All Downloads are FREE. Search and download functionalities are using the official Maven repository.

io.rsocket.internal.jctools.queues.BaseMpscLinkedArrayQueue Maven / Gradle / Ivy

/*
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package io.rsocket.internal.jctools.queues;

import static io.rsocket.internal.jctools.queues.CircularArrayOffsetCalculator.allocate;
import static io.rsocket.internal.jctools.queues.LinkedArrayQueueUtil.length;
import static io.rsocket.internal.jctools.queues.LinkedArrayQueueUtil.modifiedCalcElementOffset;
import static io.rsocket.internal.jctools.util.UnsafeAccess.UNSAFE;
import static io.rsocket.internal.jctools.util.UnsafeAccess.fieldOffset;
import static io.rsocket.internal.jctools.util.UnsafeRefArrayAccess.calcElementOffset;
import static io.rsocket.internal.jctools.util.UnsafeRefArrayAccess.lvElement;
import static io.rsocket.internal.jctools.util.UnsafeRefArrayAccess.soElement;

import io.rsocket.internal.jctools.queues.IndexedQueueSizeUtil.IndexedQueue;
import io.rsocket.internal.jctools.util.PortableJvmInfo;
import io.rsocket.internal.jctools.util.Pow2;
import io.rsocket.internal.jctools.util.RangeUtil;
import java.util.AbstractQueue;
import java.util.Iterator;

abstract class BaseMpscLinkedArrayQueuePad1 extends AbstractQueue implements IndexedQueue {
  long p01, p02, p03, p04, p05, p06, p07;
  long p10, p11, p12, p13, p14, p15, p16, p17;
}

// $gen:ordered-fields
abstract class BaseMpscLinkedArrayQueueProducerFields extends BaseMpscLinkedArrayQueuePad1 {
  private static final long P_INDEX_OFFSET =
      fieldOffset(BaseMpscLinkedArrayQueueProducerFields.class, "producerIndex");

  private volatile long producerIndex;

  @Override
  public final long lvProducerIndex() {
    return producerIndex;
  }

  final void soProducerIndex(long newValue) {
    UNSAFE.putOrderedLong(this, P_INDEX_OFFSET, newValue);
  }

  final boolean casProducerIndex(long expect, long newValue) {
    return UNSAFE.compareAndSwapLong(this, P_INDEX_OFFSET, expect, newValue);
  }
}

abstract class BaseMpscLinkedArrayQueuePad2 extends BaseMpscLinkedArrayQueueProducerFields {
  long p01, p02, p03, p04, p05, p06, p07;
  long p10, p11, p12, p13, p14, p15, p16, p17;
}

// $gen:ordered-fields
abstract class BaseMpscLinkedArrayQueueConsumerFields extends BaseMpscLinkedArrayQueuePad2 {
  private static final long C_INDEX_OFFSET =
      fieldOffset(BaseMpscLinkedArrayQueueConsumerFields.class, "consumerIndex");

  private volatile long consumerIndex;
  protected long consumerMask;
  protected E[] consumerBuffer;

  @Override
  public final long lvConsumerIndex() {
    return consumerIndex;
  }

  final long lpConsumerIndex() {
    return UNSAFE.getLong(this, C_INDEX_OFFSET);
  }

  final void soConsumerIndex(long newValue) {
    UNSAFE.putOrderedLong(this, C_INDEX_OFFSET, newValue);
  }
}

abstract class BaseMpscLinkedArrayQueuePad3 extends BaseMpscLinkedArrayQueueConsumerFields {
  long p0, p1, p2, p3, p4, p5, p6, p7;
  long p10, p11, p12, p13, p14, p15, p16, p17;
}

// $gen:ordered-fields
abstract class BaseMpscLinkedArrayQueueColdProducerFields
    extends BaseMpscLinkedArrayQueuePad3 {
  private static final long P_LIMIT_OFFSET =
      fieldOffset(BaseMpscLinkedArrayQueueColdProducerFields.class, "producerLimit");

  private volatile long producerLimit;
  protected long producerMask;
  protected E[] producerBuffer;

  final long lvProducerLimit() {
    return producerLimit;
  }

  final boolean casProducerLimit(long expect, long newValue) {
    return UNSAFE.compareAndSwapLong(this, P_LIMIT_OFFSET, expect, newValue);
  }

  final void soProducerLimit(long newValue) {
    UNSAFE.putOrderedLong(this, P_LIMIT_OFFSET, newValue);
  }
}

/**
 * An MPSC array queue which starts at initialCapacity and grows to maxCapacity in
 * linked chunks of the initial size. The queue grows only when the current buffer is full and
 * elements are not copied on resize, instead a link to the new buffer is stored in the old buffer
 * for the consumer to follow.
* * @param */ public abstract class BaseMpscLinkedArrayQueue extends BaseMpscLinkedArrayQueueColdProducerFields implements MessagePassingQueue, QueueProgressIndicators { // No post padding here, subclasses must add private static final Object JUMP = new Object(); private static final Object BUFFER_CONSUMED = new Object(); private static final int CONTINUE_TO_P_INDEX_CAS = 0; private static final int RETRY = 1; private static final int QUEUE_FULL = 2; private static final int QUEUE_RESIZE = 3; /** * @param initialCapacity the queue initial capacity. If chunk size is fixed this will be the * chunk size. Must be 2 or more. */ public BaseMpscLinkedArrayQueue(final int initialCapacity) { RangeUtil.checkGreaterThanOrEqual(initialCapacity, 2, "initialCapacity"); int p2capacity = Pow2.roundToPowerOfTwo(initialCapacity); // leave lower bit of mask clear long mask = (p2capacity - 1) << 1; // need extra element to point at next array E[] buffer = allocate(p2capacity + 1); producerBuffer = buffer; producerMask = mask; consumerBuffer = buffer; consumerMask = mask; soProducerLimit(mask); // we know it's all empty to start with } @Override public final int size() { // NOTE: because indices are on even numbers we cannot use the size util. /* * It is possible for a thread to be interrupted or reschedule between the read of the producer and * consumer indices, therefore protection is required to ensure size is within valid range. In the * event of concurrent polls/offers to this method the size is OVER estimated as we read consumer * index BEFORE the producer index. */ long after = lvConsumerIndex(); long size; while (true) { final long before = after; final long currentProducerIndex = lvProducerIndex(); after = lvConsumerIndex(); if (before == after) { size = ((currentProducerIndex - after) >> 1); break; } } // Long overflow is impossible, so size is always positive. Integer overflow is possible for the // unbounded // indexed queues. if (size > Integer.MAX_VALUE) { return Integer.MAX_VALUE; } else { return (int) size; } } @Override public final boolean isEmpty() { // Order matters! // Loading consumer before producer allows for producer increments after consumer index is read. // This ensures this method is conservative in it's estimate. Note that as this is an MPMC there // is // nothing we can do to make this an exact method. return (this.lvConsumerIndex() == this.lvProducerIndex()); } @Override public String toString() { return this.getClass().getName(); } @Override public boolean offer(final E e) { if (null == e) { throw new NullPointerException(); } long mask; E[] buffer; long pIndex; while (true) { long producerLimit = lvProducerLimit(); pIndex = lvProducerIndex(); // lower bit is indicative of resize, if we see it we spin until it's cleared if ((pIndex & 1) == 1) { continue; } // pIndex is even (lower bit is 0) -> actual index is (pIndex >> 1) // mask/buffer may get changed by resizing -> only use for array access after successful CAS. mask = this.producerMask; buffer = this.producerBuffer; // a successful CAS ties the ordering, lv(pIndex) - [mask/buffer] -> cas(pIndex) // assumption behind this optimization is that queue is almost always empty or near empty if (producerLimit <= pIndex) { int result = offerSlowPath(mask, pIndex, producerLimit); switch (result) { case CONTINUE_TO_P_INDEX_CAS: break; case RETRY: continue; case QUEUE_FULL: return false; case QUEUE_RESIZE: resize(mask, buffer, pIndex, e, null); return true; } } if (casProducerIndex(pIndex, pIndex + 2)) { break; } } // INDEX visible before ELEMENT final long offset = modifiedCalcElementOffset(pIndex, mask); soElement(buffer, offset, e); // release element e return true; } /** * {@inheritDoc} * *

This implementation is correct for single consumer thread use only. */ @SuppressWarnings("unchecked") @Override public E poll() { final E[] buffer = consumerBuffer; final long index = lpConsumerIndex(); final long mask = consumerMask; final long offset = modifiedCalcElementOffset(index, mask); Object e = lvElement(buffer, offset); // LoadLoad if (e == null) { if (index != lvProducerIndex()) { // poll() == null iff queue is empty, null element is not strong enough indicator, so we // must // check the producer index. If the queue is indeed not empty we spin until element is // visible. do { e = lvElement(buffer, offset); } while (e == null); } else { return null; } } if (e == JUMP) { final E[] nextBuffer = nextBuffer(buffer, mask); return newBufferPoll(nextBuffer, index); } soElement(buffer, offset, null); // release element null soConsumerIndex(index + 2); // release cIndex return (E) e; } /** * {@inheritDoc} * *

This implementation is correct for single consumer thread use only. */ @SuppressWarnings("unchecked") @Override public E peek() { final E[] buffer = consumerBuffer; final long index = lpConsumerIndex(); final long mask = consumerMask; final long offset = modifiedCalcElementOffset(index, mask); Object e = lvElement(buffer, offset); // LoadLoad if (e == null && index != lvProducerIndex()) { // peek() == null iff queue is empty, null element is not strong enough indicator, so we must // check the producer index. If the queue is indeed not empty we spin until element is // visible. do { e = lvElement(buffer, offset); } while (e == null); } if (e == JUMP) { return newBufferPeek(nextBuffer(buffer, mask), index); } return (E) e; } /** We do not inline resize into this method because we do not resize on fill. */ private int offerSlowPath(long mask, long pIndex, long producerLimit) { final long cIndex = lvConsumerIndex(); long bufferCapacity = getCurrentBufferCapacity(mask); if (cIndex + bufferCapacity > pIndex) { if (!casProducerLimit(producerLimit, cIndex + bufferCapacity)) { // retry from top return RETRY; } else { // continue to pIndex CAS return CONTINUE_TO_P_INDEX_CAS; } } // full and cannot grow else if (availableInQueue(pIndex, cIndex) <= 0) { // offer should return false; return QUEUE_FULL; } // grab index for resize -> set lower bit else if (casProducerIndex(pIndex, pIndex + 1)) { // trigger a resize return QUEUE_RESIZE; } else { // failed resize attempt, retry from top return RETRY; } } /** @return available elements in queue * 2 */ protected abstract long availableInQueue(long pIndex, long cIndex); @SuppressWarnings("unchecked") private E[] nextBuffer(final E[] buffer, final long mask) { final long offset = nextArrayOffset(mask); final E[] nextBuffer = (E[]) lvElement(buffer, offset); consumerBuffer = nextBuffer; consumerMask = (length(nextBuffer) - 2) << 1; soElement(buffer, offset, BUFFER_CONSUMED); return nextBuffer; } private long nextArrayOffset(long mask) { return modifiedCalcElementOffset(mask + 2, Long.MAX_VALUE); } private E newBufferPoll(E[] nextBuffer, long index) { final long offset = modifiedCalcElementOffset(index, consumerMask); final E n = lvElement(nextBuffer, offset); // LoadLoad if (n == null) { throw new IllegalStateException("new buffer must have at least one element"); } soElement(nextBuffer, offset, null); // StoreStore soConsumerIndex(index + 2); return n; } private E newBufferPeek(E[] nextBuffer, long index) { final long offset = modifiedCalcElementOffset(index, consumerMask); final E n = lvElement(nextBuffer, offset); // LoadLoad if (null == n) { throw new IllegalStateException("new buffer must have at least one element"); } return n; } @Override public long currentProducerIndex() { return lvProducerIndex() / 2; } @Override public long currentConsumerIndex() { return lvConsumerIndex() / 2; } @Override public abstract int capacity(); @Override public boolean relaxedOffer(E e) { return offer(e); } @SuppressWarnings("unchecked") @Override public E relaxedPoll() { final E[] buffer = consumerBuffer; final long index = lpConsumerIndex(); final long mask = consumerMask; final long offset = modifiedCalcElementOffset(index, mask); Object e = lvElement(buffer, offset); // LoadLoad if (e == null) { return null; } if (e == JUMP) { final E[] nextBuffer = nextBuffer(buffer, mask); return newBufferPoll(nextBuffer, index); } soElement(buffer, offset, null); soConsumerIndex(index + 2); return (E) e; } @SuppressWarnings("unchecked") @Override public E relaxedPeek() { final E[] buffer = consumerBuffer; final long index = lpConsumerIndex(); final long mask = consumerMask; final long offset = modifiedCalcElementOffset(index, mask); Object e = lvElement(buffer, offset); // LoadLoad if (e == JUMP) { return newBufferPeek(nextBuffer(buffer, mask), index); } return (E) e; } @Override public int fill(Supplier s) { long result = 0; // result is a long because we want to have a safepoint check at regular intervals final int capacity = capacity(); do { final int filled = fill(s, PortableJvmInfo.RECOMENDED_OFFER_BATCH); if (filled == 0) { return (int) result; } result += filled; } while (result <= capacity); return (int) result; } @Override public int fill(Supplier s, int batchSize) { long mask; E[] buffer; long pIndex; int claimedSlots; while (true) { long producerLimit = lvProducerLimit(); pIndex = lvProducerIndex(); // lower bit is indicative of resize, if we see it we spin until it's cleared if ((pIndex & 1) == 1) { continue; } // pIndex is even (lower bit is 0) -> actual index is (pIndex >> 1) // NOTE: mask/buffer may get changed by resizing -> only use for array access after successful // CAS. // Only by virtue offloading them between the lvProducerIndex and a successful // casProducerIndex are they // safe to use. mask = this.producerMask; buffer = this.producerBuffer; // a successful CAS ties the ordering, lv(pIndex) -> [mask/buffer] -> cas(pIndex) // we want 'limit' slots, but will settle for whatever is visible to 'producerLimit' long batchIndex = Math.min(producerLimit, pIndex + 2 * batchSize); if (pIndex >= producerLimit || producerLimit < batchIndex) { int result = offerSlowPath(mask, pIndex, producerLimit); switch (result) { case CONTINUE_TO_P_INDEX_CAS: // offer slow path verifies only one slot ahead, we cannot rely on indication here case RETRY: continue; case QUEUE_FULL: return 0; case QUEUE_RESIZE: resize(mask, buffer, pIndex, null, s); return 1; } } // claim limit slots at once if (casProducerIndex(pIndex, batchIndex)) { claimedSlots = (int) ((batchIndex - pIndex) / 2); break; } } for (int i = 0; i < claimedSlots; i++) { final long offset = modifiedCalcElementOffset(pIndex + 2 * i, mask); soElement(buffer, offset, s.get()); } return claimedSlots; } @Override public void fill(Supplier s, WaitStrategy w, ExitCondition exit) { while (exit.keepRunning()) { if (fill(s, PortableJvmInfo.RECOMENDED_OFFER_BATCH) == 0) { int idleCounter = 0; while (exit.keepRunning() && fill(s, PortableJvmInfo.RECOMENDED_OFFER_BATCH) == 0) { idleCounter = w.idle(idleCounter); } } } } @Override public int drain(Consumer c) { return drain(c, capacity()); } @Override public int drain(final Consumer c, final int limit) { // Impl note: there are potentially some small gains to be had by manually inlining // relaxedPoll() and hoisting // reused fields out to reduce redundant reads. int i = 0; E m; for (; i < limit && (m = relaxedPoll()) != null; i++) { c.accept(m); } return i; } @Override public void drain(Consumer c, WaitStrategy w, ExitCondition exit) { int idleCounter = 0; while (exit.keepRunning()) { E e = relaxedPoll(); if (e == null) { idleCounter = w.idle(idleCounter); continue; } idleCounter = 0; c.accept(e); } } /** * Get an iterator for this queue. This method is thread safe. * *

The iterator provides a best-effort snapshot of the elements in the queue. The returned * iterator is not guaranteed to return elements in queue order, and races with the consumer * thread may cause gaps in the sequence of returned elements. Like {link #relaxedPoll}, the * iterator may not immediately return newly inserted elements. * * @return The iterator. */ @Override public Iterator iterator() { return new WeakIterator(); } private final class WeakIterator implements Iterator { private long nextIndex; private E nextElement; private E[] currentBuffer; private int currentBufferLength; WeakIterator() { setBuffer(consumerBuffer); nextElement = getNext(); } @Override public boolean hasNext() { return nextElement != null; } @Override public E next() { E e = nextElement; nextElement = getNext(); return e; } private void setBuffer(E[] buffer) { this.currentBuffer = buffer; this.currentBufferLength = length(buffer); this.nextIndex = 0; } private E getNext() { while (true) { while (nextIndex < currentBufferLength - 1) { long offset = calcElementOffset(nextIndex++); E e = lvElement(currentBuffer, offset); if (e != null && e != JUMP) { return e; } } long offset = calcElementOffset(currentBufferLength - 1); Object nextArray = lvElement(currentBuffer, offset); if (nextArray == BUFFER_CONSUMED) { // Consumer may have passed us, just jump to the current consumer buffer setBuffer(consumerBuffer); } else if (nextArray != null) { setBuffer((E[]) nextArray); } else { return null; } } } } private void resize(long oldMask, E[] oldBuffer, long pIndex, E e, Supplier s) { assert (e != null && s == null) || (e == null || s != null); int newBufferLength = getNextBufferSize(oldBuffer); final E[] newBuffer; try { newBuffer = allocate(newBufferLength); } catch (OutOfMemoryError oom) { assert lvProducerIndex() == pIndex + 1; soProducerIndex(pIndex); throw oom; } producerBuffer = newBuffer; final int newMask = (newBufferLength - 2) << 1; producerMask = newMask; final long offsetInOld = modifiedCalcElementOffset(pIndex, oldMask); final long offsetInNew = modifiedCalcElementOffset(pIndex, newMask); soElement(newBuffer, offsetInNew, e == null ? s.get() : e); // element in new array soElement(oldBuffer, nextArrayOffset(oldMask), newBuffer); // buffer linked // ASSERT code final long cIndex = lvConsumerIndex(); final long availableInQueue = availableInQueue(pIndex, cIndex); RangeUtil.checkPositive(availableInQueue, "availableInQueue"); // Invalidate racing CASs // We never set the limit beyond the bounds of a buffer soProducerLimit(pIndex + Math.min(newMask, availableInQueue)); // make resize visible to the other producers soProducerIndex(pIndex + 2); // INDEX visible before ELEMENT, consistent with consumer expectation // make resize visible to consumer soElement(oldBuffer, offsetInOld, JUMP); } /** @return next buffer size(inclusive of next array pointer) */ protected abstract int getNextBufferSize(E[] buffer); /** @return current buffer capacity for elements (excluding next pointer and jump entry) * 2 */ protected abstract long getCurrentBufferCapacity(long mask); }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy