io.rtron.math.geometry.euclidean.twod.curve.CubicCurve2D.kt Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of rtron-math Show documentation
Show all versions of rtron-math Show documentation
Component 'rtron-math' of rtron.
The newest version!
/*
* Copyright 2019-2022 Chair of Geoinformatics, Technical University of Munich
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package io.rtron.math.geometry.euclidean.twod.curve
import com.github.kittinunf.result.Result
import io.rtron.math.analysis.function.univariate.pure.PolynomialFunction
import io.rtron.math.geometry.curved.oned.point.CurveRelativeVector1D
import io.rtron.math.geometry.euclidean.twod.Rotation2D
import io.rtron.math.geometry.euclidean.twod.point.Vector2D
import io.rtron.math.range.BoundType
import io.rtron.math.range.Range
import io.rtron.math.transform.AffineSequence2D
import io.rtron.std.handleFailure
/**
* Represents a parametric cubic curve of the following form:
* y = f(x) = c0 + c1*x + c2*x^2 + c3*x^3
*
* @param coefficients coefficients for f(t), whereby coefficients[0] corresponds to c0
* @param length length of cubic curve which is used for constructing the domain
*/
class CubicCurve2D(
val coefficients: DoubleArray,
length: Double,
override val tolerance: Double,
override val affineSequence: AffineSequence2D = AffineSequence2D.EMPTY,
endBoundType: BoundType = BoundType.OPEN
) : AbstractCurve2D() {
// Properties and Initializers
init {
require(coefficients.size == 4) { "Requiring exactly four coefficients for building a cubic curve." }
require(coefficients.all { it.isFinite() }) { "All coefficients must be finite." }
require(length.isFinite()) { "Length value must be finite." }
require(length > tolerance) { "Length value must be greater than zero and the tolerance threshold." }
}
private val _polynomialFunction by lazy { PolynomialFunction(coefficients) }
override val domain: Range = Range.closedX(0.0, length, endBoundType)
// Methods
override fun calculatePointLocalCSUnbounded(curveRelativePoint: CurveRelativeVector1D):
Result {
val x = curveRelativePoint.curvePosition
val y = _polynomialFunction.value(curveRelativePoint.curvePosition)
.handleFailure { throw it.error }
return Result.success(Vector2D(x, y))
}
override fun calculateRotationLocalCSUnbounded(curveRelativePoint: CurveRelativeVector1D):
Result {
val angle = _polynomialFunction.slope(curveRelativePoint.curvePosition)
.handleFailure { throw it.error }
return Result.success(Rotation2D(angle))
}
override fun equals(other: Any?): Boolean {
if (this === other) return true
if (javaClass != other?.javaClass) return false
other as CubicCurve2D
if (!coefficients.contentEquals(other.coefficients)) return false
if (affineSequence != other.affineSequence) return false
if (domain != other.domain) return false
return true
}
override fun hashCode(): Int {
var result = coefficients.contentHashCode()
result = 31 * result + length.hashCode()
result = 31 * result + affineSequence.hashCode()
result = 31 * result + endBoundType.hashCode()
result = 31 * result + domain.hashCode()
return result
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy