the error delivered in-sequence. *

* *

*
Scheduler:
*
{@code switchMap} does not operate by default on a particular {@link Scheduler}.
*
* * @param the element type of the inner {@code ObservableSource}s and the output * @param mapper * a function that, when applied to an item emitted by the current {@code Observable}, returns an * {@code ObservableSource} * @return the new {@code Observable} instance * @throws NullPointerException if {@code mapper} is {@code null} * @see ReactiveX operators documentation: FlatMap * @see #switchMapDelayError(Function) */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable switchMap(@NonNull Function> mapper) { return switchMap(mapper, bufferSize()); } /** * Returns a new {@code Observable} by applying a function that you supply to each item emitted by the current * {@code Observable} that returns an {@link ObservableSource}, and then emitting the items emitted by the most recently emitted * of these {@code ObservableSource}s. *

* The resulting {@code Observable} completes if both the current {@code Observable} and the last inner {@code ObservableSource}, if any, complete. * If the current {@code Observable} signals an {@code onError}, the inner {@code ObservableSource} is disposed and the error delivered in-sequence. *

* *

*
Scheduler:
*
{@code switchMap} does not operate by default on a particular {@link Scheduler}.
*
* * @param the element type of the inner {@code ObservableSource}s and the output * @param mapper * a function that, when applied to an item emitted by the current {@code Observable}, returns an * {@code ObservableSource} * @param bufferSize * the number of elements expected from the current active inner {@code ObservableSource} to be buffered * @return the new {@code Observable} instance * @throws NullPointerException if {@code mapper} is {@code null} * @throws IllegalArgumentException if {@code bufferSize} is non-positive * @see ReactiveX operators documentation: FlatMap * @see #switchMapDelayError(Function, int) */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable switchMap(@NonNull Function> mapper, int bufferSize) { Objects.requireNonNull(mapper, "mapper is null"); ObjectHelper.verifyPositive(bufferSize, "bufferSize"); if (this instanceof ScalarSupplier) { @SuppressWarnings("unchecked") T v = ((ScalarSupplier)this).get(); if (v == null) { return empty(); } return ObservableScalarXMap.scalarXMap(v, mapper); } return RxJavaPlugins.onAssembly(new ObservableSwitchMap<>(this, mapper, bufferSize, false)); } /** * Maps the items of the current {@code Observable} into {@link CompletableSource}s, subscribes to the newer one while * disposing the subscription to the previous {@code CompletableSource}, thus keeping at most one * active {@code CompletableSource} running. *

* *

* Since a {@code CompletableSource} doesn't produce any items, the resulting reactive type of * this operator is a {@link Completable} that can only indicate successful completion or * a failure in any of the inner {@code CompletableSource}s or the failure of the current * {@code Observable}. *

*
Scheduler:
*
{@code switchMapCompletable} does not operate by default on a particular {@link Scheduler}.
*
Error handling:
*
If either the current {@code Observable} or the active {@code CompletableSource} signals an {@code onError}, * the resulting {@code Completable} is terminated immediately with that {@link Throwable}. * Use the {@link #switchMapCompletableDelayError(Function)} to delay such inner failures until * every inner {@code CompletableSource}s and the main {@code Observable} terminates in some fashion. * If they fail concurrently, the operator may combine the {@code Throwable}s into a * {@link CompositeException} * and signal it to the downstream instead. If any inactivated (switched out) {@code CompletableSource} * signals an {@code onError} late, the {@code Throwable}s will be signaled to the global error handler via * {@link RxJavaPlugins#onError(Throwable)} method as {@link UndeliverableException} errors. *
*
*

History: 2.1.11 - experimental * @param mapper the function called with each upstream item and should return a * {@code CompletableSource} to be subscribed to and awaited for * (non blockingly) for its terminal event * @return the new {@code Completable} instance * @throws NullPointerException if {@code mapper} is {@code null} * @see #switchMapCompletableDelayError(Function) * @since 2.2 */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Completable switchMapCompletable(@NonNull Function mapper) { Objects.requireNonNull(mapper, "mapper is null"); return RxJavaPlugins.onAssembly(new ObservableSwitchMapCompletable<>(this, mapper, false)); } /** * Maps the upstream values into {@link CompletableSource}s, subscribes to the newer one while * disposing the subscription to the previous {@code CompletableSource}, thus keeping at most one * active {@code CompletableSource} running and delaying any main or inner errors until all * of them terminate. *

* *

* Since a {@code CompletableSource} doesn't produce any items, the resulting reactive type of * this operator is a {@link Completable} that can only indicate successful completion or * a failure in any of the inner {@code CompletableSource}s or the failure of the current * {@code Observable}. *

*
Scheduler:
*
{@code switchMapCompletableDelayError} does not operate by default on a particular {@link Scheduler}.
*
Error handling:
*
The errors of the current {@code Observable} and all the {@code CompletableSource}s, who had the chance * to run to their completion, are delayed until * all of them terminate in some fashion. At this point, if there was only one failure, the respective * {@link Throwable} is emitted to the downstream. It there were more than one failures, the * operator combines all {@code Throwable}s into a {@link CompositeException} * and signals that to the downstream. * If any inactivated (switched out) {@code CompletableSource} * signals an {@code onError} late, the {@code Throwable}s will be signaled to the global error handler via * {@link RxJavaPlugins#onError(Throwable)} method as {@link UndeliverableException} errors. *
*
*

History: 2.1.11 - experimental * @param mapper the function called with each upstream item and should return a * {@code CompletableSource} to be subscribed to and awaited for * (non blockingly) for its terminal event * @return the new {@code Completable} instance * @throws NullPointerException if {@code mapper} is {@code null} * @see #switchMapCompletable(Function) * @since 2.2 */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Completable switchMapCompletableDelayError(@NonNull Function mapper) { Objects.requireNonNull(mapper, "mapper is null"); return RxJavaPlugins.onAssembly(new ObservableSwitchMapCompletable<>(this, mapper, true)); } /** * Maps the items of the current {@code Observable} into {@link MaybeSource}s and switches (subscribes) to the newer ones * while disposing the older ones (and ignoring their signals) and emits the latest success value of the current one if * available while failing immediately if the current {@code Observable} or any of the * active inner {@code MaybeSource}s fail. *

* *

*
Scheduler:
*
{@code switchMapMaybe} does not operate by default on a particular {@link Scheduler}.
*
Error handling:
*
This operator terminates with an {@code onError} if the current {@code Observable} or any of * the inner {@code MaybeSource}s fail while they are active. When this happens concurrently, their * individual {@link Throwable} errors may get combined and emitted as a single * {@link CompositeException}. Otherwise, a late * (i.e., inactive or switched out) {@code onError} from the current {@code Observable} or from any of * the inner {@code MaybeSource}s will be forwarded to the global error handler via * {@link RxJavaPlugins#onError(Throwable)} as * {@link UndeliverableException}
*
*

History: 2.1.11 - experimental * @param the output value type * @param mapper the function called with the current upstream event and should * return a {@code MaybeSource} to replace the current active inner source * and get subscribed to. * @return the new {@code Observable} instance * @throws NullPointerException if {@code mapper} is {@code null} * @see #switchMapMaybeDelayError(Function) * @since 2.2 */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable switchMapMaybe(@NonNull Function> mapper) { Objects.requireNonNull(mapper, "mapper is null"); return RxJavaPlugins.onAssembly(new ObservableSwitchMapMaybe<>(this, mapper, false)); } /** * Maps the upstream items into {@link MaybeSource}s and switches (subscribes) to the newer ones * while disposing the older ones (and ignoring their signals) and emits the latest success value of the current one if * available, delaying errors from the current {@code Observable} or the inner {@code MaybeSource}s until all terminate. *

* *

*
Scheduler:
*
{@code switchMapMaybeDelayError} does not operate by default on a particular {@link Scheduler}.
*
*

History: 2.1.11 - experimental * @param the output value type * @param mapper the function called with the current upstream event and should * return a {@code MaybeSource} to replace the current active inner source * and get subscribed to. * @return the new {@code Observable} instance * @throws NullPointerException if {@code mapper} is {@code null} * @see #switchMapMaybe(Function) * @since 2.2 */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable switchMapMaybeDelayError(@NonNull Function> mapper) { Objects.requireNonNull(mapper, "mapper is null"); return RxJavaPlugins.onAssembly(new ObservableSwitchMapMaybe<>(this, mapper, true)); } /** * Returns a new {@code Observable} by applying a function that you supply to each item emitted by the current * {@code Observable} that returns a {@link SingleSource}, and then emitting the item emitted by the most recently emitted * of these {@code SingleSource}s. *

* The resulting {@code Observable} completes if both the current {@code Observable} and the last inner {@code SingleSource}, if any, complete. * If the current {@code Observable} signals an {@code onError}, the inner {@code SingleSource} is disposed and the error delivered in-sequence. *

* *

*
Scheduler:
*
{@code switchMapSingle} does not operate by default on a particular {@link Scheduler}.
*
*

History: 2.0.8 - experimental * @param the element type of the inner {@code SingleSource}s and the output * @param mapper * a function that, when applied to an item emitted by the current {@code Observable}, returns a * {@code SingleSource} * @return the new {@code Observable} instance * @throws NullPointerException if {@code mapper} is {@code null} * @see ReactiveX operators documentation: FlatMap * @see #switchMapSingleDelayError(Function) * @since 2.2 */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable switchMapSingle(@NonNull Function> mapper) { Objects.requireNonNull(mapper, "mapper is null"); return RxJavaPlugins.onAssembly(new ObservableSwitchMapSingle<>(this, mapper, false)); } /** * Returns a new {@code Observable} by applying a function that you supply to each item emitted by the current * {@code Observable} that returns a {@link SingleSource}, and then emitting the item emitted by the most recently emitted * of these {@code SingleSource}s and delays any error until all {@code SingleSource}s terminate. *

* The resulting {@code Observable} completes if both the current {@code Observable} and the last inner {@code SingleSource}, if any, complete. * If the current {@code Observable} signals an {@code onError}, the termination of the last inner {@code SingleSource} will emit that error as is * or wrapped into a {@link CompositeException} along with the other possible errors the former inner {@code SingleSource}s signaled. *

* *

*
Scheduler:
*
{@code switchMapSingleDelayError} does not operate by default on a particular {@link Scheduler}.
*
*

History: 2.0.8 - experimental * @param the element type of the inner {@code SingleSource}s and the output * @param mapper * a function that, when applied to an item emitted by the current {@code Observable}, returns a * {@code SingleSource} * @return the new {@code Observable} instance * @throws NullPointerException if {@code mapper} is {@code null} * @see ReactiveX operators documentation: FlatMap * @see #switchMapSingle(Function) * @since 2.2 */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable switchMapSingleDelayError(@NonNull Function> mapper) { Objects.requireNonNull(mapper, "mapper is null"); return RxJavaPlugins.onAssembly(new ObservableSwitchMapSingle<>(this, mapper, true)); } /** * Returns a new {@code Observable} by applying a function that you supply to each item emitted by the current * {@code Observable} that returns an {@link ObservableSource}, and then emitting the items emitted by the most recently emitted * of these {@code ObservableSource}s and delays any error until all {@code ObservableSource}s terminate. *

* The resulting {@code Observable} completes if both the current {@code Observable} and the last inner {@code ObservableSource}, if any, complete. * If the current {@code Observable} signals an {@code onError}, the termination of the last inner {@code ObservableSource} will emit that error as is * or wrapped into a {@link CompositeException} along with the other possible errors the former inner {@code ObservableSource}s signaled. *

* *

*
Scheduler:
*
{@code switchMapDelayError} does not operate by default on a particular {@link Scheduler}.
*
* * @param the element type of the inner {@code ObservableSource}s and the output * @param mapper * a function that, when applied to an item emitted by the current {@code Observable}, returns an * {@code ObservableSource} * @return the new {@code Observable} instance * @throws NullPointerException if {@code mapper} is {@code null} * @see ReactiveX operators documentation: FlatMap * @see #switchMap(Function) * @since 2.0 */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable switchMapDelayError(@NonNull Function> mapper) { return switchMapDelayError(mapper, bufferSize()); } /** * Returns a new {@code Observable} by applying a function that you supply to each item emitted by the current * {@code Observable} that returns an {@link ObservableSource}, and then emitting the items emitted by the most recently emitted * of these {@code ObservableSource}s and delays any error until all {@code ObservableSource}s terminate. *

* The resulting {@code Observable} completes if both the current {@code Observable} and the last inner {@code ObservableSource}, if any, complete. * If the current {@code Observable} signals an {@code onError}, the termination of the last inner {@code ObservableSource} will emit that error as is * or wrapped into a {@link CompositeException} along with the other possible errors the former inner {@code ObservableSource}s signaled. *

* *

*
Scheduler:
*
{@code switchMapDelayError} does not operate by default on a particular {@link Scheduler}.
*
* * @param the element type of the inner {@code ObservableSource}s and the output * @param mapper * a function that, when applied to an item emitted by the current {@code Observable}, returns an * {@code ObservableSource} * @param bufferSize * the number of elements expected from the current active inner {@code ObservableSource} to be buffered * @return the new {@code Observable} instance * @throws NullPointerException if {@code mapper} is {@code null} * @throws IllegalArgumentException if {@code bufferSize} is non-positive * @see ReactiveX operators documentation: FlatMap * @see #switchMap(Function, int) * @since 2.0 */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable switchMapDelayError(@NonNull Function> mapper, int bufferSize) { Objects.requireNonNull(mapper, "mapper is null"); ObjectHelper.verifyPositive(bufferSize, "bufferSize"); if (this instanceof ScalarSupplier) { @SuppressWarnings("unchecked") T v = ((ScalarSupplier)this).get(); if (v == null) { return empty(); } return ObservableScalarXMap.scalarXMap(v, mapper); } return RxJavaPlugins.onAssembly(new ObservableSwitchMap<>(this, mapper, bufferSize, true)); } /** * Returns an {@code Observable} that emits only the first {@code count} items emitted by the current {@code Observable}. * If the source emits fewer than {@code count} items then all of its items are emitted. *

* *

* This method returns an {@code Observable} that will invoke a subscribing {@link Observer}'s * {@link Observer#onNext onNext} function a maximum of {@code count} times before invoking * {@link Observer#onComplete onComplete}. *

* Taking {@code 0} items from the current {@code Observable} will still subscribe to it, allowing the * subscription-time side-effects to happen there, but will be immediately disposed and the downstream completed * without any item emission. *

*
Scheduler:
*
This version of {@code take} does not operate by default on a particular {@link Scheduler}.
*
* * @param count * the maximum number of items to emit * @return the new {@code Observable} instance * @throws IllegalArgumentException if {@code count} is negative * @see ReactiveX operators documentation: Take */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable take(long count) { if (count < 0) { throw new IllegalArgumentException("count >= 0 required but it was " + count); } return RxJavaPlugins.onAssembly(new ObservableTake<>(this, count)); } /** * Returns an {@code Observable} that emits those items emitted by the current {@code Observable} before a specified time runs * out. *

* If time runs out before the {@code Observable} completes normally, the {@code onComplete} event will be * signaled on the default {@code computation} {@link Scheduler}. *

* *

*
Scheduler:
*
This version of {@code take} operates by default on the {@code computation} {@code Scheduler}.
*
* * @param time * the length of the time window * @param unit * the time unit of {@code time} * @return the new {@code Observable} instance * @throws NullPointerException if {@code unit} is {@code null} * @see ReactiveX operators documentation: Take */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable take(long time, @NonNull TimeUnit unit) { return takeUntil(timer(time, unit)); } /** * Returns an {@code Observable} that emits those items emitted by the current {@code Observable} before a specified time (on a * specified {@link Scheduler}) runs out. *

* If time runs out before the {@code Observable} completes normally, the {@code onComplete} event will be * signaled on the provided {@code Scheduler}. *

* *

*
Scheduler:
*
You specify which {@code Scheduler} this operator will use.
*
* * @param time * the length of the time window * @param unit * the time unit of {@code time} * @param scheduler * the {@code Scheduler} used for time source * @return the new {@code Observable} instance * @throws NullPointerException if {@code unit} or {@code scheduler} is {@code null} * @see ReactiveX operators documentation: Take */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.CUSTOM) @NonNull public final Observable take(long time, @NonNull TimeUnit unit, @NonNull Scheduler scheduler) { return takeUntil(timer(time, unit, scheduler)); } /** * Returns an {@code Observable} that emits at most the last {@code count} items emitted by the current {@code Observable}. * If the source emits fewer than {@code count} items then all of its items are emitted. *

* *

*
Scheduler:
*
This version of {@code takeLast} does not operate by default on a particular {@link Scheduler}.
*
* * @param count * the maximum number of items to emit from the end of the sequence of items emitted by the current * {@code Observable} * @return the new {@code Observable} instance * @throws IllegalArgumentException * if {@code count} is negative * @see ReactiveX operators documentation: TakeLast */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable takeLast(int count) { if (count < 0) { throw new IllegalArgumentException("count >= 0 required but it was " + count); } if (count == 0) { return RxJavaPlugins.onAssembly(new ObservableIgnoreElements<>(this)); } if (count == 1) { return RxJavaPlugins.onAssembly(new ObservableTakeLastOne<>(this)); } return RxJavaPlugins.onAssembly(new ObservableTakeLast<>(this, count)); } /** * Returns an {@code Observable} that emits at most a specified number of items from the current {@code Observable} that were * emitted in a specified window of time before the current {@code Observable} completed. *

* *

*
Scheduler:
*
{@code takeLast} does not operate on any particular scheduler but uses the current time * from the {@code trampoline} {@link Scheduler}.
*
* * @param count * the maximum number of items to emit * @param time * the length of the time window * @param unit * the time unit of {@code time} * @return the new {@code Observable} instance * @throws NullPointerException if {@code unit} is {@code null} * @throws IllegalArgumentException if {@code count} is negative * @see ReactiveX operators documentation: TakeLast */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.TRAMPOLINE) @NonNull public final Observable takeLast(long count, long time, @NonNull TimeUnit unit) { return takeLast(count, time, unit, Schedulers.trampoline(), false, bufferSize()); } /** * Returns an {@code Observable} that emits at most a specified number of items from the current {@code Observable} that were * emitted in a specified window of time before the current {@code Observable} completed, where the timing information is * provided by a given {@link Scheduler}. *

* *

*
Scheduler:
*
You specify which {@code Scheduler} this operator will use for tracking the current time
*
* * @param count * the maximum number of items to emit * @param time * the length of the time window * @param unit * the time unit of {@code time} * @param scheduler * the {@code Scheduler} that provides the timestamps for the observed items * @return the new {@code Observable} instance * @throws NullPointerException if {@code unit} or {@code scheduler} is {@code null} * @throws IllegalArgumentException * if {@code count} is negative * @see ReactiveX operators documentation: TakeLast */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.CUSTOM) @NonNull public final Observable takeLast(long count, long time, @NonNull TimeUnit unit, @NonNull Scheduler scheduler) { return takeLast(count, time, unit, scheduler, false, bufferSize()); } /** * Returns an {@code Observable} that emits at most a specified number of items from the current {@code Observable} that were * emitted in a specified window of time before the current {@code Observable} completed, where the timing information is * provided by a given {@link Scheduler}. *

* *

*
Scheduler:
*
You specify which {@code Scheduler} this operator will use for tracking the current time
*
* * @param count * the maximum number of items to emit * @param time * the length of the time window * @param unit * the time unit of {@code time} * @param scheduler * the {@code Scheduler} that provides the timestamps for the observed items * @param delayError * if {@code true}, an exception signaled by the current {@code Observable} is delayed until the regular elements are consumed * by the downstream; if {@code false}, an exception is immediately signaled and all regular elements dropped * @param bufferSize * the hint about how many elements to expect to be last * @return the new {@code Observable} instance * @throws NullPointerException if {@code unit} or {@code scheduler} is {@code null} * @throws IllegalArgumentException * if {@code count} is negative or {@code bufferSize} is non-positive * @see ReactiveX operators documentation: TakeLast */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.CUSTOM) @NonNull public final Observable takeLast(long count, long time, @NonNull TimeUnit unit, @NonNull Scheduler scheduler, boolean delayError, int bufferSize) { Objects.requireNonNull(unit, "unit is null"); Objects.requireNonNull(scheduler, "scheduler is null"); ObjectHelper.verifyPositive(bufferSize, "bufferSize"); if (count < 0) { throw new IllegalArgumentException("count >= 0 required but it was " + count); } return RxJavaPlugins.onAssembly(new ObservableTakeLastTimed<>(this, count, time, unit, scheduler, bufferSize, delayError)); } /** * Returns an {@code Observable} that emits the items from the current {@code Observable} that were emitted in a specified * window of time before the current {@code Observable} completed. *

* *

*
Scheduler:
*
{@code takeLast} does not operate on any particular scheduler but uses the current time * from the {@code trampoline} {@link Scheduler}.
*
* * @param time * the length of the time window * @param unit * the time unit of {@code time} * @return the new {@code Observable} instance * @throws NullPointerException if {@code unit} is {@code null} * @see ReactiveX operators documentation: TakeLast */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.TRAMPOLINE) @NonNull public final Observable takeLast(long time, @NonNull TimeUnit unit) { return takeLast(time, unit, Schedulers.trampoline(), false, bufferSize()); } /** * Returns an {@code Observable} that emits the items from the current {@code Observable} that were emitted in a specified * window of time before the current {@code Observable} completed. *

* *

*
Scheduler:
*
{@code takeLast} does not operate on any particular scheduler but uses the current time * from the {@code trampoline} {@link Scheduler}.
*
* * @param time * the length of the time window * @param unit * the time unit of {@code time} * @param delayError * if {@code true}, an exception signaled by the current {@code Observable} is delayed until the regular elements are consumed * by the downstream; if {@code false}, an exception is immediately signaled and all regular elements dropped * @return the new {@code Observable} instance * @throws NullPointerException if {@code unit} is {@code null} * @throws IllegalArgumentException if {@code count} is non-positive * @see ReactiveX operators documentation: TakeLast */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.TRAMPOLINE) @NonNull public final Observable takeLast(long time, @NonNull TimeUnit unit, boolean delayError) { return takeLast(time, unit, Schedulers.trampoline(), delayError, bufferSize()); } /** * Returns an {@code Observable} that emits the items from the current {@code Observable} that were emitted in a specified * window of time before the current {@code Observable} completed, where the timing information is provided by a specified * {@link Scheduler}. *

* *

*
Scheduler:
*
You specify which {@code Scheduler} this operator will use.
*
* * @param time * the length of the time window * @param unit * the time unit of {@code time} * @param scheduler * the {@code Scheduler} that provides the timestamps for the observed items * @return the new {@code Observable} instance * @throws NullPointerException if {@code unit} or {@code scheduler} is {@code null} * @see ReactiveX operators documentation: TakeLast */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.CUSTOM) @NonNull public final Observable takeLast(long time, @NonNull TimeUnit unit, @NonNull Scheduler scheduler) { return takeLast(time, unit, scheduler, false, bufferSize()); } /** * Returns an {@code Observable} that emits the items from the current {@code Observable} that were emitted in a specified * window of time before the current {@code Observable} completed, where the timing information is provided by a specified * {@link Scheduler}. *

* *

*
Scheduler:
*
You specify which {@code Scheduler} this operator will use.
*
* * @param time * the length of the time window * @param unit * the time unit of {@code time} * @param scheduler * the {@code Scheduler} that provides the timestamps for the observed items * @param delayError * if {@code true}, an exception signaled by the current {@code Observable} is delayed until the regular elements are consumed * by the downstream; if {@code false}, an exception is immediately signaled and all regular elements dropped * @return the new {@code Observable} instance * @throws NullPointerException if {@code unit} or {@code scheduler} is {@code null} * @see ReactiveX operators documentation: TakeLast */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.CUSTOM) @NonNull public final Observable takeLast(long time, @NonNull TimeUnit unit, @NonNull Scheduler scheduler, boolean delayError) { return takeLast(time, unit, scheduler, delayError, bufferSize()); } /** * Returns an {@code Observable} that emits the items from the current {@code Observable} that were emitted in a specified * window of time before the current {@code Observable} completed, where the timing information is provided by a specified * {@link Scheduler}. *

* *

*
Scheduler:
*
You specify which {@code Scheduler} this operator will use.
*
* * @param time * the length of the time window * @param unit * the time unit of {@code time} * @param scheduler * the {@code Scheduler} that provides the timestamps for the observed items * @param delayError * if {@code true}, an exception signaled by the current {@code Observable} is delayed until the regular elements are consumed * by the downstream; if {@code false}, an exception is immediately signaled and all regular elements dropped * @param bufferSize * the hint about how many elements to expect to be last * @return the new {@code Observable} instance * @throws NullPointerException if {@code unit} or {@code scheduler} is {@code null} * @throws IllegalArgumentException if {@code bufferSize} is non-positive * @see ReactiveX operators documentation: TakeLast */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.CUSTOM) @NonNull public final Observable takeLast(long time, @NonNull TimeUnit unit, @NonNull Scheduler scheduler, boolean delayError, int bufferSize) { return takeLast(Long.MAX_VALUE, time, unit, scheduler, delayError, bufferSize); } /** * Returns an {@code Observable} that emits the items emitted by the current {@code Observable} until a second {@link ObservableSource} * emits an item. *

* *

*
Scheduler:
*
{@code takeUntil} does not operate by default on a particular {@link Scheduler}.
*
* * @param other * the {@code ObservableSource} whose first emitted item will cause {@code takeUntil} to stop emitting items * from the current {@code Observable} * @param * the type of items emitted by {@code other} * @return the new {@code Observable} instance * @throws NullPointerException if {@code other} is {@code null} * @see ReactiveX operators documentation: TakeUntil */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable takeUntil(@NonNull ObservableSource other) { Objects.requireNonNull(other, "other is null"); return RxJavaPlugins.onAssembly(new ObservableTakeUntil<>(this, other)); } /** * Returns an {@code Observable} that emits items emitted by the current {@code Observable}, checks the specified predicate * for each item, and then completes when the condition is satisfied. *

* *

* The difference between this operator and {@link #takeWhile(Predicate)} is that here, the condition is * evaluated after the item is emitted. * *

*
Scheduler:
*
{@code takeUntil} does not operate by default on a particular {@link Scheduler}.
*
* * @param stopPredicate * a function that evaluates an item emitted by the current {@code Observable} and returns a {@link Boolean} * @return the new {@code Observable} instance * @throws NullPointerException if {@code stopPredicate} is {@code null} * @see ReactiveX operators documentation: TakeUntil * @see Observable#takeWhile(Predicate) * @since 1.1.0 */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable takeUntil(@NonNull Predicate stopPredicate) { Objects.requireNonNull(stopPredicate, "stopPredicate is null"); return RxJavaPlugins.onAssembly(new ObservableTakeUntilPredicate<>(this, stopPredicate)); } /** * Returns an {@code Observable} that emits items emitted by the current {@code Observable} so long as each item satisfied a * specified condition, and then completes as soon as this condition is not satisfied. *

* *

*
Scheduler:
*
{@code takeWhile} does not operate by default on a particular {@link Scheduler}.
*
* * @param predicate * a function that evaluates an item emitted by the current {@code Observable} and returns a {@link Boolean} * @return the new {@code Observable} instance * @throws NullPointerException if {@code predicate} is {@code null} * @see ReactiveX operators documentation: TakeWhile * @see Observable#takeUntil(Predicate) */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable takeWhile(@NonNull Predicate predicate) { Objects.requireNonNull(predicate, "predicate is null"); return RxJavaPlugins.onAssembly(new ObservableTakeWhile<>(this, predicate)); } /** * Returns an {@code Observable} that emits only the first item emitted by the current {@code Observable} during sequential * time windows of a specified duration. *

* This differs from {@link #throttleLast} in that this only tracks passage of time whereas * {@code throttleLast} ticks at scheduled intervals. *

* *

*
Scheduler:
*
{@code throttleFirst} operates by default on the {@code computation} {@link Scheduler}.
*
* * @param windowDuration * time to wait before emitting another item after emitting the last item * @param unit * the unit of time of {@code windowDuration} * @return the new {@code Observable} instance * @throws NullPointerException if {@code unit} is {@code null} * @see ReactiveX operators documentation: Sample */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.COMPUTATION) @NonNull public final Observable throttleFirst(long windowDuration, @NonNull TimeUnit unit) { return throttleFirst(windowDuration, unit, Schedulers.computation()); } /** * Returns an {@code Observable} that emits only the first item emitted by the current {@code Observable} during sequential * time windows of a specified duration, where the windows are managed by a specified {@link Scheduler}. *

* This differs from {@link #throttleLast} in that this only tracks passage of time whereas * {@code throttleLast} ticks at scheduled intervals. *

* *

*
Scheduler:
*
You specify which {@code Scheduler} this operator will use.
*
* * @param skipDuration * time to wait before emitting another item after emitting the last item * @param unit * the unit of time of {@code skipDuration} * @param scheduler * the {@code Scheduler} to use internally to manage the timers that handle timeout for each * event * @return the new {@code Observable} instance * @throws NullPointerException if {@code unit} or {@code scheduler} is {@code null} * @see ReactiveX operators documentation: Sample */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.CUSTOM) @NonNull public final Observable throttleFirst(long skipDuration, @NonNull TimeUnit unit, @NonNull Scheduler scheduler) { Objects.requireNonNull(unit, "unit is null"); Objects.requireNonNull(scheduler, "scheduler is null"); return RxJavaPlugins.onAssembly(new ObservableThrottleFirstTimed<>(this, skipDuration, unit, scheduler)); } /** * Returns an {@code Observable} that emits only the last item emitted by the current {@code Observable} during sequential * time windows of a specified duration. *

* This differs from {@link #throttleFirst} in that this ticks along at a scheduled interval whereas * {@code throttleFirst} does not tick, it just tracks passage of time. *

* *

*
Scheduler:
*
{@code throttleLast} operates by default on the {@code computation} {@link Scheduler}.
*
* * @param intervalDuration * duration of windows within which the last item emitted by the current {@code Observable} will be * emitted * @param unit * the unit of time of {@code intervalDuration} * @return the new {@code Observable} instance * @throws NullPointerException if {@code unit} is {@code null} * @see ReactiveX operators documentation: Sample * @see #sample(long, TimeUnit) */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.COMPUTATION) @NonNull public final Observable throttleLast(long intervalDuration, @NonNull TimeUnit unit) { return sample(intervalDuration, unit); } /** * Returns an {@code Observable} that emits only the last item emitted by the current {@code Observable} during sequential * time windows of a specified duration, where the duration is governed by a specified {@link Scheduler}. *

* This differs from {@link #throttleFirst} in that this ticks along at a scheduled interval whereas * {@code throttleFirst} does not tick, it just tracks passage of time. *

* *

*
Scheduler:
*
You specify which {@code Scheduler} this operator will use.
*
* * @param intervalDuration * duration of windows within which the last item emitted by the current {@code Observable} will be * emitted * @param unit * the unit of time of {@code intervalDuration} * @param scheduler * the {@code Scheduler} to use internally to manage the timers that handle timeout for each * event * @return the new {@code Observable} instance * @throws NullPointerException if {@code unit} or {@code scheduler} is {@code null} * @see ReactiveX operators documentation: Sample * @see #sample(long, TimeUnit, Scheduler) */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.CUSTOM) @NonNull public final Observable throttleLast(long intervalDuration, @NonNull TimeUnit unit, @NonNull Scheduler scheduler) { return sample(intervalDuration, unit, scheduler); } /** * Throttles items from the current {@code Observable} by first emitting the next * item from upstream, then periodically emitting the latest item (if any) when * the specified timeout elapses between them. *

* *

* Unlike the option with {@link #throttleLatest(long, TimeUnit, boolean)}, the very last item being held back * (if any) is not emitted when the upstream completes. *

* If no items were emitted from the upstream during this timeout phase, the next * upstream item is emitted immediately and the timeout window starts from then. *

*
Scheduler:
*
{@code throttleLatest} operates by default on the {@code computation} {@link Scheduler}.
*
*

History: 2.1.14 - experimental * @param timeout the time to wait after an item emission towards the downstream * before trying to emit the latest item from upstream again * @param unit the time unit * @return the new {@code Observable} instance * @throws NullPointerException if {@code unit} is {@code null} * @see #throttleLatest(long, TimeUnit, boolean) * @see #throttleLatest(long, TimeUnit, Scheduler) * @since 2.2 */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.COMPUTATION) @NonNull public final Observable throttleLatest(long timeout, @NonNull TimeUnit unit) { return throttleLatest(timeout, unit, Schedulers.computation(), false); } /** * Throttles items from the current {@code Observable} by first emitting the next * item from upstream, then periodically emitting the latest item (if any) when * the specified timeout elapses between them. *

* *

* If no items were emitted from the upstream during this timeout phase, the next * upstream item is emitted immediately and the timeout window starts from then. *

*
Scheduler:
*
{@code throttleLatest} operates by default on the {@code computation} {@link Scheduler}.
*
*

History: 2.1.14 - experimental * @param timeout the time to wait after an item emission towards the downstream * before trying to emit the latest item from upstream again * @param unit the time unit * @param emitLast If {@code true}, the very last item from the upstream will be emitted * immediately when the upstream completes, regardless if there is * a timeout window active or not. If {@code false}, the very last * upstream item is ignored and the flow terminates. * @return the new {@code Observable} instance * @throws NullPointerException if {@code unit} is {@code null} * @see #throttleLatest(long, TimeUnit, Scheduler, boolean) * @since 2.2 */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.COMPUTATION) @NonNull public final Observable throttleLatest(long timeout, @NonNull TimeUnit unit, boolean emitLast) { return throttleLatest(timeout, unit, Schedulers.computation(), emitLast); } /** * Throttles items from the current {@code Observable} by first emitting the next * item from upstream, then periodically emitting the latest item (if any) when * the specified timeout elapses between them. *

* *

* Unlike the option with {@link #throttleLatest(long, TimeUnit, Scheduler, boolean)}, the very last item being held back * (if any) is not emitted when the upstream completes. *

* If no items were emitted from the upstream during this timeout phase, the next * upstream item is emitted immediately and the timeout window starts from then. *

*
Scheduler:
*
You specify which {@link Scheduler} this operator will use.
*
*

History: 2.1.14 - experimental * @param timeout the time to wait after an item emission towards the downstream * before trying to emit the latest item from upstream again * @param unit the time unit * @param scheduler the {@code Scheduler} where the timed wait and latest item * emission will be performed * @return the new {@code Observable} instance * @throws NullPointerException if {@code unit} or {@code scheduler} is {@code null} * @see #throttleLatest(long, TimeUnit, Scheduler, boolean) * @since 2.2 */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.CUSTOM) @NonNull public final Observable throttleLatest(long timeout, @NonNull TimeUnit unit, @NonNull Scheduler scheduler) { return throttleLatest(timeout, unit, scheduler, false); } /** * Throttles items from the current {@code Observable} by first emitting the next * item from upstream, then periodically emitting the latest item (if any) when * the specified timeout elapses between them. *

* *

* If no items were emitted from the upstream during this timeout phase, the next * upstream item is emitted immediately and the timeout window starts from then. *

*
Scheduler:
*
You specify which {@link Scheduler} this operator will use.
*
*

History: 2.1.14 - experimental * @param timeout the time to wait after an item emission towards the downstream * before trying to emit the latest item from upstream again * @param unit the time unit * @param scheduler the {@code Scheduler} where the timed wait and latest item * emission will be performed * @param emitLast If {@code true}, the very last item from the upstream will be emitted * immediately when the upstream completes, regardless if there is * a timeout window active or not. If {@code false}, the very last * upstream item is ignored and the flow terminates. * @return the new {@code Observable} instance * @throws NullPointerException if {@code unit} or {@code scheduler} is {@code null} * @since 2.2 */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.CUSTOM) @NonNull public final Observable throttleLatest(long timeout, @NonNull TimeUnit unit, @NonNull Scheduler scheduler, boolean emitLast) { Objects.requireNonNull(unit, "unit is null"); Objects.requireNonNull(scheduler, "scheduler is null"); return RxJavaPlugins.onAssembly(new ObservableThrottleLatest<>(this, timeout, unit, scheduler, emitLast)); } /** * Returns an {@code Observable} that mirrors the current {@code Observable}, except that it drops items emitted by the * current {@code Observable} that are followed by newer items before a timeout value expires. The timer resets on * each emission (alias to {@link #debounce(long, TimeUnit, Scheduler)}). *

* Note: If items keep being emitted by the current {@code Observable} faster than the timeout then no items * will be emitted by the resulting {@code Observable}. *

* *

*
Scheduler:
*
{@code throttleWithTimeout} operates by default on the {@code computation} {@link Scheduler}.
*
* * @param timeout * the length of the window of time that must pass after the emission of an item from the current * {@code Observable}, in which the current {@code Observable} emits no items, in order for the item to be emitted by the * resulting {@code Observable} * @param unit * the unit of time for the specified {@code timeout} * @return the new {@code Observable} instance * @throws NullPointerException if {@code unit} is {@code null} * @see ReactiveX operators documentation: Debounce * @see #debounce(long, TimeUnit) */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.COMPUTATION) @NonNull public final Observable throttleWithTimeout(long timeout, @NonNull TimeUnit unit) { return debounce(timeout, unit); } /** * Returns an {@code Observable} that mirrors the current {@code Observable}, except that it drops items emitted by the * current {@code Observable} that are followed by newer items before a timeout value expires on a specified * {@link Scheduler}. The timer resets on each emission (Alias to {@link #debounce(long, TimeUnit, Scheduler)}). *

* Note: If items keep being emitted by the current {@code Observable} faster than the timeout then no items * will be emitted by the resulting {@code Observable}. *

* *

*
Scheduler:
*
You specify which {@code Scheduler} this operator will use.
*
* * @param timeout * the length of the window of time that must pass after the emission of an item from the current * {@code Observable}, in which the current {@code Observable} emits no items, in order for the item to be emitted by the * resulting {@code Observable} * @param unit * the unit of time for the specified {@code timeout} * @param scheduler * the {@code Scheduler} to use internally to manage the timers that handle the timeout for each * item * @return the new {@code Observable} instance * @throws NullPointerException if {@code unit} or {@code scheduler} is {@code null} * @see ReactiveX operators documentation: Debounce * @see #debounce(long, TimeUnit, Scheduler) */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.CUSTOM) @NonNull public final Observable throttleWithTimeout(long timeout, @NonNull TimeUnit unit, @NonNull Scheduler scheduler) { return debounce(timeout, unit, scheduler); } /** * Returns an {@code Observable} that emits records of the time interval between consecutive items emitted by the * current {@code Observable}. *

* *

*
Scheduler:
*
{@code timeInterval} does not operate on any particular scheduler but uses the current time * from the {@code computation} {@link Scheduler}.
*
* * @return the new {@code Observable} instance * @see ReactiveX operators documentation: TimeInterval */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable> timeInterval() { return timeInterval(TimeUnit.MILLISECONDS, Schedulers.computation()); } /** * Returns an {@code Observable} that emits records of the time interval between consecutive items emitted by the * current {@code Observable}, where this interval is computed on a specified {@link Scheduler}. *

* *

*
Scheduler:
*
The operator does not operate on any particular scheduler but uses the current time * from the specified {@code Scheduler}.
*
* * @param scheduler * the {@code Scheduler} used to compute time intervals * @return the new {@code Observable} instance * @throws NullPointerException if {@code scheduler} is {@code null} * @see ReactiveX operators documentation: TimeInterval */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) // Supplied scheduler is only used for creating timestamps. @NonNull public final Observable> timeInterval(@NonNull Scheduler scheduler) { return timeInterval(TimeUnit.MILLISECONDS, scheduler); } /** * Returns an {@code Observable} that emits records of the time interval between consecutive items emitted by the * current {@code Observable}. *

* *

*
Scheduler:
*
{@code timeInterval} does not operate on any particular scheduler but uses the current time * from the {@code computation} {@link Scheduler}.
*
* * @param unit the time unit for the current time * @return the new {@code Observable} instance * @throws NullPointerException if {@code unit} is {@code null} * @see ReactiveX operators documentation: TimeInterval */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable> timeInterval(@NonNull TimeUnit unit) { return timeInterval(unit, Schedulers.computation()); } /** * Returns an {@code Observable} that emits records of the time interval between consecutive items emitted by the * current {@code Observable}, where this interval is computed on a specified {@link Scheduler}. *

* *

*
Scheduler:
*
The operator does not operate on any particular scheduler but uses the current time * from the specified {@code Scheduler}.
*
* * @param unit the time unit for the current time * @param scheduler * the {@code Scheduler} used to compute time intervals * @return the new {@code Observable} instance * @throws NullPointerException if {@code unit} or {@code scheduler} is {@code null} * @see ReactiveX operators documentation: TimeInterval */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) // Supplied scheduler is only used for creating timestamps. @NonNull public final Observable> timeInterval(@NonNull TimeUnit unit, @NonNull Scheduler scheduler) { Objects.requireNonNull(unit, "unit is null"); Objects.requireNonNull(scheduler, "scheduler is null"); return RxJavaPlugins.onAssembly(new ObservableTimeInterval<>(this, unit, scheduler)); } /** * Returns an {@code Observable} that mirrors the current {@code Observable}, but notifies observers of a * {@link TimeoutException} if an item emitted by the current {@code Observable} doesn't arrive within a window of * time after the emission of the previous item, where that period of time is measured by an {@link ObservableSource} that * is a function of the previous item. *

* *

* Note: The arrival of the first source item is never timed out. *

*
Scheduler:
*
This version of {@code timeout} operates by default on the {@code immediate} {@link Scheduler}.
*
* * @param * the timeout value type (ignored) * @param itemTimeoutIndicator * a function that returns an {@code ObservableSource} for each item emitted by the current * {@code Observable} and that determines the timeout window for the subsequent item * @return the new {@code Observable} instance * @throws NullPointerException if {@code itemTimeoutIndicator} is {@code null} * @see ReactiveX operators documentation: Timeout */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable timeout(@NonNull Function> itemTimeoutIndicator) { return timeout0(null, itemTimeoutIndicator, null); } /** * Returns an {@code Observable} that mirrors the current {@code Observable}, but that switches to a fallback {@link ObservableSource} if * an item emitted by the current {@code Observable} doesn't arrive within a window of time after the emission of the * previous item, where that period of time is measured by an {@code ObservableSource} that is a function of the previous * item. *

* *

* Note: The arrival of the first source item is never timed out. *

*
Scheduler:
*
This version of {@code timeout} operates by default on the {@code immediate} {@link Scheduler}.
*
* * @param * the timeout value type (ignored) * @param itemTimeoutIndicator * a function that returns an {@code ObservableSource}, for each item emitted by the current {@code Observable}, that * determines the timeout window for the subsequent item * @param fallback * the fallback {@code ObservableSource} to switch to if the current {@code Observable} times out * @return the new {@code Observable} instance * @throws NullPointerException if {@code itemTimeoutIndicator} or {@code fallback} is {@code null} * @see ReactiveX operators documentation: Timeout */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable timeout(@NonNull Function> itemTimeoutIndicator, @NonNull ObservableSource fallback) { Objects.requireNonNull(fallback, "fallback is null"); return timeout0(null, itemTimeoutIndicator, fallback); } /** * Returns an {@code Observable} that mirrors the current {@code Observable} but applies a timeout policy for each emitted * item. If the next item isn't emitted within the specified timeout duration starting from its predecessor, * the resulting {@code Observable} terminates and notifies observers of a {@link TimeoutException}. *

* *

*
Scheduler:
*
This version of {@code timeout} operates by default on the {@code computation} {@link Scheduler}.
*
* * @param timeout * maximum duration between emitted items before a timeout occurs * @param unit * the unit of time that applies to the {@code timeout} argument. * @return the new {@code Observable} instance * @throws NullPointerException if {@code unit} is {@code null} * @see ReactiveX operators documentation: Timeout */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.COMPUTATION) @NonNull public final Observable timeout(long timeout, @NonNull TimeUnit unit) { return timeout0(timeout, unit, null, Schedulers.computation()); } /** * Returns an {@code Observable} that mirrors the current {@code Observable} but applies a timeout policy for each emitted * item. If the next item isn't emitted within the specified timeout duration starting from its predecessor, * the current {@code Observable} is disposed and the resulting {@code Observable} begins instead * to mirror a fallback {@link ObservableSource}. *

* *

*
Scheduler:
*
This version of {@code timeout} operates by default on the {@code computation} {@link Scheduler}.
*
* * @param timeout * maximum duration between items before a timeout occurs * @param unit * the unit of time that applies to the {@code timeout} argument * @param fallback * the fallback {@code ObservableSource} to use in case of a timeout * @return the new {@code Observable} instance * @throws NullPointerException if {@code unit} or {@code fallback} is {@code null} * @see ReactiveX operators documentation: Timeout */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.COMPUTATION) @NonNull public final Observable timeout(long timeout, @NonNull TimeUnit unit, @NonNull ObservableSource fallback) { Objects.requireNonNull(fallback, "fallback is null"); return timeout0(timeout, unit, fallback, Schedulers.computation()); } /** * Returns an {@code Observable} that mirrors the current {@code Observable} but applies a timeout policy for each emitted * item using a specified {@link Scheduler}. If the next item isn't emitted within the specified timeout duration * starting from its predecessor, the current {@code Observable} is disposed and returned {@code Observable} * begins instead to mirror a fallback {@link ObservableSource}. *

* *

*
Scheduler:
*
You specify which {@code Scheduler} this operator will use.
*
* * @param timeout * maximum duration between items before a timeout occurs * @param unit * the unit of time that applies to the {@code timeout} argument * @param scheduler * the {@code Scheduler} to run the timeout timers on * @param fallback * the {@code ObservableSource} to use as the fallback in case of a timeout * @return the new {@code Observable} instance * @throws NullPointerException if {@code unit}, {@code scheduler} or {@code fallback} is {@code null} * @see ReactiveX operators documentation: Timeout */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.CUSTOM) @NonNull public final Observable timeout(long timeout, @NonNull TimeUnit unit, @NonNull Scheduler scheduler, @NonNull ObservableSource fallback) { Objects.requireNonNull(fallback, "fallback is null"); return timeout0(timeout, unit, fallback, scheduler); } /** * Returns an {@code Observable} that mirrors the current {@code Observable} but applies a timeout policy for each emitted * item, where this policy is governed on a specified {@link Scheduler}. If the next item isn't emitted within the * specified timeout duration starting from its predecessor, the resulting {@code Observable} terminates and * notifies observers of a {@link TimeoutException}. *

* *

*
Scheduler:
*
You specify which {@code Scheduler} this operator will use.
*
* * @param timeout * maximum duration between items before a timeout occurs * @param unit * the unit of time that applies to the {@code timeout} argument * @param scheduler * the {@code Scheduler} to run the timeout timers on * @return the new {@code Observable} instance * @throws NullPointerException if {@code unit} or {@code scheduler} is {@code null} * @see ReactiveX operators documentation: Timeout */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.CUSTOM) @NonNull public final Observable timeout(long timeout, @NonNull TimeUnit unit, @NonNull Scheduler scheduler) { return timeout0(timeout, unit, null, scheduler); } /** * Returns an {@code Observable} that mirrors the current {@code Observable}, but notifies observers of a * {@link TimeoutException} if either the first item emitted by the current {@code Observable} or any subsequent item * doesn't arrive within time windows defined by indicator {@link ObservableSource}s. *

* *

*
Scheduler:
*
This version of {@code timeout} operates by default on the {@code immediate} {@link Scheduler}.
*
* * @param * the first timeout value type (ignored) * @param * the subsequent timeout value type (ignored) * @param firstTimeoutIndicator * a function that returns an {@code ObservableSource} that determines the timeout window for the first source * item * @param itemTimeoutIndicator * a function that returns an {@code ObservableSource} for each item emitted by the current {@code Observable} and that * determines the timeout window in which the subsequent source item must arrive in order to * continue the sequence * @return the new {@code Observable} instance * @throws NullPointerException if {@code firstTimeoutIndicator} or {@code itemTimeoutIndicator} is {@code null} * @see ReactiveX operators documentation: Timeout */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable timeout(@NonNull ObservableSource firstTimeoutIndicator, @NonNull Function> itemTimeoutIndicator) { Objects.requireNonNull(firstTimeoutIndicator, "firstTimeoutIndicator is null"); return timeout0(firstTimeoutIndicator, itemTimeoutIndicator, null); } /** * Returns an {@code Observable} that mirrors the current {@code Observable}, but switches to a fallback {@link ObservableSource} if either * the first item emitted by the current {@code Observable} or any subsequent item doesn't arrive within time windows * defined by indicator {@code ObservableSource}s. *

* *

*
Scheduler:
*
This version of {@code timeout} operates by default on the {@code immediate} {@link Scheduler}.
*
* * @param * the first timeout value type (ignored) * @param * the subsequent timeout value type (ignored) * @param firstTimeoutIndicator * a function that returns an {@code ObservableSource} which determines the timeout window for the first source * item * @param itemTimeoutIndicator * a function that returns an {@code ObservableSource} for each item emitted by the current {@code Observable} and that * determines the timeout window in which the subsequent source item must arrive in order to * continue the sequence * @param fallback * the fallback {@code ObservableSource} to switch to if the current {@code Observable} times out * @return the new {@code Observable} instance * @throws NullPointerException * if {@code firstTimeoutIndicator}, {@code itemTimeoutIndicator} or {@code fallback} is {@code null} * @see ReactiveX operators documentation: Timeout */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable timeout( @NonNull ObservableSource firstTimeoutIndicator, @NonNull Function> itemTimeoutIndicator, @NonNull ObservableSource fallback) { Objects.requireNonNull(firstTimeoutIndicator, "firstTimeoutIndicator is null"); Objects.requireNonNull(fallback, "fallback is null"); return timeout0(firstTimeoutIndicator, itemTimeoutIndicator, fallback); } @NonNull private Observable timeout0(long timeout, @NonNull TimeUnit unit, @Nullable ObservableSource fallback, @NonNull Scheduler scheduler) { Objects.requireNonNull(unit, "unit is null"); Objects.requireNonNull(scheduler, "scheduler is null"); return RxJavaPlugins.onAssembly(new ObservableTimeoutTimed<>(this, timeout, unit, scheduler, fallback)); } @NonNull private Observable timeout0( @NonNull ObservableSource firstTimeoutIndicator, @NonNull Function> itemTimeoutIndicator, @Nullable ObservableSource fallback) { Objects.requireNonNull(itemTimeoutIndicator, "itemTimeoutIndicator is null"); return RxJavaPlugins.onAssembly(new ObservableTimeout<>(this, firstTimeoutIndicator, itemTimeoutIndicator, fallback)); } /** * Returns an {@code Observable} that emits each item emitted by the current {@code Observable}, wrapped in a * {@link Timed} object. *

* *

*
Scheduler:
*
{@code timestamp} does not operate on any particular scheduler but uses the current time * from the {@code computation} {@link Scheduler}.
*
* * @return the new {@code Observable} instance * @see ReactiveX operators documentation: Timestamp */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable> timestamp() { return timestamp(TimeUnit.MILLISECONDS, Schedulers.computation()); } /** * Returns an {@code Observable} that emits each item emitted by the current {@code Observable}, wrapped in a * {@link Timed} object whose timestamps are provided by a specified {@link Scheduler}. *

* *

*
Scheduler:
*
This operator does not operate on any particular scheduler but uses the current time * from the specified {@code Scheduler}.
*
* * @param scheduler * the {@code Scheduler} to use as a time source * @return the new {@code Observable} instance * @throws NullPointerException if {@code scheduler} is {@code null} * @see ReactiveX operators documentation: Timestamp */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) // Supplied scheduler is only used for creating timestamps. @NonNull public final Observable> timestamp(@NonNull Scheduler scheduler) { return timestamp(TimeUnit.MILLISECONDS, scheduler); } /** * Returns an {@code Observable} that emits each item emitted by the current {@code Observable}, wrapped in a * {@link Timed} object. *

* *

*
Scheduler:
*
{@code timestamp} does not operate on any particular scheduler but uses the current time * from the {@code computation} {@link Scheduler}.
*
* * @param unit the time unit for the current time * @return the new {@code Observable} instance * @throws NullPointerException if {@code unit} is {@code null} * @see ReactiveX operators documentation: Timestamp */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable> timestamp(@NonNull TimeUnit unit) { return timestamp(unit, Schedulers.computation()); } /** * Returns an {@code Observable} that emits each item emitted by the current {@code Observable}, wrapped in a * {@link Timed} object whose timestamps are provided by a specified {@link Scheduler}. *

* *

*
Scheduler:
*
This operator does not operate on any particular scheduler but uses the current time * from the specified {@code Scheduler}.
*
* * @param unit the time unit for the current time * @param scheduler * the {@code Scheduler} to use as a time source * @return the new {@code Observable} instance * @throws NullPointerException if {@code unit} or {@code scheduler} is {@code null} * @see ReactiveX operators documentation: Timestamp */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) // Supplied scheduler is only used for creating timestamps. @NonNull public final Observable> timestamp(@NonNull TimeUnit unit, @NonNull Scheduler scheduler) { Objects.requireNonNull(unit, "unit is null"); Objects.requireNonNull(scheduler, "scheduler is null"); return map(Functions.timestampWith(unit, scheduler)); } /** * Calls the specified converter function during assembly time and returns its resulting value. *

* This allows fluent conversion to any other type. *

*
Scheduler:
*
{@code to} does not operate by default on a particular {@link Scheduler}.
*
*

History: 2.1.7 - experimental * @param the resulting object type * @param converter the function that receives the current {@code Observable} instance and returns a value * @return the converted value * @throws NullPointerException if {@code converter} is {@code null} * @since 2.2 */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final R to(@NonNull ObservableConverter converter) { return Objects.requireNonNull(converter, "converter is null").apply(this); } /** * Returns a {@link Single} that emits a single item, a {@link List} composed of all the items emitted by the * current and finite {@code Observable}. *

* *

* Normally, an {@link ObservableSource} that returns multiple items will do so by invoking its {@link Observer}'s * {@link Observer#onNext onNext} method for each such item. You can change this behavior by having the * operator to compose a list of all of these items and then to invoke the {@link SingleObserver}'s {@code onSuccess} * method once, passing it the entire list, by calling the {@code Observable}'s {@code toList} method prior to * calling its {@link #subscribe} method. *

* Note that this operator requires the upstream to signal {@code onComplete} for the accumulated list to * be emitted. Sources that are infinite and never complete will never emit anything through this * operator and an infinite source may lead to a fatal {@link OutOfMemoryError}. *

*
Scheduler:
*
{@code toList} does not operate by default on a particular {@link Scheduler}.
*
* * @return the new {@code Single} instance * @see ReactiveX operators documentation: To */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Single<@NonNull List> toList() { return toList(16); } /** * Returns a {@link Single} that emits a single item, a {@link List} composed of all the items emitted by the * current and finite {@code Observable}. *

* *

* Normally, an {@link ObservableSource} that returns multiple items will do so by invoking its {@link Observer}'s * {@link Observer#onNext onNext} method for each such item. You can change this behavior by having the * operator to compose a list of all of these items and then to invoke the {@link SingleObserver}'s {@code onSuccess} * method once, passing it the entire list, by calling the {@code Observable}'s {@code toList} method prior to * calling its {@link #subscribe} method. *

* Note that this operator requires the upstream to signal {@code onComplete} for the accumulated list to * be emitted. Sources that are infinite and never complete will never emit anything through this * operator and an infinite source may lead to a fatal {@link OutOfMemoryError}. *

*
Scheduler:
*
{@code toList} does not operate by default on a particular {@link Scheduler}.
*
* * @param capacityHint * the number of elements expected from the current {@code Observable} * @return the new {@code Single} instance * @throws IllegalArgumentException if {@code capacityHint} is non-positive * @see ReactiveX operators documentation: To */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Single<@NonNull List> toList(int capacityHint) { ObjectHelper.verifyPositive(capacityHint, "capacityHint"); return RxJavaPlugins.onAssembly(new ObservableToListSingle<>(this, capacityHint)); } /** * Returns a {@link Single} that emits a single item, a {@link Collection} (subclass) composed of all the items emitted by the * finite upstream {@code Observable}. *

* *

* Normally, an {@link ObservableSource} that returns multiple items will do so by invoking its {@link Observer}'s * {@link Observer#onNext onNext} method for each such item. You can change this behavior by having the * operator to compose a collection of all of these items and then to invoke the {@link SingleObserver}'s {@code onSuccess} * method once, passing it the entire collection, by calling the {@code Observable}'s {@code toList} method prior to * calling its {@link #subscribe} method. *

* Note that this operator requires the upstream to signal {@code onComplete} for the accumulated collection to * be emitted. Sources that are infinite and never complete will never emit anything through this * operator and an infinite source may lead to a fatal {@link OutOfMemoryError}. *

*
Scheduler:
*
{@code toList} does not operate by default on a particular {@link Scheduler}.
*
* * @param the subclass of a collection of Ts * @param collectionSupplier * the {@link Supplier} returning the collection (for each individual {@code Observer}) to be filled in * @return the new {@code Single} instance * @throws NullPointerException if {@code collectionSupplier} is {@code null} * @see ReactiveX operators documentation: To */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final <@NonNull U extends Collection> Single toList(@NonNull Supplier collectionSupplier) { Objects.requireNonNull(collectionSupplier, "collectionSupplier is null"); return RxJavaPlugins.onAssembly(new ObservableToListSingle<>(this, collectionSupplier)); } /** * Returns a {@link Single} that emits a single {@link HashMap} containing all items emitted by the * current and finite {@code Observable}, mapped by the keys returned by a specified * {@code keySelector} function. *

* *

* If more than one source item maps to the same key, the {@code HashMap} will contain the latest of those items. *

* Note that this operator requires the upstream to signal {@code onComplete} for the accumulated {@code HashMap} to * be emitted. Sources that are infinite and never complete will never emit anything through this * operator and an infinite source may lead to a fatal {@link OutOfMemoryError}. *

*
Scheduler:
*
{@code toMap} does not operate by default on a particular {@link Scheduler}.
*
* * @param the key type of the Map * @param keySelector * the function that extracts the key from a source item to be used in the {@code HashMap} * @return the new {@code Single} instance * @throws NullPointerException if {@code keySelector} is {@code null} * @see ReactiveX operators documentation: To */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Single<@NonNull Map> toMap(@NonNull Function keySelector) { Objects.requireNonNull(keySelector, "keySelector is null"); return collect(HashMapSupplier.asSupplier(), Functions.toMapKeySelector(keySelector)); } /** * Returns a {@link Single} that emits a single {@link HashMap} containing values corresponding to items emitted by the * current and finite {@code Observable}, mapped by the keys and values returned by the given selector functions. *

* *

* If more than one source item maps to the same key, the {@code HashMap} will contain a single entry that * corresponds to the latest of those items. *

* Note that this operator requires the upstream to signal {@code onComplete} for the accumulated {@code HashMap} to * be emitted. Sources that are infinite and never complete will never emit anything through this * operator and an infinite source may lead to a fatal {@link OutOfMemoryError}. *

*
Scheduler:
*
{@code toMap} does not operate by default on a particular {@link Scheduler}.
*
* * @param the key type of the {@code HashMap} * @param the value type of the {@code HashMap} * @param keySelector * the function that extracts the key from a source item to be used in the {@code HashMap} * @param valueSelector * the function that extracts the value from a source item to be used in the {@code HashMap} * @return the new {@code Single} instance * @throws NullPointerException if {@code keySelector} or {@code valueSelector} is {@code null} * @see ReactiveX operators documentation: To */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Single> toMap( @NonNull Function keySelector, @NonNull Function valueSelector) { Objects.requireNonNull(keySelector, "keySelector is null"); Objects.requireNonNull(valueSelector, "valueSelector is null"); return collect(HashMapSupplier.asSupplier(), Functions.toMapKeyValueSelector(keySelector, valueSelector)); } /** * Returns a {@link Single} that emits a single {@link Map} (subclass), returned by a specified {@code mapFactory} function, that * contains keys and values extracted from the items, via selector functions, emitted by the current and finite {@code Observable}. *

* *

* Note that this operator requires the upstream to signal {@code onComplete} for the accumulated {@code Map} to * be emitted. Sources that are infinite and never complete will never emit anything through this * operator and an infinite source may lead to a fatal {@link OutOfMemoryError}. *

*
Scheduler:
*
{@code toMap} does not operate by default on a particular {@link Scheduler}.
*
* * @param the key type of the {@code Map} * @param the value type of the {@code Map} * @param keySelector * the function that extracts the key from a source item to be used in the {@code Map} * @param valueSelector * the function that extracts the value from the source items to be used as value in the {@code Map} * @param mapSupplier * the function that returns a {@code Map} instance to be used * @return the new {@code Single} instance * @throws NullPointerException if {@code keySelector}, {@code valueSelector} or {@code mapSupplier} is {@code null} * @see ReactiveX operators documentation: To */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Single> toMap( @NonNull Function keySelector, @NonNull Function valueSelector, @NonNull Supplier> mapSupplier) { Objects.requireNonNull(keySelector, "keySelector is null"); Objects.requireNonNull(valueSelector, "valueSelector is null"); Objects.requireNonNull(mapSupplier, "mapSupplier is null"); return collect(mapSupplier, Functions.toMapKeyValueSelector(keySelector, valueSelector)); } /** * Returns a {@link Single} that emits a single {@link HashMap} that contains an {@link ArrayList} of items emitted by the * current and finite {@code Observable} keyed by a specified {@code keySelector} function. *

* *

* Note that this operator requires the upstream to signal {@code onComplete} for the accumulated {@code HashMap} to * be emitted. Sources that are infinite and never complete will never emit anything through this * operator and an infinite source may lead to a fatal {@link OutOfMemoryError}. *

*
Scheduler:
*
{@code toMultimap} does not operate by default on a particular {@link Scheduler}.
*
* * @param the key type of the {@code HashMap} * @param keySelector * the function that extracts the key from the source items to be used as key in the {@code HashMap} * @return the new {@code Single} instance * @throws NullPointerException if {@code keySelector} is {@code null} * @see ReactiveX operators documentation: To */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Single<@NonNull Map>> toMultimap(@NonNull Function keySelector) { Function valueSelector = Functions.identity(); Supplier>> mapSupplier = HashMapSupplier.asSupplier(); Function> collectionFactory = ArrayListSupplier.asFunction(); return toMultimap(keySelector, valueSelector, mapSupplier, collectionFactory); } /** * Returns a {@link Single} that emits a single {@link HashMap} that contains an {@link ArrayList} of values extracted by a * specified {@code valueSelector} function from items emitted by the current and finite {@code Observable}, * keyed by a specified {@code keySelector} function. *

* *

* Note that this operator requires the upstream to signal {@code onComplete} for the accumulated {@code HashMap} to * be emitted. Sources that are infinite and never complete will never emit anything through this * operator and an infinite source may lead to a fatal {@link OutOfMemoryError}. *

*
Scheduler:
*
{@code toMultimap} does not operate by default on a particular {@link Scheduler}.
*
* * @param the key type of the {@code HashMap} * @param the value type of the {@code HashMap} * @param keySelector * the function that extracts a key from the source items to be used as key in the {@code HashMap} * @param valueSelector * the function that extracts a value from the source items to be used as value in the {@code HashMap} * @return the new {@code Single} instance * @throws NullPointerException if {@code keySelector} or {@code valueSelector} is {@code null} * @see ReactiveX operators documentation: To */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Single<@NonNull Map>> toMultimap(@NonNull Function keySelector, Function valueSelector) { Supplier>> mapSupplier = HashMapSupplier.asSupplier(); Function> collectionFactory = ArrayListSupplier.asFunction(); return toMultimap(keySelector, valueSelector, mapSupplier, collectionFactory); } /** * Returns a {@link Single} that emits a single {@code Map} (subclass), returned by a specified {@code mapFactory} function, that * contains a custom {@link Collection} of values, extracted by a specified {@code valueSelector} function from * items emitted by the current and finite {@code Observable}, and keyed by the {@code keySelector} function. *

* *

* Note that this operator requires the upstream to signal {@code onComplete} for the accumulated {@code Map} to * be emitted. Sources that are infinite and never complete will never emit anything through this * operator and an infinite source may lead to a fatal {@link OutOfMemoryError}. *

*
Scheduler:
*
{@code toMultimap} does not operate by default on a particular {@link Scheduler}.
*
* * @param the key type of the {@code Map} * @param the value type of the {@code Map} * @param keySelector * the function that extracts a key from the source items to be used as the key in the {@code Map} * @param valueSelector * the function that extracts a value from the source items to be used as the value in the {@code Map} * @param mapSupplier * the function that returns a {@code Map} instance to be used * @param collectionFactory * the function that returns a {@code Collection} instance for a particular key to be used in the {@code Map} * @return the new {@code Single} instance * @throws NullPointerException if {@code keySelector}, {@code valueSelector}, {@code mapSupplier} or {@code collectionFactory} is {@code null} * @see ReactiveX operators documentation: To */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Single<@NonNull Map>> toMultimap( @NonNull Function keySelector, @NonNull Function valueSelector, @NonNull Supplier>> mapSupplier, @NonNull Function> collectionFactory) { Objects.requireNonNull(keySelector, "keySelector is null"); Objects.requireNonNull(valueSelector, "valueSelector is null"); Objects.requireNonNull(mapSupplier, "mapSupplier is null"); Objects.requireNonNull(collectionFactory, "collectionFactory is null"); return collect(mapSupplier, Functions.toMultimapKeyValueSelector(keySelector, valueSelector, collectionFactory)); } /** * Returns a {@link Single} that emits a single {@link Map} (subclass), returned by a specified {@code mapFactory} function, that * contains an {@link ArrayList} of values, extracted by a specified {@code valueSelector} function from items * emitted by the current and finite {@code Observable} and keyed by the {@code keySelector} function. *

* *

* Note that this operator requires the upstream to signal {@code onComplete} for the accumulated {@code Map} to * be emitted. Sources that are infinite and never complete will never emit anything through this * operator and an infinite source may lead to a fatal {@link OutOfMemoryError}. *

*
Scheduler:
*
{@code toMultimap} does not operate by default on a particular {@link Scheduler}.
*
* * @param the key type of the {@code Map} * @param the value type of the {@code Map} * @param keySelector * the function that extracts a key from the source items to be used as the key in the {@code Map} * @param valueSelector * the function that extracts a value from the source items to be used as the value in the {@code Map} * @param mapSupplier * the function that returns a {@code Map} instance to be used * @return the new {@code Single} instance * @throws NullPointerException if {@code keySelector}, {@code valueSelector} or {@code mapSupplier} is {@code null} * @see ReactiveX operators documentation: To */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Single<@NonNull Map>> toMultimap( @NonNull Function keySelector, @NonNull Function valueSelector, @NonNull Supplier>> mapSupplier ) { return toMultimap(keySelector, valueSelector, mapSupplier, ArrayListSupplier.asFunction()); } /** * Converts the current {@code Observable} into a {@link Flowable} by applying the specified backpressure strategy. *

* Marble diagrams for the various backpressure strategies are as follows: *

    *
  • {@link BackpressureStrategy#BUFFER} *

    * *

  • *
  • {@link BackpressureStrategy#DROP} *

    * *

  • *
  • {@link BackpressureStrategy#LATEST} *

    * *

  • *
  • {@link BackpressureStrategy#ERROR} *

    * *

  • *
  • {@link BackpressureStrategy#MISSING} *

    * *

  • *
*
*
Backpressure:
*
The operator applies the chosen backpressure strategy of {@link BackpressureStrategy} enum.
*
Scheduler:
*
{@code toFlowable} does not operate by default on a particular {@link Scheduler}.
*
* * @param strategy the backpressure strategy to apply * @return the new {@code Flowable} instance * @throws NullPointerException if {@code strategy} is {@code null} */ @BackpressureSupport(BackpressureKind.SPECIAL) @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Flowable toFlowable(@NonNull BackpressureStrategy strategy) { Objects.requireNonNull(strategy, "strategy is null"); Flowable f = new FlowableFromObservable<>(this); switch (strategy) { case DROP: return f.onBackpressureDrop(); case LATEST: return f.onBackpressureLatest(); case MISSING: return f; case ERROR: return RxJavaPlugins.onAssembly(new FlowableOnBackpressureError<>(f)); default: return f.onBackpressureBuffer(); } } /** * Returns a {@link Single} that emits a {@link List} that contains the items emitted by the current and finite {@code Observable}, in a * sorted order. Each item emitted by the current {@code Observable} must implement {@link Comparable} with respect to all * other items in the sequence. * *

* If any item emitted by the current {@code Observable} does not implement {@code Comparable} with respect to * all other items emitted by the current {@code Observable}, no items will be emitted and the * sequence is terminated with a {@link ClassCastException}. *

* *

* Note that this operator requires the upstream to signal {@code onComplete} for the accumulated {@code List} to * be emitted. Sources that are infinite and never complete will never emit anything through this * operator and an infinite source may lead to a fatal {@link OutOfMemoryError}. *

*
Scheduler:
*
{@code toSortedList} does not operate by default on a particular {@link Scheduler}.
*
* @return the new {@code Single} instance * @see ReactiveX operators documentation: To * @see #toSortedList(int) * @see #toSortedList(Comparator) */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Single<@NonNull List> toSortedList() { return toSortedList(Functions.naturalComparator()); } /** * Returns a {@link Single} that emits a {@link List} that contains the items emitted by the current and finite {@code Observable}, in a * sorted order based on a specified comparison function. *

* *

* Note that this operator requires the upstream to signal {@code onComplete} for the accumulated {@code List} to * be emitted. Sources that are infinite and never complete will never emit anything through this * operator and an infinite source may lead to a fatal {@link OutOfMemoryError}. *

*
Scheduler:
*
{@code toSortedList} does not operate by default on a particular {@link Scheduler}.
*
* * @param comparator * a function that compares two items emitted by the current {@code Observable} and returns an {@code int} * that indicates their sort order * @return the new {@code Single} instance * @throws NullPointerException if {@code comparator} is {@code null} * @see ReactiveX operators documentation: To */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Single<@NonNull List> toSortedList(@NonNull Comparator comparator) { Objects.requireNonNull(comparator, "comparator is null"); return toList().map(Functions.listSorter(comparator)); } /** * Returns a {@link Single} that emits a {@link List} that contains the items emitted by the current and finite {@code Observable}, in a * sorted order based on a specified comparison function. *

* *

* Note that this operator requires the upstream to signal {@code onComplete} for the accumulated {@code List} to * be emitted. Sources that are infinite and never complete will never emit anything through this * operator and an infinite source may lead to a fatal {@link OutOfMemoryError}. *

*
Scheduler:
*
{@code toSortedList} does not operate by default on a particular {@link Scheduler}.
*
* * @param comparator * a function that compares two items emitted by the current {@code Observable} and returns an {@code int} * that indicates their sort order * @param capacityHint * the initial capacity of the {@code List} used to accumulate items before sorting * @return the new {@code Single} instance * @throws NullPointerException if {@code comparator} is {@code null} * @throws IllegalArgumentException if {@code capacityHint} is non-positive * @see ReactiveX operators documentation: To * @since 2.0 */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Single<@NonNull List> toSortedList(@NonNull Comparator comparator, int capacityHint) { Objects.requireNonNull(comparator, "comparator is null"); return toList(capacityHint).map(Functions.listSorter(comparator)); } /** * Returns a {@link Single} that emits a {@link List} that contains the items emitted by the current and finite {@code Observable}, in a * sorted order. Each item emitted by the current {@code Observable} must implement {@link Comparable} with respect to all * other items in the sequence. *

* If any item emitted by the current {@code Observable} does not implement {@code Comparable} with respect to * all other items emitted by the current {@code Observable}, no items will be emitted and the * sequence is terminated with a {@link ClassCastException}. *

* *

* Note that this operator requires the upstream to signal {@code onComplete} for the accumulated {@code List} to * be emitted. Sources that are infinite and never complete will never emit anything through this * operator and an infinite source may lead to a fatal {@link OutOfMemoryError}. *

*
Scheduler:
*
{@code toSortedList} does not operate by default on a particular {@link Scheduler}.
*
* * @param capacityHint * the initial capacity of the {@code List} used to accumulate items before sorting * @return the new {@code Single} instance * @throws IllegalArgumentException if {@code capacityHint} is non-positive * @see ReactiveX operators documentation: To * @since 2.0 * @see #toSortedList(Comparator, int) */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Single<@NonNull List> toSortedList(int capacityHint) { return toSortedList(Functions.naturalComparator(), capacityHint); } /** * Return an {@code Observable} that schedules the downstream {@link Observer}s' {@code dispose} calls * aimed at the current {@code Observable} on the given {@link Scheduler}. *

* *

*
Scheduler:
*
You specify which {@code Scheduler} this operator will use.
*
* * @param scheduler * the {@code Scheduler} to perform the call to {@code dispose()} of the upstream {@link Disposable} * @return the new {@code Observable} instance * @throws NullPointerException if {@code scheduler} is {@code null} * @see ReactiveX operators documentation: SubscribeOn */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.CUSTOM) @NonNull public final Observable unsubscribeOn(@NonNull Scheduler scheduler) { Objects.requireNonNull(scheduler, "scheduler is null"); return RxJavaPlugins.onAssembly(new ObservableUnsubscribeOn<>(this, scheduler)); } /** * Returns an {@code Observable} that emits windows of items it collects from the current {@code Observable}. The resulting * {@code Observable} emits connected, non-overlapping windows, each containing {@code count} items. When the current * {@code Observable} completes or encounters an error, the resulting {@code Observable} emits the current window and * propagates the notification from the current {@code Observable}. *

* *

*
Scheduler:
*
This version of {@code window} does not operate by default on a particular {@link Scheduler}.
*
* * @param count * the maximum size of each window before it should be emitted * @return the new {@code Observable} instance * @throws IllegalArgumentException if {@code count} is non-positive * @see ReactiveX operators documentation: Window */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable> window(long count) { return window(count, count, bufferSize()); } /** * Returns an {@code Observable} that emits windows of items it collects from the current {@code Observable}. The resulting * {@code Observable} emits windows every {@code skip} items, each containing no more than {@code count} items. When * the current {@code Observable} completes or encounters an error, the resulting {@code Observable} emits the current window * and propagates the notification from the current {@code Observable}. *

* *

*
Scheduler:
*
This version of {@code window} does not operate by default on a particular {@link Scheduler}.
*
* * @param count * the maximum size of each window before it should be emitted * @param skip * how many items need to be skipped before starting a new window. Note that if {@code skip} and * {@code count} are equal this is the same operation as {@link #window(long)}. * @return the new {@code Observable} instance * @throws IllegalArgumentException if {@code count} or {@code skip} is non-positive * @see ReactiveX operators documentation: Window */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable> window(long count, long skip) { return window(count, skip, bufferSize()); } /** * Returns an {@code Observable} that emits windows of items it collects from the current {@code Observable}. The resulting * {@code Observable} emits windows every {@code skip} items, each containing no more than {@code count} items. When * the current {@code Observable} completes or encounters an error, the resulting {@code Observable} emits the current window * and propagates the notification from the current {@code Observable}. *

* *

*
Scheduler:
*
This version of {@code window} does not operate by default on a particular {@link Scheduler}.
*
* * @param count * the maximum size of each window before it should be emitted * @param skip * how many items need to be skipped before starting a new window. Note that if {@code skip} and * {@code count} are equal this is the same operation as {@link #window(long)}. * @param bufferSize * the capacity hint for the buffer in the inner windows * @return the new {@code Observable} instance * @throws IllegalArgumentException if {@code count}, {@code skip} or {@code bufferSize} is non-positive * @see ReactiveX operators documentation: Window */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable> window(long count, long skip, int bufferSize) { ObjectHelper.verifyPositive(count, "count"); ObjectHelper.verifyPositive(skip, "skip"); ObjectHelper.verifyPositive(bufferSize, "bufferSize"); return RxJavaPlugins.onAssembly(new ObservableWindow<>(this, count, skip, bufferSize)); } /** * Returns an {@code Observable} that emits windows of items it collects from the current {@code Observable}. The resulting * {@code Observable} starts a new window periodically, as determined by the {@code timeskip} argument. It emits * each window after a fixed timespan, specified by the {@code timespan} argument. When the current * {@code Observable} completes or encounters an error, the resulting {@code Observable} emits the * current window and propagates the notification from the current {@code Observable}. *

* *

* Note that ignoring windows or subscribing later (i.e., on another thread) will result in * so-called window abandonment where a window may not contain any elements. In this case, subsequent * elements will be dropped until the condition for the next window boundary is satisfied. The behavior is * a trade-off for ensuring upstream cancellation can happen under some race conditions. *

*
Scheduler:
*
This version of {@code window} operates by default on the {@code computation} {@link Scheduler}.
*
* * @param timespan * the period of time each window collects items before it should be emitted * @param timeskip * the period of time after which a new window will be created * @param unit * the unit of time that applies to the {@code timespan} and {@code timeskip} arguments * @return the new {@code Observable} instance * @throws NullPointerException if {@code unit} is {@code null} * @throws IllegalArgumentException if {@code timespan} or {@code timeskip} is non-positive * @see ReactiveX operators documentation: Window */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.COMPUTATION) @NonNull public final Observable> window(long timespan, long timeskip, @NonNull TimeUnit unit) { return window(timespan, timeskip, unit, Schedulers.computation(), bufferSize()); } /** * Returns an {@code Observable} that emits windows of items it collects from the current {@code Observable}. The resulting * {@code Observable} starts a new window periodically, as determined by the {@code timeskip} argument. It emits * each window after a fixed timespan, specified by the {@code timespan} argument. When the current * {@code Observable} completes or encounters an error, the resulting {@code Observable} emits the * current window and propagates the notification from the current {@code Observable}. *

* *

* Note that ignoring windows or subscribing later (i.e., on another thread) will result in * so-called window abandonment where a window may not contain any elements. In this case, subsequent * elements will be dropped until the condition for the next window boundary is satisfied. The behavior is * a trade-off for ensuring upstream cancellation can happen under some race conditions. *

*
Scheduler:
*
You specify which {@link Scheduler} this operator will use.
*
* * @param timespan * the period of time each window collects items before it should be emitted * @param timeskip * the period of time after which a new window will be created * @param unit * the unit of time that applies to the {@code timespan} and {@code timeskip} arguments * @param scheduler * the {@code Scheduler} to use when determining the end and start of a window * @return the new {@code Observable} instance * @throws NullPointerException if {@code unit} or {@code scheduler} is {@code null} * @throws IllegalArgumentException if {@code timespan} or {@code timeskip} is non-positive * @see ReactiveX operators documentation: Window */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.CUSTOM) @NonNull public final Observable> window(long timespan, long timeskip, @NonNull TimeUnit unit, @NonNull Scheduler scheduler) { return window(timespan, timeskip, unit, scheduler, bufferSize()); } /** * Returns an {@code Observable} that emits windows of items it collects from the current {@code Observable}. The resulting * {@code Observable} starts a new window periodically, as determined by the {@code timeskip} argument. It emits * each window after a fixed timespan, specified by the {@code timespan} argument. When the current * {@code Observable} completes or encounters an error, the resulting {@code Observable} emits the * current window and propagates the notification from the current {@code Observable}. *

* *

* Note that ignoring windows or subscribing later (i.e., on another thread) will result in * so-called window abandonment where a window may not contain any elements. In this case, subsequent * elements will be dropped until the condition for the next window boundary is satisfied. The behavior is * a trade-off for ensuring upstream cancellation can happen under some race conditions. *

*
Scheduler:
*
You specify which {@link Scheduler} this operator will use.
*
* * @param timespan * the period of time each window collects items before it should be emitted * @param timeskip * the period of time after which a new window will be created * @param unit * the unit of time that applies to the {@code timespan} and {@code timeskip} arguments * @param scheduler * the {@code Scheduler} to use when determining the end and start of a window * @param bufferSize * the capacity hint for the buffer in the inner windows * @return the new {@code Observable} instance * @throws NullPointerException if {@code unit} or {@code scheduler} is {@code null} * @throws IllegalArgumentException if {@code timespan}, {@code timeskip} or {@code bufferSize} is non-positive * @see ReactiveX operators documentation: Window */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.CUSTOM) @NonNull public final Observable> window(long timespan, long timeskip, @NonNull TimeUnit unit, @NonNull Scheduler scheduler, int bufferSize) { ObjectHelper.verifyPositive(timespan, "timespan"); ObjectHelper.verifyPositive(timeskip, "timeskip"); ObjectHelper.verifyPositive(bufferSize, "bufferSize"); Objects.requireNonNull(scheduler, "scheduler is null"); Objects.requireNonNull(unit, "unit is null"); return RxJavaPlugins.onAssembly(new ObservableWindowTimed<>(this, timespan, timeskip, unit, scheduler, Long.MAX_VALUE, bufferSize, false)); } /** * Returns an {@code Observable} that emits windows of items it collects from the current {@code Observable}. The resulting * {@code Observable} emits connected, non-overlapping windows, each of a fixed duration specified by the * {@code timespan} argument. When the current {@code Observable} completes or encounters an error, the resulting * {@code Observable} emits the current window and propagates the notification from the current {@code Observable}. *

* *

* Note that ignoring windows or subscribing later (i.e., on another thread) will result in * so-called window abandonment where a window may not contain any elements. In this case, subsequent * elements will be dropped until the condition for the next window boundary is satisfied. The behavior is * a trade-off for ensuring upstream cancellation can happen under some race conditions. *

*
Scheduler:
*
This version of {@code window} operates by default on the {@code computation} {@link Scheduler}.
*
* * @param timespan * the period of time each window collects items before it should be emitted and replaced with a * new window * @param unit * the unit of time that applies to the {@code timespan} argument * @return the new {@code Observable} instance * @throws NullPointerException if {@code unit} is {@code null} * @see ReactiveX operators documentation: Window */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.COMPUTATION) @NonNull public final Observable> window(long timespan, @NonNull TimeUnit unit) { return window(timespan, unit, Schedulers.computation(), Long.MAX_VALUE, false); } /** * Returns an {@code Observable} that emits windows of items it collects from the current {@code Observable}. The resulting * {@code Observable} emits connected, non-overlapping windows, each of a fixed duration as specified by the * {@code timespan} argument or a maximum size as specified by the {@code count} argument (whichever is * reached first). When the current {@code Observable} completes or encounters an error, the resulting {@code Observable} * emits the current window and propagates the notification from the current {@code Observable}. *

* *

* Note that ignoring windows or subscribing later (i.e., on another thread) will result in * so-called window abandonment where a window may not contain any elements. In this case, subsequent * elements will be dropped until the condition for the next window boundary is satisfied. The behavior is * a trade-off for ensuring upstream cancellation can happen under some race conditions. *

*
Scheduler:
*
This version of {@code window} operates by default on the {@code computation} {@link Scheduler}.
*
* * @param timespan * the period of time each window collects items before it should be emitted and replaced with a * new window * @param unit * the unit of time that applies to the {@code timespan} argument * @param count * the maximum size of each window before it should be emitted * @return the new {@code Observable} instance * @throws NullPointerException if {@code unit} is {@code null} * @throws IllegalArgumentException if {@code count} is non-positive * @see ReactiveX operators documentation: Window */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.COMPUTATION) @NonNull public final Observable> window(long timespan, @NonNull TimeUnit unit, long count) { return window(timespan, unit, Schedulers.computation(), count, false); } /** * Returns an {@code Observable} that emits windows of items it collects from the current {@code Observable}. The resulting * {@code Observable} emits connected, non-overlapping windows, each of a fixed duration as specified by the * {@code timespan} argument or a maximum size as specified by the {@code count} argument (whichever is * reached first). When the current {@code Observable} completes or encounters an error, the resulting {@code Observable} * emits the current window and propagates the notification from the current {@code Observable}. *

* *

* Note that ignoring windows or subscribing later (i.e., on another thread) will result in * so-called window abandonment where a window may not contain any elements. In this case, subsequent * elements will be dropped until the condition for the next window boundary is satisfied. The behavior is * a trade-off for ensuring upstream cancellation can happen under some race conditions. *

*
Scheduler:
*
This version of {@code window} operates by default on the {@code computation} {@link Scheduler}.
*
* * @param timespan * the period of time each window collects items before it should be emitted and replaced with a * new window * @param unit * the unit of time that applies to the {@code timespan} argument * @param count * the maximum size of each window before it should be emitted * @param restart * if {@code true}, when a window reaches the capacity limit, the timer is restarted as well * @return the new {@code Observable} instance * @throws NullPointerException if {@code unit} is {@code null} * @throws IllegalArgumentException if {@code count} is non-positive * @see ReactiveX operators documentation: Window */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.COMPUTATION) @NonNull public final Observable> window(long timespan, @NonNull TimeUnit unit, long count, boolean restart) { return window(timespan, unit, Schedulers.computation(), count, restart); } /** * Returns an {@code Observable} that emits windows of items it collects from the current {@code Observable}. The resulting * {@code Observable} emits connected, non-overlapping windows, each of a fixed duration as specified by the * {@code timespan} argument. When the current {@code Observable} completes or encounters an error, the resulting * {@code Observable} emits the current window and propagates the notification from the current {@code Observable}. *

* *

* Note that ignoring windows or subscribing later (i.e., on another thread) will result in * so-called window abandonment where a window may not contain any elements. In this case, subsequent * elements will be dropped until the condition for the next window boundary is satisfied. The behavior is * a trade-off for ensuring upstream cancellation can happen under some race conditions. *

*
Scheduler:
*
You specify which {@link Scheduler} this operator will use.
*
* * @param timespan * the period of time each window collects items before it should be emitted and replaced with a * new window * @param unit * the unit of time which applies to the {@code timespan} argument * @param scheduler * the {@code Scheduler} to use when determining the end and start of a window * @return the new {@code Observable} instance * @throws NullPointerException if {@code unit} or {@code scheduler} is {@code null} * @see ReactiveX operators documentation: Window */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.CUSTOM) @NonNull public final Observable> window(long timespan, @NonNull TimeUnit unit, @NonNull Scheduler scheduler) { return window(timespan, unit, scheduler, Long.MAX_VALUE, false); } /** * Returns an {@code Observable} that emits windows of items it collects from the current {@code Observable}. The resulting * {@code Observable} emits connected, non-overlapping windows, each of a fixed duration specified by the * {@code timespan} argument or a maximum size specified by the {@code count} argument (whichever is reached * first). When the current {@code Observable} completes or encounters an error, the resulting {@code Observable} emits the * current window and propagates the notification from the current {@code Observable}. *

* *

* Note that ignoring windows or subscribing later (i.e., on another thread) will result in * so-called window abandonment where a window may not contain any elements. In this case, subsequent * elements will be dropped until the condition for the next window boundary is satisfied. The behavior is * a trade-off for ensuring upstream cancellation can happen under some race conditions. *

*
Scheduler:
*
You specify which {@link Scheduler} this operator will use.
*
* * @param timespan * the period of time each window collects items before it should be emitted and replaced with a * new window * @param unit * the unit of time which applies to the {@code timespan} argument * @param count * the maximum size of each window before it should be emitted * @param scheduler * the {@code Scheduler} to use when determining the end and start of a window * @return the new {@code Observable} instance * @throws NullPointerException if {@code unit} or {@code scheduler} is {@code null} * @throws IllegalArgumentException if {@code count} is non-positive * @see ReactiveX operators documentation: Window */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.CUSTOM) @NonNull public final Observable> window(long timespan, @NonNull TimeUnit unit, @NonNull Scheduler scheduler, long count) { return window(timespan, unit, scheduler, count, false); } /** * Returns an {@code Observable} that emits windows of items it collects from the current {@code Observable}. The resulting * {@code Observable} emits connected, non-overlapping windows, each of a fixed duration specified by the * {@code timespan} argument or a maximum size specified by the {@code count} argument (whichever is reached * first). When the current {@code Observable} completes or encounters an error, the resulting {@code Observable} emits the * current window and propagates the notification from the current {@code Observable}. *

* *

* Note that ignoring windows or subscribing later (i.e., on another thread) will result in * so-called window abandonment where a window may not contain any elements. In this case, subsequent * elements will be dropped until the condition for the next window boundary is satisfied. The behavior is * a trade-off for ensuring upstream cancellation can happen under some race conditions. *

*
Scheduler:
*
You specify which {@link Scheduler} this operator will use.
*
* * @param timespan * the period of time each window collects items before it should be emitted and replaced with a * new window * @param unit * the unit of time which applies to the {@code timespan} argument * @param count * the maximum size of each window before it should be emitted * @param scheduler * the {@code Scheduler} to use when determining the end and start of a window * @param restart * if {@code true}, when a window reaches the capacity limit, the timer is restarted as well * @return the new {@code Observable} instance * @throws NullPointerException if {@code unit} or {@code scheduler} is {@code null} * @throws IllegalArgumentException if {@code count} is non-positive * @see ReactiveX operators documentation: Window */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.CUSTOM) @NonNull public final Observable> window(long timespan, @NonNull TimeUnit unit, @NonNull Scheduler scheduler, long count, boolean restart) { return window(timespan, unit, scheduler, count, restart, bufferSize()); } /** * Returns an {@code Observable} that emits windows of items it collects from the current {@code Observable}. The resulting * {@code Observable} emits connected, non-overlapping windows, each of a fixed duration specified by the * {@code timespan} argument or a maximum size specified by the {@code count} argument (whichever is reached * first). When the current {@code Observable} completes or encounters an error, the resulting {@code Observable} emits the * current window and propagates the notification from the current {@code Observable}. *

* *

* Note that ignoring windows or subscribing later (i.e., on another thread) will result in * so-called window abandonment where a window may not contain any elements. In this case, subsequent * elements will be dropped until the condition for the next window boundary is satisfied. The behavior is * a trade-off for ensuring upstream cancellation can happen under some race conditions. *

*
Scheduler:
*
You specify which {@link Scheduler} this operator will use.
*
* * @param timespan * the period of time each window collects items before it should be emitted and replaced with a * new window * @param unit * the unit of time which applies to the {@code timespan} argument * @param count * the maximum size of each window before it should be emitted * @param scheduler * the {@code Scheduler} to use when determining the end and start of a window * @param restart * if {@code true}, when a window reaches the capacity limit, the timer is restarted as well * @param bufferSize * the capacity hint for the buffer in the inner windows * @return the new {@code Observable} instance * @throws NullPointerException if {@code unit} or {@code scheduler} is {@code null} * @throws IllegalArgumentException if {@code count} or {@code bufferSize} is non-positive * @see ReactiveX operators documentation: Window */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.CUSTOM) @NonNull public final Observable> window( long timespan, @NonNull TimeUnit unit, @NonNull Scheduler scheduler, long count, boolean restart, int bufferSize) { ObjectHelper.verifyPositive(bufferSize, "bufferSize"); Objects.requireNonNull(scheduler, "scheduler is null"); Objects.requireNonNull(unit, "unit is null"); ObjectHelper.verifyPositive(count, "count"); return RxJavaPlugins.onAssembly(new ObservableWindowTimed<>(this, timespan, timespan, unit, scheduler, count, bufferSize, restart)); } /** * Returns an {@code Observable} that emits non-overlapping windows of items it collects from the current {@code Observable} * where the boundary of each window is determined by the items emitted from a specified boundary-governing * {@link ObservableSource}. *

* *

* Note that ignoring windows or subscribing later (i.e., on another thread) will result in * so-called window abandonment where a window may not contain any elements. In this case, subsequent * elements will be dropped until the condition for the next window boundary is satisfied. The behavior is * a trade-off for ensuring upstream cancellation can happen under some race conditions. *

*
Scheduler:
*
This version of {@code window} does not operate by default on a particular {@link Scheduler}.
*
* * @param * the window element type (ignored) * @param boundaryIndicator * an {@code ObservableSource} whose emitted items close and open windows * @return the new {@code Observable} instance * @throws NullPointerException if {@code boundaryIndicator} is {@code null} * @see ReactiveX operators documentation: Window */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable> window(@NonNull ObservableSource boundaryIndicator) { return window(boundaryIndicator, bufferSize()); } /** * Returns an {@code Observable} that emits non-overlapping windows of items it collects from the current {@code Observable} * where the boundary of each window is determined by the items emitted from a specified boundary-governing * {@link ObservableSource}. *

* *

* Note that ignoring windows or subscribing later (i.e., on another thread) will result in * so-called window abandonment where a window may not contain any elements. In this case, subsequent * elements will be dropped until the condition for the next window boundary is satisfied. The behavior is * a trade-off for ensuring upstream cancellation can happen under some race conditions. *

*
Scheduler:
*
This version of {@code window} does not operate by default on a particular {@link Scheduler}.
*
* * @param * the window element type (ignored) * @param boundaryIndicator * an {@code ObservableSource} whose emitted items close and open windows * @param bufferSize * the capacity hint for the buffer in the inner windows * @return the new {@code Observable} instance * @throws NullPointerException if {@code boundaryIndicator} is {@code null} * @throws IllegalArgumentException if {@code bufferSize} is non-positive * @see ReactiveX operators documentation: Window */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable> window(@NonNull ObservableSource boundaryIndicator, int bufferSize) { Objects.requireNonNull(boundaryIndicator, "boundaryIndicator is null"); ObjectHelper.verifyPositive(bufferSize, "bufferSize"); return RxJavaPlugins.onAssembly(new ObservableWindowBoundary<>(this, boundaryIndicator, bufferSize)); } /** * Returns an {@code Observable} that emits windows of items it collects from the current {@code Observable}. The resulting * {@code Observable} emits windows that contain those items emitted by the current {@code Observable} between the time when * the {@code openingIndicator} {@link ObservableSource} emits an item and when the {@code ObservableSource} returned by * {@code closingIndicator} emits an item. *

* *

* Note that ignoring windows or subscribing later (i.e., on another thread) will result in * so-called window abandonment where a window may not contain any elements. In this case, subsequent * elements will be dropped until the condition for the next window boundary is satisfied. The behavior is * a trade-off for ensuring upstream cancellation can happen under some race conditions. *

*
Scheduler:
*
This version of {@code window} does not operate by default on a particular {@link Scheduler}.
*
* * @param the element type of the window-opening {@code ObservableSource} * @param the element type of the window-closing {@code ObservableSource}s * @param openingIndicator * an {@code ObservableSource} that, when it emits an item, causes another window to be created * @param closingIndicator * a {@link Function} that produces an {@code ObservableSource} for every window created. When this indicator {@code ObservableSource} * emits an item, the associated window is completed * @return the new {@code Observable} instance * @throws NullPointerException if {@code openingIndicator} or {@code closingIndicator} is {@code null} * @see ReactiveX operators documentation: Window */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable> window( @NonNull ObservableSource openingIndicator, @NonNull Function> closingIndicator) { return window(openingIndicator, closingIndicator, bufferSize()); } /** * Returns an {@code Observable} that emits windows of items it collects from the current {@code Observable}. The resulting * {@code Observable} emits windows that contain those items emitted by the current {@code Observable} between the time when * the {@code openingIndicator} {@link ObservableSource} emits an item and when the {@code ObservableSource} returned by * {@code closingIndicator} emits an item. *

* *

* Note that ignoring windows or subscribing later (i.e., on another thread) will result in * so-called window abandonment where a window may not contain any elements. In this case, subsequent * elements will be dropped until the condition for the next window boundary is satisfied. The behavior is * a trade-off for ensuring upstream cancellation can happen under some race conditions. *

*
Scheduler:
*
This version of {@code window} does not operate by default on a particular {@link Scheduler}.
*
* * @param the element type of the window-opening {@code ObservableSource} * @param the element type of the window-closing {@code ObservableSource}s * @param openingIndicator * an {@code ObservableSource} that, when it emits an item, causes another window to be created * @param closingIndicator * a {@link Function} that produces an {@code ObservableSource} for every window created. When this indicator {@code ObservableSource} * emits an item, the associated window is completed * @param bufferSize * the capacity hint for the buffer in the inner windows * @return the new {@code Observable} instance * @throws NullPointerException if {@code openingIndicator} or {@code closingIndicator} is {@code null} * @throws IllegalArgumentException if {@code bufferSize} is non-positive * @see ReactiveX operators documentation: Window */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable> window( @NonNull ObservableSource openingIndicator, @NonNull Function> closingIndicator, int bufferSize) { Objects.requireNonNull(openingIndicator, "openingIndicator is null"); Objects.requireNonNull(closingIndicator, "closingIndicator is null"); ObjectHelper.verifyPositive(bufferSize, "bufferSize"); return RxJavaPlugins.onAssembly(new ObservableWindowBoundarySelector<>(this, openingIndicator, closingIndicator, bufferSize)); } /** * Merges the specified {@link ObservableSource} into the current {@code Observable} sequence by using the {@code resultSelector} * function only when the current {@code Observable} emits an item. *

* * *

*
Scheduler:
*
This operator, by default, doesn't run any particular {@link Scheduler}.
*
* * @param the element type of the other {@code ObservableSource} * @param the result type of the combination * @param other * the other {@code ObservableSource} * @param combiner * the function to call when the current {@code Observable} emits an item and the other {@code ObservableSource} has already * emitted an item, to generate the item to be emitted by the resulting {@code Observable} * @return the new {@code Observable} instance * @throws NullPointerException if {@code other} or {@code combiner} is {@code null} * @since 2.0 * @see ReactiveX operators documentation: CombineLatest */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable withLatestFrom(@NonNull ObservableSource other, @NonNull BiFunction combiner) { Objects.requireNonNull(other, "other is null"); Objects.requireNonNull(combiner, "combiner is null"); return RxJavaPlugins.onAssembly(new ObservableWithLatestFrom(this, combiner, other)); } /** * Combines the value emission from the current {@code Observable} with the latest emissions from the * other {@link ObservableSource}s via a function to produce the output item. * *

Note that this operator doesn't emit anything until all other sources have produced at * least one value. The resulting emission only happens when the current {@code Observable} emits (and * not when any of the other sources emit, unlike {@code combineLatest}). * If a source doesn't produce any value and just completes, the sequence is completed immediately. *

* *

*
Scheduler:
*
This operator does not operate by default on a particular {@link Scheduler}.
*
* * @param the first other source's value type * @param the second other source's value type * @param the result value type * @param source1 the first other {@code ObservableSource} * @param source2 the second other {@code ObservableSource} * @param combiner the function called with an array of values from each participating {@code ObservableSource} * @return the new {@code Observable} instance * @throws NullPointerException if {@code source1}, {@code source2} or {@code combiner} is {@code null} * @since 2.0 */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable withLatestFrom( @NonNull ObservableSource source1, @NonNull ObservableSource source2, @NonNull Function3 combiner) { Objects.requireNonNull(source1, "source1 is null"); Objects.requireNonNull(source2, "source2 is null"); Objects.requireNonNull(combiner, "combiner is null"); Function f = Functions.toFunction(combiner); return withLatestFrom(new ObservableSource[] { source1, source2 }, f); } /** * Combines the value emission from the current {@code Observable} with the latest emissions from the * other {@link ObservableSource}s via a function to produce the output item. * *

Note that this operator doesn't emit anything until all other sources have produced at * least one value. The resulting emission only happens when the current {@code Observable} emits (and * not when any of the other sources emit, unlike combineLatest). * If a source doesn't produce any value and just completes, the sequence is completed immediately. *

* *

*
Scheduler:
*
This operator does not operate by default on a particular {@link Scheduler}.
*
* * @param the first other source's value type * @param the second other source's value type * @param the third other source's value type * @param the result value type * @param source1 the first other {@code ObservableSource} * @param source2 the second other {@code ObservableSource} * @param source3 the third other {@code ObservableSource} * @param combiner the function called with an array of values from each participating {@code ObservableSource} * @return the new {@code Observable} instance * @throws NullPointerException if {@code source1}, {@code source2}, {@code source3} or {@code combiner} is {@code null} * @since 2.0 */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable withLatestFrom( @NonNull ObservableSource source1, @NonNull ObservableSource source2, @NonNull ObservableSource source3, @NonNull Function4 combiner) { Objects.requireNonNull(source1, "source1 is null"); Objects.requireNonNull(source2, "source2 is null"); Objects.requireNonNull(source3, "source3 is null"); Objects.requireNonNull(combiner, "combiner is null"); Function f = Functions.toFunction(combiner); return withLatestFrom(new ObservableSource[] { source1, source2, source3 }, f); } /** * Combines the value emission from the current {@code Observable} with the latest emissions from the * other {@link ObservableSource}s via a function to produce the output item. * *

Note that this operator doesn't emit anything until all other sources have produced at * least one value. The resulting emission only happens when the current {@code Observable} emits (and * not when any of the other sources emit, unlike combineLatest). * If a source doesn't produce any value and just completes, the sequence is completed immediately. *

* *

*
Scheduler:
*
This operator does not operate by default on a particular {@link Scheduler}.
*
* * @param the first other source's value type * @param the second other source's value type * @param the third other source's value type * @param the fourth other source's value type * @param the result value type * @param source1 the first other {@code ObservableSource} * @param source2 the second other {@code ObservableSource} * @param source3 the third other {@code ObservableSource} * @param source4 the fourth other {@code ObservableSource} * @param combiner the function called with an array of values from each participating {@code ObservableSource} * @return the new {@code Observable} instance * @throws NullPointerException if {@code source1}, {@code source2}, {@code source3}, * {@code source4} or {@code combiner} is {@code null} * @since 2.0 */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable withLatestFrom( @NonNull ObservableSource source1, @NonNull ObservableSource source2, @NonNull ObservableSource source3, @NonNull ObservableSource source4, @NonNull Function5 combiner) { Objects.requireNonNull(source1, "source1 is null"); Objects.requireNonNull(source2, "source2 is null"); Objects.requireNonNull(source3, "source3 is null"); Objects.requireNonNull(source4, "source4 is null"); Objects.requireNonNull(combiner, "combiner is null"); Function f = Functions.toFunction(combiner); return withLatestFrom(new ObservableSource[] { source1, source2, source3, source4 }, f); } /** * Combines the value emission from the current {@code Observable} with the latest emissions from the * other {@link ObservableSource}s via a function to produce the output item. * *

Note that this operator doesn't emit anything until all other sources have produced at * least one value. The resulting emission only happens when the current {@code Observable} emits (and * not when any of the other sources emit, unlike combineLatest). * If a source doesn't produce any value and just completes, the sequence is completed immediately. *

* *

*
Scheduler:
*
This operator does not operate by default on a particular {@link Scheduler}.
*
* * @param the result value type * @param others the array of other sources * @param combiner the function called with an array of values from each participating {@code ObservableSource} * @return the new {@code Observable} instance * @throws NullPointerException if {@code others} or {@code combiner} is {@code null} * @since 2.0 */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable withLatestFrom(@NonNull ObservableSource[] others, @NonNull Function combiner) { Objects.requireNonNull(others, "others is null"); Objects.requireNonNull(combiner, "combiner is null"); return RxJavaPlugins.onAssembly(new ObservableWithLatestFromMany<>(this, others, combiner)); } /** * Combines the value emission from the current {@code Observable} with the latest emissions from the * other {@link ObservableSource}s via a function to produce the output item. * *

Note that this operator doesn't emit anything until all other sources have produced at * least one value. The resulting emission only happens when the current {@code Observable} emits (and * not when any of the other sources emit, unlike {@code combineLatest}). * If a source doesn't produce any value and just completes, the sequence is completed immediately. *

* *

*
Scheduler:
*
This operator does not operate by default on a particular {@link Scheduler}.
*
* * @param the result value type * @param others the iterable of other sources * @param combiner the function called with an array of values from each participating {@code ObservableSource} * @return the new {@code Observable} instance * @throws NullPointerException if {@code others} or {@code combiner} is {@code null} * @since 2.0 */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable withLatestFrom(@NonNull Iterable<@NonNull ? extends ObservableSource> others, @NonNull Function combiner) { Objects.requireNonNull(others, "others is null"); Objects.requireNonNull(combiner, "combiner is null"); return RxJavaPlugins.onAssembly(new ObservableWithLatestFromMany<>(this, others, combiner)); } /** * Returns an {@code Observable} that emits items that are the result of applying a specified function to pairs of * values, one each from the current {@code Observable} and a specified {@link Iterable} sequence. *

* *

* Note that the {@code other} {@code Iterable} is evaluated as items are observed from the current {@code Observable}; it is * not pre-consumed. This allows you to zip infinite streams on either side. *

*
Scheduler:
*
{@code zipWith} does not operate by default on a particular {@link Scheduler}.
*
* * @param * the type of items in the {@code other} {@code Iterable} * @param * the type of items emitted by the resulting {@code Observable} * @param other * the {@code Iterable} sequence * @param zipper * a function that combines the pairs of items from the current {@code Observable} and the {@code Iterable} to generate * the items to be emitted by the resulting {@code Observable} * @return the new {@code Observable} instance * @throws NullPointerException if {@code other} or {@code zipper} is {@code null} * @see ReactiveX operators documentation: Zip */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final <@NonNull U, R> Observable zipWith(@NonNull Iterable other, @NonNull BiFunction zipper) { Objects.requireNonNull(other, "other is null"); Objects.requireNonNull(zipper, "zipper is null"); return RxJavaPlugins.onAssembly(new ObservableZipIterable<>(this, other, zipper)); } /** * Returns an {@code Observable} that emits items that are the result of applying a specified function to pairs of * values, one each from the current {@code Observable} and another specified {@link ObservableSource}. *

* *

* The operator subscribes to its sources in order they are specified and completes eagerly if * one of the sources is shorter than the rest while disposing the other sources. Therefore, it * is possible those other sources will never be able to run to completion (and thus not calling * {@code doOnComplete()}). This can also happen if the sources are exactly the same length; if * source A completes and B has been consumed and is about to complete, the operator detects A won't * be sending further values and it will dispose B immediately. For example: *

range(1, 5).doOnComplete(action1).zipWith(range(6, 5).doOnComplete(action2), (a, b) -> a + b)
* {@code action1} will be called but {@code action2} won't. *
To work around this termination property, * use {@link #doOnDispose(Action)} as well or use {@code using()} to do cleanup in case of completion * or a dispose() call. *
*
Scheduler:
*
{@code zipWith} does not operate by default on a particular {@link Scheduler}.
*
* * @param * the type of items emitted by the {@code other} {@code ObservableSource} * @param * the type of items emitted by the resulting {@code Observable} * @param other * the other {@code ObservableSource} * @param zipper * a function that combines the pairs of items from the current {@code Observable} and the other {@code ObservableSource} to generate the items to * be emitted by the resulting {@code Observable} * @return the new {@code Observable} instance * @throws NullPointerException if {@code other} or {@code zipper} is {@code null} * @see ReactiveX operators documentation: Zip */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable zipWith(@NonNull ObservableSource other, @NonNull BiFunction zipper) { Objects.requireNonNull(other, "other is null"); return zip(this, other, zipper); } /** * Returns an {@code Observable} that emits items that are the result of applying a specified function to pairs of * values, one each from the current {@code Observable} and another specified {@link ObservableSource}. *

* *

* The operator subscribes to its sources in order they are specified and completes eagerly if * one of the sources is shorter than the rest while disposing the other sources. Therefore, it * is possible those other sources will never be able to run to completion (and thus not calling * {@code doOnComplete()}). This can also happen if the sources are exactly the same length; if * source A completes and B has been consumed and is about to complete, the operator detects A won't * be sending further values and it will dispose B immediately. For example: *

range(1, 5).doOnComplete(action1).zipWith(range(6, 5).doOnComplete(action2), (a, b) -> a + b)
* {@code action1} will be called but {@code action2} won't. *
To work around this termination property, * use {@link #doOnDispose(Action)} as well or use {@code using()} to do cleanup in case of completion * or a dispose() call. *
*
Scheduler:
*
{@code zipWith} does not operate by default on a particular {@link Scheduler}.
*
* * @param * the type of items emitted by the {@code other} {@code ObservableSource} * @param * the type of items emitted by the resulting {@code Observable} * @param other * the other {@code ObservableSource} * @param zipper * a function that combines the pairs of items from the current {@code Observable} and the other {@code ObservableSource} to generate the items to * be emitted by the resulting {@code Observable} * @param delayError * if {@code true}, errors from the current {@code Observable} or the other {@code ObservableSource} is delayed until both terminate * @return the new {@code Observable} instance * @throws NullPointerException if {@code other} or {@code zipper} is {@code null} * @see ReactiveX operators documentation: Zip * @since 2.0 */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable zipWith(@NonNull ObservableSource other, @NonNull BiFunction zipper, boolean delayError) { return zip(this, other, zipper, delayError); } /** * Returns an {@code Observable} that emits items that are the result of applying a specified function to pairs of * values, one each from the current {@code Observable} and another specified {@link ObservableSource}. *

* *

* The operator subscribes to its sources in order they are specified and completes eagerly if * one of the sources is shorter than the rest while disposing the other sources. Therefore, it * is possible those other sources will never be able to run to completion (and thus not calling * {@code doOnComplete()}). This can also happen if the sources are exactly the same length; if * source A completes and B has been consumed and is about to complete, the operator detects A won't * be sending further values and it will dispose B immediately. For example: *

range(1, 5).doOnComplete(action1).zipWith(range(6, 5).doOnComplete(action2), (a, b) -> a + b)
* {@code action1} will be called but {@code action2} won't. *
To work around this termination property, * use {@link #doOnDispose(Action)} as well or use {@code using()} to do cleanup in case of completion * or a dispose() call. *
*
Scheduler:
*
{@code zipWith} does not operate by default on a particular {@link Scheduler}.
*
* * @param * the type of items emitted by the {@code other} {@code ObservableSource} * @param * the type of items emitted by the resulting {@code Observable} * @param other * the other {@code ObservableSource} * @param zipper * a function that combines the pairs of items from the current {@code Observable} and the other {@code ObservableSource} to generate the items to * be emitted by the resulting {@code Observable} * @param bufferSize * the capacity hint for the buffer in the inner windows * @param delayError * if {@code true}, errors from the current {@code Observable} or the other {@code ObservableSource} is delayed until both terminate * @return the new {@code Observable} instance * @see ReactiveX operators documentation: Zip * @throws NullPointerException if {@code other} or {@code zipper} is {@code null} * @throws IllegalArgumentException if {@code bufferSize} is non-positive * @since 2.0 */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Observable zipWith(@NonNull ObservableSource other, @NonNull BiFunction zipper, boolean delayError, int bufferSize) { return zip(this, other, zipper, delayError, bufferSize); } // ------------------------------------------------------------------------- // Fluent test support, super handy and reduces test preparation boilerplate // ------------------------------------------------------------------------- /** * Creates a {@link TestObserver} and subscribes it to the current {@code Observable}. *
*
Scheduler:
*
{@code test} does not operate by default on a particular {@link Scheduler}.
*
* @return the new {@code TestObserver} instance * @since 2.0 */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final TestObserver test() { // NoPMD TestObserver to = new TestObserver<>(); subscribe(to); return to; } /** * Creates a {@link TestObserver}, optionally disposes it and then subscribes * it to the current {@code Observable}. * *
*
Scheduler:
*
{@code test} does not operate by default on a particular {@link Scheduler}.
*
* @param dispose indicates if the {@code TestObserver} should be disposed before * it is subscribed to the current {@code Observable} * @return the new {@code TestObserver} instance * @since 2.0 */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final TestObserver test(boolean dispose) { // NoPMD TestObserver to = new TestObserver<>(); if (dispose) { to.dispose(); } subscribe(to); return to; } // ------------------------------------------------------------------------- // JDK 8 Support // ------------------------------------------------------------------------- /** * Converts the existing value of the provided optional into a {@link #just(Object)} * or an empty optional into an {@link #empty()} {@code Observable} instance. *

* *

* Note that the operator takes an already instantiated optional reference and does not * by any means create this original optional. If the optional is to be created per * consumer upon subscription, use {@link #defer(Supplier)} around {@code fromOptional}: *


     * Observable.defer(() -> Observable.fromOptional(createOptional()));
     * 
*
*
Scheduler:
*
{@code fromOptional} does not operate by default on a particular {@link Scheduler}.
*
* @param the element type of the optional value * @param optional the optional value to convert into an {@code Observable} * @return the new {@code Observable} instance * @throws NullPointerException if {@code optional} is {@code null} * @since 3.0.0 * @see #just(Object) * @see #empty() */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public static Observable<@NonNull T> fromOptional(@NonNull Optional optional) { Objects.requireNonNull(optional, "optional is null"); return optional.map(Observable::just).orElseGet(Observable::empty); } /** * Signals the completion value or error of the given (hot) {@link CompletionStage}-based asynchronous calculation. *

* *

* Note that the operator takes an already instantiated, running or terminated {@code CompletionStage}. * If the optional is to be created per consumer upon subscription, use {@link #defer(Supplier)} * around {@code fromCompletionStage}: *


     * Observable.defer(() -> Observable.fromCompletionStage(createCompletionStage()));
     * 
*

* If the {@code CompletionStage} completes with {@code null}, a {@link NullPointerException} is signaled. *

* Canceling the flow can't cancel the execution of the {@code CompletionStage} because {@code CompletionStage} * itself doesn't support cancellation. Instead, the operator detaches from the {@code CompletionStage}. *

*
Scheduler:
*
{@code fromCompletionStage} does not operate by default on a particular {@link Scheduler}.
*
* @param the element type of the {@code CompletionStage} * @param stage the {@code CompletionStage} to convert to {@code Observable} and signal its terminal value or error * @return the new {@code Observable} instance * @throws NullPointerException if {@code stage} is {@code null} * @since 3.0.0 */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public static Observable<@NonNull T> fromCompletionStage(@NonNull CompletionStage stage) { Objects.requireNonNull(stage, "stage is null"); return RxJavaPlugins.onAssembly(new ObservableFromCompletionStage<>(stage)); } /** * Converts a {@link Stream} into a finite {@code Observable} and emits its items in the sequence. *

* *

* The operator closes the {@code Stream} upon cancellation and when it terminates. The exceptions raised when * closing a {@code Stream} are routed to the global error handler ({@link RxJavaPlugins#onError(Throwable)}. * If a {@code Stream} should not be closed, turn it into an {@link Iterable} and use {@link #fromIterable(Iterable)}: *


     * Stream<T> stream = ...
     * Observable.fromIterable(stream::iterator);
     * 
*

* Note that {@code Stream}s can be consumed only once; any subsequent attempt to consume a {@code Stream} * will result in an {@link IllegalStateException}. *

* Primitive streams are not supported and items have to be boxed manually (e.g., via {@link IntStream#boxed()}): *


     * IntStream intStream = IntStream.rangeClosed(1, 10);
     * Observable.fromStream(intStream.boxed());
     * 
*

* {@code Stream} does not support concurrent usage so creating and/or consuming the same instance multiple times * from multiple threads can lead to undefined behavior. *

*
Scheduler:
*
{@code fromStream} does not operate by default on a particular {@link Scheduler}.
*
* @param the element type of the source {@code Stream} * @param stream the {@code Stream} of values to emit * @return the new {@code Observable} instance * @throws NullPointerException if {@code stream} is {@code null} * @since 3.0.0 * @see #fromIterable(Iterable) */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public static Observable<@NonNull T> fromStream(@NonNull Stream stream) { Objects.requireNonNull(stream, "stream is null"); return RxJavaPlugins.onAssembly(new ObservableFromStream<>(stream)); } /** * Maps each upstream value into an {@link Optional} and emits the contained item if not empty. *

* * *

*
Scheduler:
*
{@code mapOptional} does not operate by default on a particular {@link Scheduler}.
*
* @param the non-{@code null} output type * @param mapper the function that receives the upstream item and should return a non-empty {@code Optional} * to emit as the output or an empty {@code Optional} to skip to the next upstream value * @return the new {@code Observable} instance * @throws NullPointerException if {@code mapper} is {@code null} * @since 3.0.0 * @see #map(Function) * @see #filter(Predicate) */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final <@NonNull R> Observable mapOptional(@NonNull Function> mapper) { Objects.requireNonNull(mapper, "mapper is null"); return RxJavaPlugins.onAssembly(new ObservableMapOptional<>(this, mapper)); } /** * Collects the finite upstream's values into a container via a {@link Stream} {@link Collector} callback set and emits * it as the success result as a {@link Single}. *

* * *

*
Scheduler:
*
{@code collect} does not operate by default on a particular {@link Scheduler}.
*
* @param the non-{@code null} result type * @param the intermediate container type used for the accumulation * @param collector the interface defining the container supplier, accumulator and finisher functions; * see {@link Collectors} for some standard implementations * @return the new {@code Single} instance * @throws NullPointerException if {@code collector} is {@code null} * @since 3.0.0 * @see Collectors * @see #collect(Supplier, BiConsumer) */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final <@NonNull R, A> Single collect(@NonNull Collector collector) { Objects.requireNonNull(collector, "collector is null"); return RxJavaPlugins.onAssembly(new ObservableCollectWithCollectorSingle<>(this, collector)); } /** * Signals the first upstream item (or the default item if the upstream is empty) via * a {@link CompletionStage}. *

* *

* The upstream can be canceled by converting the resulting {@code CompletionStage} into * {@link CompletableFuture} via {@link CompletionStage#toCompletableFuture()} and * calling {@link CompletableFuture#cancel(boolean)} on it. * The upstream will be also cancelled if the resulting {@code CompletionStage} is converted to and * completed manually by {@link CompletableFuture#complete(Object)} or {@link CompletableFuture#completeExceptionally(Throwable)}. *

* {@code CompletionStage}s don't have a notion of emptiness and allow {@code null}s, therefore, one can either use * a {@code defaultItem} of {@code null} or turn the flow into a sequence of {@link Optional}s and default to {@link Optional#empty()}: *


     * CompletionStage<Optional<T>> stage = source.map(Optional::of).firstStage(Optional.empty());
     * 
*
*
Scheduler:
*
{@code firstStage} does not operate by default on a particular {@link Scheduler}.
*
* @param defaultItem the item to signal if the upstream is empty * @return the new {@code CompletionStage} instance * @throws NullPointerException if {@code defaultItem} is {@code null} * @since 3.0.0 * @see #firstOrErrorStage() */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final CompletionStage firstStage(@Nullable T defaultItem) { return subscribeWith(new ObservableFirstStageObserver<>(true, defaultItem)); } /** * Signals the only expected upstream item (or the default item if the upstream is empty) * or signals {@link IllegalArgumentException} if the upstream has more than one item * via a {@link CompletionStage}. *

* *

* The upstream can be canceled by converting the resulting {@code CompletionStage} into * {@link CompletableFuture} via {@link CompletionStage#toCompletableFuture()} and * calling {@link CompletableFuture#cancel(boolean)} on it. * The upstream will be also cancelled if the resulting {@code CompletionStage} is converted to and * completed manually by {@link CompletableFuture#complete(Object)} or {@link CompletableFuture#completeExceptionally(Throwable)}. *

* {@code CompletionStage}s don't have a notion of emptiness and allow {@code null}s, therefore, one can either use * a {@code defaultItem} of {@code null} or turn the flow into a sequence of {@link Optional}s and default to {@link Optional#empty()}: *


     * CompletionStage<Optional<T>> stage = source.map(Optional::of).singleStage(Optional.empty());
     * 
*
*
Scheduler:
*
{@code singleStage} does not operate by default on a particular {@link Scheduler}.
*
* @param defaultItem the item to signal if the upstream is empty * @return the new {@code CompletionStage} instance * @throws NullPointerException if {@code defaultItem} is {@code null} * @since 3.0.0 * @see #singleOrErrorStage() */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final CompletionStage singleStage(@Nullable T defaultItem) { return subscribeWith(new ObservableSingleStageObserver<>(true, defaultItem)); } /** * Signals the last upstream item (or the default item if the upstream is empty) via * a {@link CompletionStage}. *

* *

* The upstream can be canceled by converting the resulting {@code CompletionStage} into * {@link CompletableFuture} via {@link CompletionStage#toCompletableFuture()} and * calling {@link CompletableFuture#cancel(boolean)} on it. * The upstream will be also cancelled if the resulting {@code CompletionStage} is converted to and * completed manually by {@link CompletableFuture#complete(Object)} or {@link CompletableFuture#completeExceptionally(Throwable)}. *

* {@code CompletionStage}s don't have a notion of emptiness and allow {@code null}s, therefore, one can either use * a {@code defaultItem} of {@code null} or turn the flow into a sequence of {@link Optional}s and default to {@link Optional#empty()}: *


     * CompletionStage<Optional<T>> stage = source.map(Optional::of).lastStage(Optional.empty());
     * 
*
*
Scheduler:
*
{@code lastStage} does not operate by default on a particular {@link Scheduler}.
*
* @param defaultItem the item to signal if the upstream is empty * @return the new {@code CompletionStage} instance * @throws NullPointerException if {@code defaultItem} is {@code null} * @since 3.0.0 * @see #lastOrErrorStage() */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final CompletionStage lastStage(@Nullable T defaultItem) { return subscribeWith(new ObservableLastStageObserver<>(true, defaultItem)); } /** * Signals the first upstream item or a {@link NoSuchElementException} if the upstream is empty via * a {@link CompletionStage}. *

* *

* The upstream can be canceled by converting the resulting {@code CompletionStage} into * {@link CompletableFuture} via {@link CompletionStage#toCompletableFuture()} and * calling {@link CompletableFuture#cancel(boolean)} on it. * The upstream will be also cancelled if the resulting {@code CompletionStage} is converted to and * completed manually by {@link CompletableFuture#complete(Object)} or {@link CompletableFuture#completeExceptionally(Throwable)}. *

*
Scheduler:
*
{@code firstOrErrorStage} does not operate by default on a particular {@link Scheduler}.
*
* @return the new {@code CompletionStage} instance * @since 3.0.0 * @see #firstStage(Object) */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final CompletionStage firstOrErrorStage() { return subscribeWith(new ObservableFirstStageObserver<>(false, null)); } /** * Signals the only expected upstream item, a {@link NoSuchElementException} if the upstream is empty * or signals {@link IllegalArgumentException} if the upstream has more than one item * via a {@link CompletionStage}. *

* *

* The upstream can be canceled by converting the resulting {@code CompletionStage} into * {@link CompletableFuture} via {@link CompletionStage#toCompletableFuture()} and * calling {@link CompletableFuture#cancel(boolean)} on it. * The upstream will be also cancelled if the resulting {@code CompletionStage} is converted to and * completed manually by {@link CompletableFuture#complete(Object)} or {@link CompletableFuture#completeExceptionally(Throwable)}. *

*
Scheduler:
*
{@code singleOrErrorStage} does not operate by default on a particular {@link Scheduler}.
*
* @return the new {@code CompletionStage} instance * @since 3.0.0 * @see #singleStage(Object) */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final CompletionStage singleOrErrorStage() { return subscribeWith(new ObservableSingleStageObserver<>(false, null)); } /** * Signals the last upstream item or a {@link NoSuchElementException} if the upstream is empty via * a {@link CompletionStage}. *

* *

* The upstream can be canceled by converting the resulting {@code CompletionStage} into * {@link CompletableFuture} via {@link CompletionStage#toCompletableFuture()} and * calling {@link CompletableFuture#cancel(boolean)} on it. * The upstream will be also cancelled if the resulting {@code CompletionStage} is converted to and * completed manually by {@link CompletableFuture#complete(Object)} or {@link CompletableFuture#completeExceptionally(Throwable)}. *

*
Scheduler:
*
{@code lastOrErrorStage} does not operate by default on a particular {@link Scheduler}.
*
* @return the new {@code CompletionStage} instance * @since 3.0.0 * @see #lastStage(Object) */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final CompletionStage lastOrErrorStage() { return subscribeWith(new ObservableLastStageObserver<>(false, null)); } /** * Creates a sequential {@link Stream} to consume or process the current {@code Observable} in a blocking manner via * the Java {@code Stream} API. *

* *

* Cancellation of the upstream is done via {@link Stream#close()}, therefore, it is strongly recommended the * consumption is performed within a try-with-resources construct: *


     * Observable<Integer> source = Observable.range(1, 10)
     *        .subscribeOn(Schedulers.computation());
     *
     * try (Stream<Integer> stream = source.blockingStream()) {
     *     stream.limit(3).forEach(System.out::println);
     * }
     * 
*
*
Scheduler:
*
{@code blockingStream} does not operate by default on a particular {@link Scheduler}.
*
* * @return the new {@code Stream} instance * @since 3.0.0 * @see #blockingStream(int) */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Stream blockingStream() { return blockingStream(bufferSize()); } /** * Creates a sequential {@link Stream} to consume or process the current {@code Observable} in a blocking manner via * the Java {@code Stream} API. *

* *

* Cancellation of the upstream is done via {@link Stream#close()}, therefore, it is strongly recommended the * consumption is performed within a try-with-resources construct: *


     * Observable<Integer> source = Observable.range(1, 10)
     *        .subscribeOn(Schedulers.computation());
     *
     * try (Stream<Integer> stream = source.blockingStream(4)) {
     *     stream.limit(3).forEach(System.out::println);
     * }
     * 
*
*
Scheduler:
*
{@code blockingStream} does not operate by default on a particular {@link Scheduler}.
*
* * @param capacityHint the expected number of items to be buffered * @return the new {@code Stream} instance * @throws IllegalArgumentException if {@code capacityHint} is non-positive * @since 3.0.0 */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final Stream blockingStream(int capacityHint) { Iterator iterator = blockingIterable(capacityHint).iterator(); return StreamSupport.stream(Spliterators.spliteratorUnknownSize(iterator, 0), false) .onClose(((Disposable) iterator)::dispose); } /** * Maps each upstream item into a {@link Stream} and emits the {@code Stream}'s items to the downstream in a sequential fashion. *

* *

* Due to the blocking and sequential nature of Java {@code Stream}s, the streams are mapped and consumed in a sequential fashion * without interleaving (unlike a more general {@link #flatMap(Function)}). Therefore, {@code flatMapStream} and * {@code concatMapStream} are identical operators and are provided as aliases. *

* The operator closes the {@code Stream} upon cancellation and when it terminates. The exceptions raised when * closing a {@code Stream} are routed to the global error handler ({@link RxJavaPlugins#onError(Throwable)}. * If a {@code Stream} should not be closed, turn it into an {@link Iterable} and use {@link #concatMapIterable(Function)}: *


     * source.concatMapIterable(v -> createStream(v)::iterator);
     * 
*

* Note that {@code Stream}s can be consumed only once; any subsequent attempt to consume a {@code Stream} * will result in an {@link IllegalStateException}. *

* Primitive streams are not supported and items have to be boxed manually (e.g., via {@link IntStream#boxed()}): *


     * source.concatMapStream(v -> IntStream.rangeClosed(v + 1, v + 10).boxed());
     * 
*

* {@code Stream} does not support concurrent usage so creating and/or consuming the same instance multiple times * from multiple threads can lead to undefined behavior. *

*
Scheduler:
*
{@code concatMapStream} does not operate by default on a particular {@link Scheduler}.
*
* * @param the element type of the {@code Stream}s and the result * @param mapper the function that receives an upstream item and should return a {@code Stream} whose elements * will be emitted to the downstream * @return the new {@code Observable} instance * @since 3.0.0 * @throws NullPointerException if {@code mapper} is {@code null} * @see #concatMap(Function) * @see #concatMapIterable(Function) * @see #flatMapStream(Function) */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final <@NonNull R> Observable concatMapStream(@NonNull Function> mapper) { return flatMapStream(mapper); } /** * Maps each upstream item into a {@link Stream} and emits the {@code Stream}'s items to the downstream in a sequential fashion. *

* *

* Due to the blocking and sequential nature of Java {@code Stream}s, the streams are mapped and consumed in a sequential fashion * without interleaving (unlike a more general {@link #flatMap(Function)}). Therefore, {@code flatMapStream} and * {@code concatMapStream} are identical operators and are provided as aliases. *

* The operator closes the {@code Stream} upon cancellation and when it terminates. The exceptions raised when * closing a {@code Stream} are routed to the global error handler ({@link RxJavaPlugins#onError(Throwable)}. * If a {@code Stream} should not be closed, turn it into an {@link Iterable} and use {@link #flatMapIterable(Function)}: *


     * source.flatMapIterable(v -> createStream(v)::iterator);
     * 
*

* Note that {@code Stream}s can be consumed only once; any subsequent attempt to consume a {@code Stream} * will result in an {@link IllegalStateException}. *

* Primitive streams are not supported and items have to be boxed manually (e.g., via {@link IntStream#boxed()}): *


     * source.flatMapStream(v -> IntStream.rangeClosed(v + 1, v + 10).boxed());
     * 
*

* {@code Stream} does not support concurrent usage so creating and/or consuming the same instance multiple times * from multiple threads can lead to undefined behavior. *

*
Scheduler:
*
{@code flatMapStream} does not operate by default on a particular {@link Scheduler}.
*
* * @param the element type of the {@code Stream}s and the result * @param mapper the function that receives an upstream item and should return a {@code Stream} whose elements * will be emitted to the downstream * @return the new {@code Observable} instance * @since 3.0.0 * @throws NullPointerException if {@code mapper} is {@code null} * @see #flatMap(Function) * @see #flatMapIterable(Function) */ @CheckReturnValue @SchedulerSupport(SchedulerSupport.NONE) @NonNull public final <@NonNull R> Observable flatMapStream(@NonNull Function> mapper) { Objects.requireNonNull(mapper, "mapper is null"); return RxJavaPlugins.onAssembly(new ObservableFlatMapStream<>(this, mapper)); } }