All Downloads are FREE. Search and download functionalities are using the official Maven repository.

io.rsocket.internal.jctools.queues.BaseMpscLinkedArrayQueue Maven / Gradle / Ivy

The newest version!
/*
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package io.rsocket.internal.jctools.queues;

import static io.rsocket.internal.jctools.queues.LinkedArrayQueueUtil.length;
import static io.rsocket.internal.jctools.queues.LinkedArrayQueueUtil.modifiedCalcCircularRefElementOffset;
import static io.rsocket.internal.jctools.queues.UnsafeAccess.UNSAFE;
import static io.rsocket.internal.jctools.queues.UnsafeAccess.fieldOffset;
import static io.rsocket.internal.jctools.queues.UnsafeRefArrayAccess.allocateRefArray;
import static io.rsocket.internal.jctools.queues.UnsafeRefArrayAccess.calcCircularRefElementOffset;
import static io.rsocket.internal.jctools.queues.UnsafeRefArrayAccess.calcRefElementOffset;
import static io.rsocket.internal.jctools.queues.UnsafeRefArrayAccess.lvRefElement;
import static io.rsocket.internal.jctools.queues.UnsafeRefArrayAccess.soRefElement;

import io.rsocket.internal.jctools.queues.IndexedQueueSizeUtil.IndexedQueue;
import java.util.AbstractQueue;
import java.util.Iterator;
import java.util.NoSuchElementException;

abstract class BaseMpscLinkedArrayQueuePad1 extends AbstractQueue implements IndexedQueue {
  byte b000, b001, b002, b003, b004, b005, b006, b007; //  8b
  byte b010, b011, b012, b013, b014, b015, b016, b017; // 16b
  byte b020, b021, b022, b023, b024, b025, b026, b027; // 24b
  byte b030, b031, b032, b033, b034, b035, b036, b037; // 32b
  byte b040, b041, b042, b043, b044, b045, b046, b047; // 40b
  byte b050, b051, b052, b053, b054, b055, b056, b057; // 48b
  byte b060, b061, b062, b063, b064, b065, b066, b067; // 56b
  byte b070, b071, b072, b073, b074, b075, b076, b077; // 64b
  byte b100, b101, b102, b103, b104, b105, b106, b107; // 72b
  byte b110, b111, b112, b113, b114, b115, b116, b117; // 80b
  byte b120, b121, b122, b123, b124, b125, b126, b127; // 88b
  byte b130, b131, b132, b133, b134, b135, b136, b137; // 96b
  byte b140, b141, b142, b143, b144, b145, b146, b147; // 104b
  byte b150, b151, b152, b153, b154, b155, b156, b157; // 112b
  byte b160, b161, b162, b163, b164, b165, b166, b167; // 120b
  byte b170, b171, b172, b173, b174, b175, b176, b177; // 128b
}

// $gen:ordered-fields
abstract class BaseMpscLinkedArrayQueueProducerFields extends BaseMpscLinkedArrayQueuePad1 {
  private static final long P_INDEX_OFFSET =
      fieldOffset(BaseMpscLinkedArrayQueueProducerFields.class, "producerIndex");

  private volatile long producerIndex;

  @Override
  public final long lvProducerIndex() {
    return producerIndex;
  }

  final void soProducerIndex(long newValue) {
    UNSAFE.putOrderedLong(this, P_INDEX_OFFSET, newValue);
  }

  final boolean casProducerIndex(long expect, long newValue) {
    return UNSAFE.compareAndSwapLong(this, P_INDEX_OFFSET, expect, newValue);
  }
}

abstract class BaseMpscLinkedArrayQueuePad2 extends BaseMpscLinkedArrayQueueProducerFields {
  byte b000, b001, b002, b003, b004, b005, b006, b007; //  8b
  byte b010, b011, b012, b013, b014, b015, b016, b017; // 16b
  byte b020, b021, b022, b023, b024, b025, b026, b027; // 24b
  byte b030, b031, b032, b033, b034, b035, b036, b037; // 32b
  byte b040, b041, b042, b043, b044, b045, b046, b047; // 40b
  byte b050, b051, b052, b053, b054, b055, b056, b057; // 48b
  byte b060, b061, b062, b063, b064, b065, b066, b067; // 56b
  byte b070, b071, b072, b073, b074, b075, b076, b077; // 64b
  byte b100, b101, b102, b103, b104, b105, b106, b107; // 72b
  byte b110, b111, b112, b113, b114, b115, b116, b117; // 80b
  byte b120, b121, b122, b123, b124, b125, b126, b127; // 88b
  byte b130, b131, b132, b133, b134, b135, b136, b137; // 96b
  byte b140, b141, b142, b143, b144, b145, b146, b147; // 104b
  byte b150, b151, b152, b153, b154, b155, b156, b157; // 112b
  byte b160, b161, b162, b163, b164, b165, b166, b167; // 120b
  byte b170, b171, b172, b173, b174, b175, b176, b177; // 128b
}

// $gen:ordered-fields
abstract class BaseMpscLinkedArrayQueueConsumerFields extends BaseMpscLinkedArrayQueuePad2 {
  private static final long C_INDEX_OFFSET =
      fieldOffset(BaseMpscLinkedArrayQueueConsumerFields.class, "consumerIndex");

  private volatile long consumerIndex;
  protected long consumerMask;
  protected E[] consumerBuffer;

  @Override
  public final long lvConsumerIndex() {
    return consumerIndex;
  }

  final long lpConsumerIndex() {
    return UNSAFE.getLong(this, C_INDEX_OFFSET);
  }

  final void soConsumerIndex(long newValue) {
    UNSAFE.putOrderedLong(this, C_INDEX_OFFSET, newValue);
  }
}

abstract class BaseMpscLinkedArrayQueuePad3 extends BaseMpscLinkedArrayQueueConsumerFields {
  byte b000, b001, b002, b003, b004, b005, b006, b007; //  8b
  byte b010, b011, b012, b013, b014, b015, b016, b017; // 16b
  byte b020, b021, b022, b023, b024, b025, b026, b027; // 24b
  byte b030, b031, b032, b033, b034, b035, b036, b037; // 32b
  byte b040, b041, b042, b043, b044, b045, b046, b047; // 40b
  byte b050, b051, b052, b053, b054, b055, b056, b057; // 48b
  byte b060, b061, b062, b063, b064, b065, b066, b067; // 56b
  byte b070, b071, b072, b073, b074, b075, b076, b077; // 64b
  byte b100, b101, b102, b103, b104, b105, b106, b107; // 72b
  byte b110, b111, b112, b113, b114, b115, b116, b117; // 80b
  byte b120, b121, b122, b123, b124, b125, b126, b127; // 88b
  byte b130, b131, b132, b133, b134, b135, b136, b137; // 96b
  byte b140, b141, b142, b143, b144, b145, b146, b147; // 104b
  byte b150, b151, b152, b153, b154, b155, b156, b157; // 112b
  byte b160, b161, b162, b163, b164, b165, b166, b167; // 120b
  byte b170, b171, b172, b173, b174, b175, b176, b177; // 128b
}

// $gen:ordered-fields
abstract class BaseMpscLinkedArrayQueueColdProducerFields
    extends BaseMpscLinkedArrayQueuePad3 {
  private static final long P_LIMIT_OFFSET =
      fieldOffset(BaseMpscLinkedArrayQueueColdProducerFields.class, "producerLimit");

  private volatile long producerLimit;
  protected long producerMask;
  protected E[] producerBuffer;

  final long lvProducerLimit() {
    return producerLimit;
  }

  final boolean casProducerLimit(long expect, long newValue) {
    return UNSAFE.compareAndSwapLong(this, P_LIMIT_OFFSET, expect, newValue);
  }

  final void soProducerLimit(long newValue) {
    UNSAFE.putOrderedLong(this, P_LIMIT_OFFSET, newValue);
  }
}

/**
 * An MPSC array queue which starts at initialCapacity and grows to maxCapacity in
 * linked chunks of the initial size. The queue grows only when the current buffer is full and
 * elements are not copied on resize, instead a link to the new buffer is stored in the old buffer
 * for the consumer to follow.
 */
abstract class BaseMpscLinkedArrayQueue extends BaseMpscLinkedArrayQueueColdProducerFields
    implements MessagePassingQueue, QueueProgressIndicators {
  // No post padding here, subclasses must add
  private static final Object JUMP = new Object();
  private static final Object BUFFER_CONSUMED = new Object();
  private static final int CONTINUE_TO_P_INDEX_CAS = 0;
  private static final int RETRY = 1;
  private static final int QUEUE_FULL = 2;
  private static final int QUEUE_RESIZE = 3;

  /**
   * @param initialCapacity the queue initial capacity. If chunk size is fixed this will be the
   *     chunk size. Must be 2 or more.
   */
  public BaseMpscLinkedArrayQueue(final int initialCapacity) {
    RangeUtil.checkGreaterThanOrEqual(initialCapacity, 2, "initialCapacity");

    int p2capacity = Pow2.roundToPowerOfTwo(initialCapacity);
    // leave lower bit of mask clear
    long mask = (p2capacity - 1) << 1;
    // need extra element to point at next array
    E[] buffer = allocateRefArray(p2capacity + 1);
    producerBuffer = buffer;
    producerMask = mask;
    consumerBuffer = buffer;
    consumerMask = mask;
    soProducerLimit(mask); // we know it's all empty to start with
  }

  @Override
  public int size() {
    // NOTE: because indices are on even numbers we cannot use the size util.

    /*
     * It is possible for a thread to be interrupted or reschedule between the read of the producer and
     * consumer indices, therefore protection is required to ensure size is within valid range. In the
     * event of concurrent polls/offers to this method the size is OVER estimated as we read consumer
     * index BEFORE the producer index.
     */
    long after = lvConsumerIndex();
    long size;
    while (true) {
      final long before = after;
      final long currentProducerIndex = lvProducerIndex();
      after = lvConsumerIndex();
      if (before == after) {
        size = ((currentProducerIndex - after) >> 1);
        break;
      }
    }
    // Long overflow is impossible, so size is always positive. Integer overflow is possible for the
    // unbounded
    // indexed queues.
    if (size > Integer.MAX_VALUE) {
      return Integer.MAX_VALUE;
    } else {
      return (int) size;
    }
  }

  @Override
  public boolean isEmpty() {
    // Order matters!
    // Loading consumer before producer allows for producer increments after consumer index is read.
    // This ensures this method is conservative in it's estimate. Note that as this is an MPMC there
    // is
    // nothing we can do to make this an exact method.
    return (this.lvConsumerIndex() == this.lvProducerIndex());
  }

  @Override
  public String toString() {
    return this.getClass().getName();
  }

  @Override
  public boolean offer(final E e) {
    if (null == e) {
      throw new NullPointerException();
    }

    long mask;
    E[] buffer;
    long pIndex;

    while (true) {
      long producerLimit = lvProducerLimit();
      pIndex = lvProducerIndex();
      // lower bit is indicative of resize, if we see it we spin until it's cleared
      if ((pIndex & 1) == 1) {
        continue;
      }
      // pIndex is even (lower bit is 0) -> actual index is (pIndex >> 1)

      // mask/buffer may get changed by resizing -> only use for array access after successful CAS.
      mask = this.producerMask;
      buffer = this.producerBuffer;
      // a successful CAS ties the ordering, lv(pIndex) - [mask/buffer] -> cas(pIndex)

      // assumption behind this optimization is that queue is almost always empty or near empty
      if (producerLimit <= pIndex) {
        int result = offerSlowPath(mask, pIndex, producerLimit);
        switch (result) {
          case CONTINUE_TO_P_INDEX_CAS:
            break;
          case RETRY:
            continue;
          case QUEUE_FULL:
            return false;
          case QUEUE_RESIZE:
            resize(mask, buffer, pIndex, e, null);
            return true;
        }
      }

      if (casProducerIndex(pIndex, pIndex + 2)) {
        break;
      }
    }
    // INDEX visible before ELEMENT
    final long offset = modifiedCalcCircularRefElementOffset(pIndex, mask);
    soRefElement(buffer, offset, e); // release element e
    return true;
  }

  /**
   * {@inheritDoc}
   *
   * 

This implementation is correct for single consumer thread use only. */ @SuppressWarnings("unchecked") @Override public E poll() { final E[] buffer = consumerBuffer; final long index = lpConsumerIndex(); final long mask = consumerMask; final long offset = modifiedCalcCircularRefElementOffset(index, mask); Object e = lvRefElement(buffer, offset); if (e == null) { if (index != lvProducerIndex()) { // poll() == null iff queue is empty, null element is not strong enough indicator, so we // must // check the producer index. If the queue is indeed not empty we spin until element is // visible. do { e = lvRefElement(buffer, offset); } while (e == null); } else { return null; } } if (e == JUMP) { final E[] nextBuffer = nextBuffer(buffer, mask); return newBufferPoll(nextBuffer, index); } soRefElement(buffer, offset, null); // release element null soConsumerIndex(index + 2); // release cIndex return (E) e; } /** * {@inheritDoc} * *

This implementation is correct for single consumer thread use only. */ @SuppressWarnings("unchecked") @Override public E peek() { final E[] buffer = consumerBuffer; final long index = lpConsumerIndex(); final long mask = consumerMask; final long offset = modifiedCalcCircularRefElementOffset(index, mask); Object e = lvRefElement(buffer, offset); if (e == null && index != lvProducerIndex()) { // peek() == null iff queue is empty, null element is not strong enough indicator, so we must // check the producer index. If the queue is indeed not empty we spin until element is // visible. do { e = lvRefElement(buffer, offset); } while (e == null); } if (e == JUMP) { return newBufferPeek(nextBuffer(buffer, mask), index); } return (E) e; } /** We do not inline resize into this method because we do not resize on fill. */ private int offerSlowPath(long mask, long pIndex, long producerLimit) { final long cIndex = lvConsumerIndex(); long bufferCapacity = getCurrentBufferCapacity(mask); if (cIndex + bufferCapacity > pIndex) { if (!casProducerLimit(producerLimit, cIndex + bufferCapacity)) { // retry from top return RETRY; } else { // continue to pIndex CAS return CONTINUE_TO_P_INDEX_CAS; } } // full and cannot grow else if (availableInQueue(pIndex, cIndex) <= 0) { // offer should return false; return QUEUE_FULL; } // grab index for resize -> set lower bit else if (casProducerIndex(pIndex, pIndex + 1)) { // trigger a resize return QUEUE_RESIZE; } else { // failed resize attempt, retry from top return RETRY; } } /** @return available elements in queue * 2 */ protected abstract long availableInQueue(long pIndex, long cIndex); @SuppressWarnings("unchecked") private E[] nextBuffer(final E[] buffer, final long mask) { final long offset = nextArrayOffset(mask); final E[] nextBuffer = (E[]) lvRefElement(buffer, offset); consumerBuffer = nextBuffer; consumerMask = (length(nextBuffer) - 2) << 1; soRefElement(buffer, offset, BUFFER_CONSUMED); return nextBuffer; } private static long nextArrayOffset(long mask) { return modifiedCalcCircularRefElementOffset(mask + 2, Long.MAX_VALUE); } private E newBufferPoll(E[] nextBuffer, long index) { final long offset = modifiedCalcCircularRefElementOffset(index, consumerMask); final E n = lvRefElement(nextBuffer, offset); if (n == null) { throw new IllegalStateException("new buffer must have at least one element"); } soRefElement(nextBuffer, offset, null); soConsumerIndex(index + 2); return n; } private E newBufferPeek(E[] nextBuffer, long index) { final long offset = modifiedCalcCircularRefElementOffset(index, consumerMask); final E n = lvRefElement(nextBuffer, offset); if (null == n) { throw new IllegalStateException("new buffer must have at least one element"); } return n; } @Override public long currentProducerIndex() { return lvProducerIndex() / 2; } @Override public long currentConsumerIndex() { return lvConsumerIndex() / 2; } @Override public abstract int capacity(); @Override public boolean relaxedOffer(E e) { return offer(e); } @SuppressWarnings("unchecked") @Override public E relaxedPoll() { final E[] buffer = consumerBuffer; final long index = lpConsumerIndex(); final long mask = consumerMask; final long offset = modifiedCalcCircularRefElementOffset(index, mask); Object e = lvRefElement(buffer, offset); if (e == null) { return null; } if (e == JUMP) { final E[] nextBuffer = nextBuffer(buffer, mask); return newBufferPoll(nextBuffer, index); } soRefElement(buffer, offset, null); soConsumerIndex(index + 2); return (E) e; } @SuppressWarnings("unchecked") @Override public E relaxedPeek() { final E[] buffer = consumerBuffer; final long index = lpConsumerIndex(); final long mask = consumerMask; final long offset = modifiedCalcCircularRefElementOffset(index, mask); Object e = lvRefElement(buffer, offset); if (e == JUMP) { return newBufferPeek(nextBuffer(buffer, mask), index); } return (E) e; } @Override public int fill(Supplier s) { long result = 0; // result is a long because we want to have a safepoint check at regular intervals final int capacity = capacity(); do { final int filled = fill(s, PortableJvmInfo.RECOMENDED_OFFER_BATCH); if (filled == 0) { return (int) result; } result += filled; } while (result <= capacity); return (int) result; } @Override public int fill(Supplier s, int limit) { if (null == s) throw new IllegalArgumentException("supplier is null"); if (limit < 0) throw new IllegalArgumentException("limit is negative:" + limit); if (limit == 0) return 0; long mask; E[] buffer; long pIndex; int claimedSlots; while (true) { long producerLimit = lvProducerLimit(); pIndex = lvProducerIndex(); // lower bit is indicative of resize, if we see it we spin until it's cleared if ((pIndex & 1) == 1) { continue; } // pIndex is even (lower bit is 0) -> actual index is (pIndex >> 1) // NOTE: mask/buffer may get changed by resizing -> only use for array access after successful // CAS. // Only by virtue offloading them between the lvProducerIndex and a successful // casProducerIndex are they // safe to use. mask = this.producerMask; buffer = this.producerBuffer; // a successful CAS ties the ordering, lv(pIndex) -> [mask/buffer] -> cas(pIndex) // we want 'limit' slots, but will settle for whatever is visible to 'producerLimit' long batchIndex = Math.min(producerLimit, pIndex + 2l * limit); // -> producerLimit >= batchIndex if (pIndex >= producerLimit) { int result = offerSlowPath(mask, pIndex, producerLimit); switch (result) { case CONTINUE_TO_P_INDEX_CAS: // offer slow path verifies only one slot ahead, we cannot rely on indication here case RETRY: continue; case QUEUE_FULL: return 0; case QUEUE_RESIZE: resize(mask, buffer, pIndex, null, s); return 1; } } // claim limit slots at once if (casProducerIndex(pIndex, batchIndex)) { claimedSlots = (int) ((batchIndex - pIndex) / 2); break; } } for (int i = 0; i < claimedSlots; i++) { final long offset = modifiedCalcCircularRefElementOffset(pIndex + 2l * i, mask); soRefElement(buffer, offset, s.get()); } return claimedSlots; } @Override public void fill(Supplier s, WaitStrategy wait, ExitCondition exit) { MessagePassingQueueUtil.fill(this, s, wait, exit); } @Override public int drain(Consumer c) { return drain(c, capacity()); } @Override public int drain(Consumer c, int limit) { return MessagePassingQueueUtil.drain(this, c, limit); } @Override public void drain(Consumer c, WaitStrategy wait, ExitCondition exit) { MessagePassingQueueUtil.drain(this, c, wait, exit); } /** * Get an iterator for this queue. This method is thread safe. * *

The iterator provides a best-effort snapshot of the elements in the queue. The returned * iterator is not guaranteed to return elements in queue order, and races with the consumer * thread may cause gaps in the sequence of returned elements. Like {link #relaxedPoll}, the * iterator may not immediately return newly inserted elements. * * @return The iterator. */ @Override public Iterator iterator() { return new WeakIterator(consumerBuffer, lvConsumerIndex(), lvProducerIndex()); } private static class WeakIterator implements Iterator { private final long pIndex; private long nextIndex; private E nextElement; private E[] currentBuffer; private int mask; WeakIterator(E[] currentBuffer, long cIndex, long pIndex) { this.pIndex = pIndex >> 1; this.nextIndex = cIndex >> 1; setBuffer(currentBuffer); nextElement = getNext(); } @Override public void remove() { throw new UnsupportedOperationException("remove"); } @Override public boolean hasNext() { return nextElement != null; } @Override public E next() { final E e = nextElement; if (e == null) { throw new NoSuchElementException(); } nextElement = getNext(); return e; } private void setBuffer(E[] buffer) { this.currentBuffer = buffer; this.mask = length(buffer) - 2; } private E getNext() { while (nextIndex < pIndex) { long index = nextIndex++; E e = lvRefElement(currentBuffer, calcCircularRefElementOffset(index, mask)); // skip removed/not yet visible elements if (e == null) { continue; } // not null && not JUMP -> found next element if (e != JUMP) { return e; } // need to jump to the next buffer int nextBufferIndex = mask + 1; Object nextBuffer = lvRefElement(currentBuffer, calcRefElementOffset(nextBufferIndex)); if (nextBuffer == BUFFER_CONSUMED || nextBuffer == null) { // Consumer may have passed us, or the next buffer is not visible yet: drop out early return null; } setBuffer((E[]) nextBuffer); // now with the new array retry the load, it can't be a JUMP, but we need to repeat same // index e = lvRefElement(currentBuffer, calcCircularRefElementOffset(index, mask)); // skip removed/not yet visible elements if (e == null) { continue; } else { return e; } } return null; } } private void resize(long oldMask, E[] oldBuffer, long pIndex, E e, Supplier s) { assert (e != null && s == null) || (e == null || s != null); int newBufferLength = getNextBufferSize(oldBuffer); final E[] newBuffer; try { newBuffer = allocateRefArray(newBufferLength); } catch (OutOfMemoryError oom) { assert lvProducerIndex() == pIndex + 1; soProducerIndex(pIndex); throw oom; } producerBuffer = newBuffer; final int newMask = (newBufferLength - 2) << 1; producerMask = newMask; final long offsetInOld = modifiedCalcCircularRefElementOffset(pIndex, oldMask); final long offsetInNew = modifiedCalcCircularRefElementOffset(pIndex, newMask); soRefElement(newBuffer, offsetInNew, e == null ? s.get() : e); // element in new array soRefElement(oldBuffer, nextArrayOffset(oldMask), newBuffer); // buffer linked // ASSERT code final long cIndex = lvConsumerIndex(); final long availableInQueue = availableInQueue(pIndex, cIndex); RangeUtil.checkPositive(availableInQueue, "availableInQueue"); // Invalidate racing CASs // We never set the limit beyond the bounds of a buffer soProducerLimit(pIndex + Math.min(newMask, availableInQueue)); // make resize visible to the other producers soProducerIndex(pIndex + 2); // INDEX visible before ELEMENT, consistent with consumer expectation // make resize visible to consumer soRefElement(oldBuffer, offsetInOld, JUMP); } /** @return next buffer size(inclusive of next array pointer) */ protected abstract int getNextBufferSize(E[] buffer); /** @return current buffer capacity for elements (excluding next pointer and jump entry) * 2 */ protected abstract long getCurrentBufferCapacity(long mask); }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy